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Abstract. We survey here results and problems from the reconstruction theory of evo-
lutionary trees, which involve enumeration and inversion.

1. Introduction

Since the work of Darwin, there has been a dream of biologists: to reconstruct the
tree of evolution of living things. That tree could be the only scientific basis for
classification. In the last two decades the dramatic progress in molecular biology
(reading long segments of genetic sequences) led to a new field, the theory of
molecular evolution.

One assumes that the process of evolution is described by a tree, in which no
degree exceeds 3, since evolutionary events are too rare to coincide. In this tree the
leaves denote existing species represented by corresponding segments of aligned
DNA sequences, the unlabelled branching vertices may denote unknown extinct
ancestors; since fossils do not keep records of the DNA sequence. For a given set
of existing species, we define their true tree by taking the subtree induced by them
in the tree describing the process of evolution and undoing the vertices of degree
two. We term any binary tree, in which leaves are labelled by the species and
the branching vertices are unlabelled, an evolutionary tree. The very problem of
reconstruction may be put in this way: given a set of species with corresponding
segments of aligned DNA sequences, select the true tree from the set of possible
evolutionary trees.

In this paper we assume that every bit of the aligned DNA sequence is one of the
four nucleotides, A (Adenine), G (Guanine), C (Cytosine), T (Thymine); i.e. we
neglect insertions and deletions of nucleotides. Biologists also would like to add
aroot r to denote a common ancestor and the direction of the evolution. This root
r may subdivide an edge of the true tree or may be attached to a vertex of the
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true tree. However, if you have a procedure to solve the problem above without
r, it easily can be applied to finding the root by outgroup comparison: add a new
species to your list which is known to be far from all your species, reconstruct the
larger true tree, and the neighbor of the new species can be considered the root of
the smaller true tree.

It is not always the case, that A, G, C, T are the letters of the alphabet; a two-
letter alphabet (identifying purines A = G and pyrimidines C = T'), and a 20-
letter alphabet of amino acids for protein sequences are also possible.

To solve the reconstruction problem, one needs a mathematical model that dis-
tinguishes the true tree in mathematical terms, and one also may expect, that the
mathematical model in question corresponds to a known or generally assumed
mechanism of molecular evolution. One also may expect several other attributes
of the model, as Hendy, Penny, and Steel [27] listed: a polynomial time algorithm
for tree reconstruction, convergence on relatively short sequences to the true tree,
insensitivity to small errors in input data, and falsifiabilty of the model in a Poppe-
rian sense. However, no tree reconstruction method proposed is powerful enough
to meet all these criteria; many popular ones do not even correspond to any as-
sumed mechanism of molecular evolution. It is no surprise, that Penny, Hendy,
Zimmer and Hamby [29] can show sets of species, for which different evolution-
ary trees have been published on the basis of different data, and even on the basis
of the same data, using different methods. In [27], [28], and other papers, Penny et
al. gave a program to put the theory of evolutionary trees on a sound philosophical
and mathematical foundation.

It is not the point of the present paper to overview advantages and shortcom-
ings of all tree reconstruction methods. For a comparison of different methods,
see [27]. We restrict the present paper to our modest contribution, that involves
enumeration and inversion, to that program. Sections 3-5 closely follow [36].
We give no proofs. A preliminary version of the present paper appeared in the
conference proceedings [34].

Cavalli-Sforza and Edwards [2] introduced the parsimony principle to the anal-
ogy of many minimum principles in science. In many instances the parsimony
principle yields reasonably good trees, however no mechanism of evolution is ac-
countable for it, and there are situations—where some branches of the true tree
have significantly different rate of change—in which it may be false, see Felsen-
stein [13]. Section 2 is devoted to the parsimony principle and related enumeration
results.

