On the existence of certain SOLS with Holes

D. R. Stinson

Computer Science and Engineering Department and Center for Communication and Information Science University of Nebraska Lincoln, NE 68588-0115, U.S.A. stinson@bibd.unl.edu

L. Zhu
Department of Mathematics
Suzhou University
Suzhou 215006
Peoples' Republic of China

Abstract

We consider a pair of MOLS (mutually orthogonal Latin squares) having holes, corresponding to missing sub-MOLS, which are disjoint and spanning. If the two squares are mutual transposes, we say that we have SOLS (self-orthogonal Latin squares) with holes. It is shown that a pair of SOLS with n holes of size $h \geq 2$ exist if and only if $n \geq 4$ and it is also shown that a pair of SOLS with n holes of size 2 and one hole of size 3 exist for all $n \geq 4$, $n \neq 13$, 15.

As an application, we prove a result concerning intersection numbers of transversal designs with four groups.

1 Introduction

For formal definitions of MOLS (mutually orthogonal Latin squares) with holes, the reader is referred to [8]. Let $HMOLS(h_1^{n_1}h_2^{n_2}...h_k^{n_k})$ denote a pair of MOLS of order $\sum_{i=1}^k n_i h_i$ from which n_i sub-MOLS of order h_i are "missing" $(1 \le i \le k)$, and in which these subsquares are disjoint and spanning. The type T of the HMOLS is defined to be $h_1^{n_1}h_2^{n_2}...h_k^{n_k}$. (It is also convenient to think of the type as a multiset.) An $HMOLS(h_1^{n_1})$

 $h_2^{n_2} \dots h_k^{n_k}$) in which the two squares are mutual transposes is defined to be an $HSOLS(h_1^{n_1} h_2^{n_2} \dots h_k^{n_k})$.

The following results concerning $HSOLS(h^n)$ have been proved.

- Theorem 1.1 1. There exists an $HSOLS(1^n)$ if and only if $n \ge 4$, $n \ne 6$.
 - 2. For $h \ge 2$, there exists an $HSOLS(h^n)$ if and only if $n \ge 4$, except possibly for $HSOLS(7^6)$ and $HSOLS(13^6)$.
 - 3. There exists an $HSOLS(1^{v-n}n^1)$ if $v \ge 3n+1$ and $(v,n) \ne (6,1)$ or (6m+2,2m), where $1 \le m < 50$.

Proof. 1) is shown in [5]; 2) in [15]; and 3) in [18].

For some results on HMOLS, we refer to [2,3,8,9,10,12,13,14,15,16,17]. Here, we construct the previously unknown $HSOLS(7^6)$ and $HSOLS(13^6)$, and we also study the spectrum of $HSOLS(2^n3^1)$. We show that $HSOLS(2^n3^1)$ exist for all $n \ge 4$, except possibly for $n = 10^{-15}$.

П

2 Constructions for HSOLS

13.15. An application is given in Section 4.

Our main direct construction is based on difference methods. The following is [15, Lemma 2.3].

Lemma 2.1 Let G be an Abelian group, let H be a subgroup of G, and let X be any set disjoint from G. Suppose there exists a set of 4—tuples $B \subset (G \cup X)^4$ which satisfies the following properties:

- 1. for each $i, 1 \le i \le 4$, and each $x \in X$, there is a unique $b \in B$ with $b_i = x$ (b_i denotes the ith co-ordinate of b).
- 2. no $b \in B$ has two co-ordinates in X.
- 3. for each i, j $(1 \le i < j \le 4)$ and each $a \in G \setminus H$, there is a unique $b \in B$ with $b_i, b_j \in G$ and $b_i b_j = a$.
- 4. $(b_1, b_2, b_3, b_4) \in B$ if and only if $(b_2, b_1, b_4, b_3) \in B$.

Then there exist $HSOLS(h^{g/h}|X|^1)$, where g = |G| and h = |H|.