Section 3 describes a Fourier inverse pair depending on trees and Abelian groups.
Section 4 sets Kimura’s models of molecular evolution in terms of Section 3 and
outlines the spectral analysis/closest tree method. Section 5 is devoted to the con-
struction of a complete set of invariants for Cavender’s model and Kimura’s 3-
parameter model, Section 6 concludes with remarks on algorithmic and philo-
sophical aspects.
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2. The parsimony principle

Let C denote the letters of our alphabet, which frequently will be referred to as
a set of colours, and let C,, denote the set of m-letter words over that alphabet.
Let T be an evolutionary tree with leaf set L. Wetermamap x : L — Cy
as a leaf-colouration. The colouration ¥ : V(T) — Cp, is an extension of
the leaf-colouration x if the two maps are identical on the set L. The changing
number of the colouration y is the number of pairs of <edge, letter position>,
where end-vertices of the edge have different colours at the corresponding letter
position according to . We term the minimum changing number of the tree T’
over all extensions of x the length of T. The parsimony principle says, that the
true tree has minimum length, i.e. maximum parsimony. Unfortunately, results
of Foulds and Graham [14] show that the decision problem, whether for a set
of leaves and assigned words, an evolutionary tree with prescribed length exists,
is NP-hard, even when |C| = 2. Therefore, from a statistical point of view, it
is reasonable to ask for the expectation and variance of the length of a random
evolutionary tree, in order to use this information as a selection principle (Steel
[30]). Not much is known yet on the variance, but there are some results on the
expectation. The computation of the expectation can be reduced to the solution of
the following enumeration problem.

Problem. Let fi(a1,...,a:)(t > 2,a; > 1,n= a)+ -+ a;) denote the num-
ber of binary trees with a; labelled leaves of colour i, with unlabelled branching
vertices, with length k. Evaluate fr(a1,... ,0¢).

This enumeration problem is still open; not even a conjectured value of fx(ay, ...,
a¢) is at hand. We list here the solved instances of the problem. Carter, Hendy,
Penny, Székely and Wormald (1] proved the

Bichromatic binary tree theorem.

(2n-5)!
fi(a,b) = (k= 1!1(2n— 3k)N(a,k)N(b.k)(2n_2m_ K 1)
where a + b = nand
N(z, k) = (2“’,:_"1’1)(2:-%—1)!1. 10))

For more than 2 colours, results for extreme length values are available. Ob-
serve that with & colours present, the length is at least £ — 1. For this extreme
value, Carter & al. [I] proved

-5
feet(at, ... ,a8) = (25‘2_112:_)})!: N(a1,1) --- N(ar, 1).
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For a; > 2, using inclusion-exclusion, Steel [30] went further to prove

fk(alv"' sak)
_ (k=1 (4(n—k)2 —2n+ k)(2n— 5)!!
- (2n-2k-1!

N(ay,1) ---N(ag, 1).
In another paper Steel [31] obtained:

k s _
fau(k,k, k) = (1)* 3 J[2*] Q(sf) (6§c6-k23?!1!)!s'

a=l

©)]

where [2*]Q(z) = A4ZRUE=D  Notice that with 3 colour classes of size k the
length is at most 2 k, an extreme case, again. D. Penny [personal communication]
computed some small values of f for 3 colours, which may be useful for making
and/or checking conjectures:

fm(2,2,3) = 27,318,600 form = 2,3,4;

fm(2,2,4) = 165,2610,7620 form = 2,3,4;

fm(2,3,3) = 99,1566, 5526,3204 form = 2,3,4,5:

Fm(3,3,3) = 351,6966 40554 , 60858, 19116 for m = 2,3,4,5,6;
fm(2,2,5) = 1365, 27090, 106680 for m = 2,3,4;

fa(2,3,4) = 585,11610, 57420, 65520 form = 2,3,4,5.

A trivial, but useful formula in establishing more values of f is
filar,...,ar,1) =(20-5) fi-1(a,...,ar). @

Using (1) and (4), one easily extends the little table above for the values of f,(1, a,
b).
The first proof of the bichromatic binary tree theorem relied on generating func-
tions, multivariate Lagrange inversion and computer algebra. Later on, Steel gave
a proof from a combinatorial decomposition based on Menger’s theorem [30],
and Erdds and Székely [10] simplified his proof further. It has turned out, that
(2) counts binary forests of k components on z labelled leaves, such that ev-
ery component contains one vertex of degree two or zero [1], [8]. The term
k!N(a, k) N(b, k) nearly present in (1) can be explained as such forests being
built on both colour classes of leaves and then the trees are matched in all possible
ways. Then the rest of (1) comes into play at building different trees of length k&
from the matched forests.

It became evident, that a solution of the general enumeration problem requires a
good characterization of the fact, that the length of a tree is not less than t; for two
colours Menger’s theorem provides for such a good characterization. A natural



generalization of the length is the well-known multiway cut problem; given a
graph G and N C V(G), find an edge set of minimum size, whose deletion
separates each pairs of N. Dalhaus & al. [7] showed that the multiway cut problem
is NP-hard (even for planar graphs, if | N| is not bounded). Hence, the existence
of such a good characterization is unlikely in general. For » > 2 colours and (not
necessarily binary) trees Erd6s and Székely [11] proved the following min-max
theorem to give good characterization:

Theorem. The length of a leaf coloured tree is equal to the maximum number of

oriented paths, connecting differently coloured leaves, such that no edge is used
by two oppositely oriented paths, and no two paths using the same edge end in the
same colour. :

However, this is not enough in itself, to solve the problem. Notice that it is un-
likely that a product formula like (1) solves the problem, since the given numerical
values have some large prime factors e.g. 43, 53, 89; and (3) does not suggest any
closed form either.

We would like to close this section with applications and a by-product. The
applications are in biology. The well-known astronomer Sir Fred Hoyle has sug-
gested that the Earth is continually bombarded by viruses (including influenza
viruses) that originate from comets. Henderson, Hendy and Penny [15] showed
that his hypothesis may be rejected with very high probability; their basic math-
ematical tool was the bichromatic binary tree theorem. A further similar appli-
cation, due to Steel, Hendy and Penny [32], applies the bichromatic binary tree
theorem to calculate a permutation-based statistic for aligned sequences over the
2-letter alphabet, which allows for a test, whether the alignment is significantly
“tree-like”. )

The byproduct is a bijection of Erdds and Székely [9] between some trees with
unlabelled branching vertices and set partitions, which gives a unified technique
to solve a number of tree enumeration problems. The motivation for the bijec-
tion came from counting evolutionary trees, which yields a semifactorial function
(Cavalli-Sforza and Edwards [2]), like the number of partitions of a 2n-¢clement
set into 2-element sets. Had not we seen counting of trees with unlabelled branch-
ing vertices in biomathematics, we would hardly have ever come to this point.

3. A Fourier calculus

We need to recall some facts on characters and the Fourier transform, which can
be found in [20] or in [12]. We use additive notation in Abelian groups.

Lemma. LetG be a finite Abelian group, then
() the character group & is isomorphic to G.
(i) if f: G — C is a complex-valued function and } : G — C is defined
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by i
700 =) x(9) f(9),
geG
thenforall g € G

1 —_—
f(g) = @Ex(wf(x).

x€CG
(ili) The characters of a direct product group are exactly the sums of characters.

Let us be given a tree T with leaf set L and one arbitrary leaf R, called a root. We
assume that no vertex has degree two. Assume that we are given a finite Abelian
group G and for the edges e € E(T) we have independent G-valued random
variables {, with distributions p(g) := Prob(¢ = g), such that 3" .- pe(g) =
1. We call the set of p, distributions (e € E(T)) a transition mechanism and
denote it by p. Take G™! = the set of leaf colourations ¢ : L\ {R} — G
endowed with pointwise operation; we denote the value of o at [ by o;. Produce a
rahdom G-colouration of the leaves of the tre¢ by evaluating &, for every edge and
giving as colour to the leaf [ the sum of group elements along the unique Rl path.
Let f, denote the probability that we obtain the leaf colourationo : L\{R} — G
in this way. In case we want to emphasize the dependence from the tree T" and the
transition mechanism p, we will write f,(T, p).

Letx = (x1 € G : 1 € L\ {R}) be an ordered (n — 1)-tuple of characters.
Then x € G™!, and x acts on G™! according to Lemma (iii). For e € E(T),
set

L.={l € L : e separates [ from R in T}.

Fore € B(T) and x € G™',setxe = e, X1- S0 Xe € G. Forh € G,
e € E(T) define l.(h) = 3, h(g)p.(g) and
re= J] llxe) )
e€E(T)
In [35, 36] we obtained the following Fourier inverse pair:

Theorem. With x(a)= T[] xi(o0),
1eL\{R}

re= . x(o)fs ond ©)
ecG™!
1 —_—
fo= G@T > x(@ry )
xeb!

In [36] we observed that (6) and (7) are equivalent by Lemma (ii) for any f and
r; and it is not difficult to prove (6) for our f, and r,, based on the factorization

5).



4, Kimura’s models of molecular evolution

After the work of Kimura, the general assumption for the mechanism of molecu-

lar evolution is that changes in the DNA are random. It is assumed that changes
at different sites are independent and of identical distribution. In case the data
violates too much the condition on identical distribution, one may thin out the se-
quences by considering one site of each of the codons (the consecutive triplets of
nucleotides encoding amino acids), particularly the third position, which is more
redundant in the coding scheme than the other two positions, and therefore-less
influenced by natural selection. For G = Z,, the model described in Section 3
specializes to a model of Cavender [3], for which Hendy and Penny found the
special case of the calculus above and applied it in their spectral analysis/closest
tree method for tree reconstruction from sequences over a 2-letter alphabet [16],
[17], [18]. Our part was the generalization for other groups; the practical impor-
tance of this generalization is mostly for G = Z, x Z i.e. for sequences over the
4-letter alphabet A, G, C, T. We explain the G = Z; x Z; case in details, the
explanation also applies, mutatis mutandis, to G = Z, It is an interesting para-
dox of the theory of evolution, that evolution is random at the molecular level and
follows natural selection at a high level.

From now on we describe Kimura’s 3-parameter model [23, 24] and some re-
stricted versions of it, which are known as Kimura’s 2-parameter model [22] and
Jukes-Cantor model [21], (the Jukes-Cantor model is more explicit in Neyman
[26]). We assume that every bit of the aligned DNA sequence is one of the four nu-
cleotides, A (Adenine), G (Guanine), C (Cytosine), T (Thymine); i.e. we neglect
insertions and deletions. We follow the group theoretical setting of the models
from Evans and Speed [12]. Identify the elements of Z; x Z; with the four nu-
cleotides, such that A = 0. Take the true tree with a common ancestor r, assume
that an element of Z x Z, is assigned under a certain (unknown) distribution to r.
The random group element at r is regarded as the original nucleotide value there.
To every edge of the tree a random element of Z; x Z is assigned independently,
the distribution may vary from edge to edge. The random variable at an edge de-
scribes the nucleotide change on that edge. In terms of biology, adding A = 0
on an edge causes no change in the nucleotide, adding G causes transition, and
adding C or T causes one of the two possible types of transverion. To every leaf |
the sum of group elements along the unique path rl and in r itself is assigned. We
have a random 4-colouration of the leaves (in fact, of all vertices) of the tree. That
is Kimiura’s 3-parameter model of molecular evolution. Kimura’s 3-parameter
model allows for every edge e of the tree 4 arbitrary probabilities which sum up to
1, i.e. 3 free parameters, which may be different on different edges. Kimura's 2-
parameter model is similar, but further restricted by p.(G) = p.(T') for all edges,
and finally, the Jukes-Cantor model requires in addition p.(C) = p.(T) for all
edges.

It is surprising enough, that the models above were equipped with substitution
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mechanisms for transitions and transversions that fit perfectly the group theoretical
description, although this was not the motivation for their invention. The model,
in which we work, slightly differs from Kimura's models, namely, we do not have
a root r for an unknown common ancestor. This is in no way a serious loss, since
it is easy to recover it by owfgroup comparison. The root that we use, is, like in
Section 3, one arbitrary leaf R, which represents an existing species. At every site
of the sequence of R, we find a group element, and for standardization, in every
leaf we multiply at the same site with the inverse of that group element. We refer
to the sequences obtained as standardized sequences, note, that the standardized
sequence of R contains 0’s only. From the standardized sequences we can read
a leaf colouration at every bit; we count relative frequencies of leaf colourations
and we treat these relative frequencies f% as if they were the f, leaf colouration
probabilities from the model of Section 2. Observe that the propagation of group
elements along the tree is direction dependent unless p.(g) = p.(g~') for all
e and g; and without this condition the standardization would not make sense.
However, for G = Z3*, the condition holds automatically. Standardization sets no
restriction on the distribution at r, since we rather work with nucleotide changes
than use the nucleotide values. Despite the small difference, our method will allow
for reconstruction of the true tree that evolved according to Kimura’s model, with
the loss of r and with the possible loss of the vertex adjacent to r, if it has degree
3.

Now we face the following problem: which tree T" and probability distributions
p.(g) over its edges yield a leaf colouration probability f, = f for all 6? One
easily sees, that with p.(g) = 1/|G|foralle € E(T") andg € G, all leaf coloura-
tions are equally likely, independently of the shape of the tree. Hence, there is
no way to reconstruct the tree. However, the following theorem shows, that re-
construction is possible, if p.(0) (i.e. the probability of no change) is sufficiently
close to 1 on all edges. Fortunately, this is the case with evolution.

Let H denote the connecting matrix in (6), i.e. the rows correspond to elements
of G*1, the columns correspond to elements of G*!, and the (x, o) entry is
x(a). Let f denote the vector of f,’s in (6). We adopt the convention of writing
[v]; for the j** coordinate of the vector v. Let K denote the matrix, in which rows
correspond to elements of & and columns correspond to the elements of G, and
the (h, g) entry is h(g). Let p. denote the vector, for which [p.l; = p.(h). Fora
positive vector v, we denote by log v the vector, for which [log v}; = log[ v];. We
define an important set here, which is essential also for our results on invariants.
Fore € E(T),0 # g € G, define p*¢ € G™ in the following way: 5{¢ = 0 for
l¢ L.,l¥# R,and p;¥ = g forl € L.. Define

C(T) = {p*? : e € E(T),0 # g € G}. ®

In [33] and [36] we generalized the spectral analysis/closest tree method as fol-
lows:
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Theorem. If p.(0) is sufficiently close to 1, then

0 ifO#pgC(),
[H-l log Hf]l) = { (k- log K pela, if p = p"" ec(n), O
Eees(‘r)[K—l log Kpelo, if p=0. :

We use complex logarithm in a neighbourhood of 1 such thatlog 1 = 0. For
real data, due to the fact that p.( 0) is sufficiently small, we hit this neighbourhood.
Working with f arising from the model of Section 3, (8) and (9) tell the edges of
the tree, and from (9) one can obtain p, for all edges as well.

Working with empirical f/, we must be satisfied with the best approximation
in a reasonable norm. Having the p.’s on the edges of the true tree allows for
estimating a time scale, i.e. how far ago in time the evolutionary events in question
did happen. The closest tree method, which is a branch-and-bound algorithm,
determines then the evolutionary tree and the p.’s over its edges, which yields
f, such that H~! log Hf approximates H~! log Hf' best in the Euclidean norm.
The actual computation can be facilitated by writing H into a symmetric form
achieving H—! = 41-* H and by an adaptation of the fast Fourier transform. The
closest tree method for Z, x Z , i.e. for four character state sequence, was already
succesfully applied to real data [19].

The proof of (9) in [36] is purely combinatorial, the inverse pair (6)-(7) and the
factorization (5) is a necessary tool in it.

5. Invariants

There is a continuing interest in the theory of invariants of evolutionary trees.
Roughly speaking, an invariant is a polynomial identity, which holds on one evo-
lutionary tree no matter what the transition mechanism is, and usually does not
hold on other evolutionary trees. The great advantage of using invariants is that
one may discriminate against some trees without (strong) assumptions regarding
the probabilities. Invariants were introduced by Cavender and Felsenstein [6], [4],
[5] and Lake [25]; and recently Evans and Speed [12] gave an algebraic technique
based on Fourier analysis to decide if a polynomial is invariant or not for Kimura’s
3-parameter model.

Let us be given a tree T" and another tree T on the same leaf set L and root R.
Consider the indeterminates z, fora o € G™! again. A multivariate function
gr(...,%q,...) is aninvariant of the wee T, if q vanishes after the substitution
of f,(T, P)’s into z,’s, for any transition mechanism p of T. We expect that an
invariant is non-zero for a typical substitution of f,(T",p’)’s into the z,’s; and
hence searching for the tree 7" and its transition mechanism p' that resulted in the
observed f, we may reject a wrong candidate T', using its invariant(s).

Consider
Split(T) = {L(T) : e € E(T)}
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and observe that every element of Split(T') is represented by a unique edge e,
since T has no vertex of degree two. Call an edge e € E(T') passive for (T, p),
if p.(0) = 1. Consider the set of ordered pairs (trees, transition mechanisms) on
the same fixed leaf set L and root R; and define a relation ~ by (T, p) ~ (T, p')
iffa (T",p") can be reached from both by contracting passive edges. It is easy to
see that ~ is an equivalence relation.

Define the polynomial Ry = )" cow1 x(0) z, for x € G, For p €G!,
define the tree independent C* — C functions

5= ] B -1
x€6~!

in a neighborhood of 7o = 1,2, = 0. For 0 # p ¢ C(T), we term the §,’s as
the canonical invariants of the tree T'. (It is easy to derive from (9) that they are
invariants indeed.)

For the main results of this Section we put p.(0) into the first coordinate in p..

Theorem. Assume that for the transition mechanims p and p', for any edge e
the vectors p. andp!, are sufficiently close to (1,0,...,0)7.

(i) If f,(T,p) satisfies the canonical invariants of T', then the elements of
Split(T) \ Split(T') are represented by passive edgesin T.
(ii) If fo(T,p) satifies the canonical invariants of T' and f,(T',p') satisfies
the canonical invariants of T, then (T,p) ~ (T',7").
(iii) Ifa leaf colouration probability distribution f, come from both (T, p) and
(Tls ﬂ)’ then (T, p) ~ (T's ’)'
(iv) The canonical invariants of the tree T' are algebraically independent.

In the rest of the Section we restrict ourselves to G = Z3* . For an arbitrary
given p € (Z")™! we define the polynomial &, of all z,’s:

&= JI B~ II B

o~~~ ' -
X€E(ZPH™: XE(ZP)*1:
x(p)=1 x(p)=—1

Clearly, we obtained polynomial invariants, of which most of the theorem can be
easily told, with the annoying exception of their algebraic independence. In fact,
we conjecture that the polynomials &, altogether with the polynomial Rp — 1 =
3, zo — 1 are algebraically independent.

It is worth making the following comment here. Evans and Speed [12] con-
jecture that “the number of algebraically independent invariants and the number
of free parameters among the p.(g)’s obtained by an informal parameter count
add up to the number of variables z,”. Their first problem seems to have been
to set candidates for these independent invariants. We have the suggestion above.
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Assume that for g # 0, pe(g) is a variable and p.(0) = 1 — 3", p(g); then
the number of free parameters is |E(T)|(2™ — 1), the number of variables z,
is 2™(*1 , the number of canonical invariants &), is 2™ — |C(T)| -1 =
2™+ _ |E(T)|(2™ — 1) — 1; and actually, we have one more invariant,
Ro — 1 =3z, — 1. The numerology works, but a positive result here would -
. seem to involve algebraic geometry. We gave some support for the conjecture.

6. Conclusion

The spectral analysis method has the advantage of using all the genetic informa-
tion from the sequences, a property, which is not shared by most other reconstruc-
tion techniques. As it was pointed out in [16], [27], (28], it satisfies the Popperian
program of falsifiability. Namely, the probabilities p.( h) resulting from (9) might
be negative numbers in the closest tree. That this can happen for artificial data but
not for real data is a circumstancial evidence for the truth of Cavender’s model and
Kimura’s 3-parameter model. There is an additional Popperian test for Kimura’s
3-parameter model, namely, that in (9), for o ¢ C(T), [H~! log Hf], = 0; and
this test does not even assume any knowledge on the closest tree.

Compared with spectral analysis, the parsimony principle is a rather rough ex-
ploratory method. However, if the Jukes-Cantor model or Cavender’s model ap-
plies to a small binary tree such that there are small equal changing probabilities
p.(g) = p (g # identity) on all edges, then we have p.(g)2 << p.(g) and chang-
ing twice for a nucleotide is highly unlikely; in such circumstances the parsimony
principle is expected to yield the true tree. The parsimony principle and the clos-
est tree method are both minimum principles, although with different objective
functions. :

Itis appropriate to comment here on the computational complexity issue. Clearly,
working with 4™! x 4! matrices in order to reconstruct a tree on = leaves is
not computationally feasible for large values of n. There are, however, polyno-
mial time algorithms to reconstruct the evolutionary tree, if a consistent method
can determine the true tree for any 4-subset of species. These methods may not
be reliable on real data and do not provide for the transition mechanism.

We suggest here a polynomial time algorithm based on (9), that we expect to
be reliable and computationally feasible at the same time. We do not estimate the
running time, since it may depend on the implementation. The algorithm is based
on three observations: <

(i) in (9), we only want to compute the coordinates corresponding to a p®* where
e defines a split of the tree (but we do not know in advance, which coordinates they
are),

(ii) the number of different leaf colourations that occur in the data seems to be
O(n?) by experience, but in no way can exceed the length of the genetic sequences
considered (much less than 4™1),

(iii) a second order approximation formula for (9) ([36]): for x with z, > 0
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and Yz, =1,fora #0,

[H'log Hxlo s = - L Tala
To 2 (01,02): z%

0140210

o102 Y0
Now the algorithm would apply (iii) for certain subsets L' of L to decide if a
certain bipartition of L' is a split of the true tree on L'. Any split of L' is the trace
of a split of L by the course of the evolution. Hence, having a split of L', one can
blow it up into a split of L, by repeatedly adding a new vertex to some side of the
split. Again, (iii) tests to which side the new vertex is to go. The algorithm may
start with the split a| R of L’ = {a, R}. Having obtained a split of L, we may apply
the same algorithm recursively to the vertex sets on the two sides of the split, until
we recover all splits of L and use (iii) to recover the transition mechanism on the
edges of the true tree.

References

1. M, Carter, M. D. Hendy, D. Penny, L. A. Székely, N. C. Wormald, On the
distribution of length of evolutionary trees, SIAM J. Discrete Math 3 (1990),
38-47.

2.L.L. Cavalli-Sforza, A. W. F. Edwards, Phylogenetic analysis: models and
estimation procedures, Evolution 21 (1967), 550-570.

3. J. A. Cavender, Taxonomy with confidence, Math. Biosci. 40 (1978), 271-280.

4.]. A. Cavender, Mechanized derivations of linear invariants, Mol. Biol. and
Evol 6 (1989), 301-316.

'5.J. A. Cavender, Necessary conditions for the method of inferring phylogeny
by linear invariants, Math. Biosci. 103 (1991), 69-75.

6. J. A. Cavender and J. Felsenstein, Invariants of phylogenies in a simple case
with discrete states, J. Class 4 (1987), 57-71.

7. E. Dahlhaus, D. S. Johnson, C. H. Papadimitriu, P, Seymour, M. Yannakakis,
The complexity of multiway cuts, Extended abstract (1983).

8.P. L. ErdGs, A new bijection on rooted forests, in “Proceedings of the 4th
French Combinatorial Conference”, Marseille, 1990. Discrete Math. 111
(1993), 179-188.

9.P. L. Erdss, L. A. Székely, Applications of antilexicographic order I: An
enumerative theory of trees, Adv. Appl. Math. 10 (1989), 488-496.

10. P. L. Erdds, L. A. Székely, Counting bichromatic evolutionary trees, to ap-
pear in Discrete Appl. Math..

11. P. L. Erd8s, L. A. Székely, Evolutionary trees: An integer multicommodity
max-flow-min-cut theorem, Adv. Appl. Math. 13 (1992), 375-389.

12. S. N. Evans, T. P. Speed, Invariants of some probability models used in phy-
logenetic inference, to appear in Annals of Statistics.

252



13. J. Felsenstein, Cases in which parsimony or compatibility methods will be
positively misleading, Syst. Zool. 27 (1978), 401-410.

14. L.R.Foulds, R. L. Graham, The Steiner problem in phylogeny is NP-complete,
Adv. Appl. Math. 3 (1982), 43-49.

15. I. M. Henderson, M. D. Hendy, D. Penny, Influenza viruses, comets and the
science of evolutionary trees, J. Theor. Biol. 140 (1989), 289-303.

16. M. D. Hendy, A combinatorial description of the closest tree algorithm for
finding evolutionary trees, Discrete Math, 6 (1991), 51-58.

17. M. D. Hendy, D. Penny, A framework for the quantitative study of evolution-
ary trees, Systematic Zoology 38(4) (1989), 297-309.

18. M. D. Hendy, D. Penny. Spectral analysis of phylogenetic data, to appear in
J. Class.

19. M. D. Hendy, D. Penny, M. A. Steel, Discrete Fourier analysis for evolution-
ary trees, submitted to Proc. Natl. Acad. Sci. USA.

20. N. Jacobson, “Basic Algebra II”, W. H. Freeman and Co., San Francisco,
1980.

21. T. H. Jukes, C. Cantor, Evolution in protein molecules, in “Mammalian Pro-
tein Metabolism (H. N. Munro, ed.)”, Academic Press, New York, 1969, pp.
21-132.

22, M. Kimura, A simple method for estimating evolutionary rates of base sub-
stitution through comparative studies of nucleotide sequences, J. Mol. Evol.
1(1980), 111-120.

23. M. Kimura, Estimation of evolutionary sequences between homologous nu-
cleotide sequences, Proc. Natl. Acad. Sci. USA 78 (1981), 454—458.

24. M. Kimura, “The Neutral Theory of Molecular Evolution”, Cambridge Uni-
versity Press, Cambridge, 1983.

25.J. A. Lake, A rate-independent technique for analysis of nucleic acid se-
quences: Evolutionary parsimony, Mol. Biol. Evol. 4 (1987), 167-191.

26. J. Neyman, Molecular studies of evolution: A source of novel statistical prob-
lems, in “Statistical Decision Theory and Related Topics, (S. S. Gupta and J.
Yackel, eds.)”, Academic Press, New York, 1971, pp. 1-27.

27. D. Penny, M. D. Hendy, M. A. Steel, Progress with methods for constructing
evolutionary trees, Trends in Ecology & Evolution 7 (1992-93), 73-79.

28. D. Penny, M. D. Hendy, M. A. Steel, Testing the theory of descent, in “Phy-
logenetic Analysis of DNA Sequences, eds. M. M. Miyamoto, J. Cracraft”,
Oxford University Press, New York-London, 1991, pp. 155-183.

29. D. Penny, M. D. Hendy, E. A. Zimmer, R. K. Hamby, Trees from sequences:
panacea or Pandora’s box?, Aust. Syst. Bot. 3 (1990), 21-38.

30. M. A. Steel, Distributions on bicoloured binary trees arising from the prin-
ciple of parsimony, Discrete Appl. Math. 41 (1993), 245-261.

31. M. A. Steel, Decompositions of leaf-coloured binary trees, Adv. Appl. Math.
14 (1993), 1-24.

253



32. M. A. Steel, M. D. Hendy, D. Penny, Significance of the length of the shortest
tree, J. Classification (1992), 71-90.

33. M. A. Steel, M. D. Hendy, L. A. Székely, P. L. Erd3s, Spectral analysis and a
closest tree method for genetic sequences, Appl. Math. Letters. 5 (1992)(6),
63-67.

34, L. A. Székely, P. L. Erd&s, M. A. Steel, The combinatorics of evolutionary
treesa survey, Actes du Séminaire, Séminaire Lotharingien de Combinatoire,
28-i¢me session 15-18 mars 1992, D. Foata, ed., Publication de I’Institute de
Recherche Mathematique Avancee, 129—-143.

35. L. A. Székely, P. L. Erd6s, M. A. Steel, D. Penny, A Fourier inversion for-
mula for evolutionary trees, Appl. Math. Letters, 6 (1993)(2), 13-17.

36. L. A. Székely, M. A. Steel, P, L. Erd3s, Fourier calculus on evolutionary
trees, to appear in Adv. Appl. Math..

254