Figure 1: $HSOLS(2^43^1)$

	7	3	С		2	b	a	1	6	5
a		0	4	С		3	b	2	7	6
b	a		1	5	С		4	3	0	7
5	b	a		2	6_	С		4	1	0
	6	b	a		3	7	С	5	2	1
С		7	b	a		4	0	6	3	2
1	С		0	b	a		5	7	4	3
6	2	С		1	b	a		0	5	4
2	3	4	5	6	7	0	1			
3	4	5	6	7	0	1	2			
7	0	1	2	3	4	5	6			

Example 1 Suppose we take $G = \mathbb{Z}_8$, $H = \{0, 4\}$, $X = \{a, b, c\}$, and let B be the following set of twelve 4—tuples:

These generate the HSOLS(2⁴3¹) depicted in Figure 1.

Lemma 2.2 Let G, H, and X be as in Lemma 2.1. Suppose there exists a set of 4 –tuples $B \subseteq (G \cup X)^4$ which satisfies the following properties:

1.
$$\bigcup_{b \in B} \left\{ \left\{ b_1, b_2, b_3, b_4 \right\} : b = (b_1, b_2, b_3, b_4) \right\} = (G \backslash H) \cup X$$

- 2. no $b \in B$ has two co-ordinates in X
- 3. for each i, j $(1 \le i < j \le 4)$ and each $a \in G \setminus H$, there is a unique $b \in B$ with $b_{i'}, b_{j'} \in G$ and $b_{i'} b_{j'} = a$, where either $\{i, j\} = \{i', j'\}$ or $\{i, j, i', j'\} = \{1, 2, 3, 4\}$.

Then there exist $HSOLS(h^{g/h}|X|^1)$, where g = |G| and h = |H|.

Proof. Replace each 4—tuple $b = (b_1, b_2, b_3, b_4)$ by four 4—tuples: $b^1 = (b_1, b_2, b_3, b_4)$, $b^2 = (b_2, b_1, b_3, b_4)$, $b^3 = (b_1, b_2, b_4, b_3)$, and $b^4 = (b_2, b_1, b_4, b_3)$. Then, the conditions of Lemma 2.1 are satisfied.

Remark. The "orthogonal array with holes" obtained from such a collection of 4—tuples is conjugate invariant under the Klein group K_4 ; see [10].

We now present several further applications of Lemmas 2.1 and 2.2. In applications of Lemma 2.1, we give only one of each "pair" of 4-tuples.

HSOLS(2⁵3¹) (Lemma 2.1)

$$(0,4,1,3),(0,a,2,1),(0,b,4,8),(0,c,6,9),(0,1,3,a)$$

 $(0,2,8,b),(0,3,7,c)$

HSOLS(2⁷3¹) (Lemma 2.1)

$$(0,1,2,4),(0,2,1,6),(0,3,11,12),(0,a,5,9),(0,b,8,11)$$

 $(0,c,10,2),(0,8,13,a),(0,9,12,b),(0,10,6,c)$

HSOLS(2931) (Lemma 2.1)

$$(0,1,2,4),(0,2,1,6),(0,3,5,11),(0,4,7,14),(0,5,15,16)$$

 $(0,a,12,15),(0,b,13,5),(0,c,16,12),(0,6,14,a)$
 $(0,10,17,b),(0,11,6,c)$

HSOLS(21131) (Lemma 2.1)

$$(0,1,2,4),(0,2,1,6),(0,3,5,9),(0,4,7,16),(0,5,13,19)$$

$$(0,6,21,14),(0,8,15,5),(0,a,16,13),(0,b,18,17),(0,c,20,12)$$

 $(0,7,17,a),(0,12,10,b),(0,13,9,c)$

 $HSOLS(2^{13}11^1)$ (Lemma 2.1) This gives an $HSOLS(2^{17}3^1)$ by filling in the hole of size 11 with $HSOLS(2^43^1)$.

$$(0,1,3,a),(0,2,5,19),(0,3,9,b),(0,4,14,c),(0,5,25,d)$$

 $(0,6,20,e),(0,7,23,f),(0,8,7,g),(0,9,10,h),(0,10,22,i)$
 $(0,11,18,j),(0,12,16,k),(0,a,21,22),(0,b,17,15),(0,c,8,5)$
 $(0,d,4,8),(0,e,24,19),(0,f,15,9),(0,g,11,18),(0,h,6,23)$
 $(0,i,1,11),(0,j,2,17),(0,k,12,24)$

 $HSOLS(2^{14}13^1)$ (Lemma 2.1). This gives an $HSOLS(2^{19}3^1)$ by filling in the hole of size 13 with $HSOLS(2^53^1)$.

$$(0,1,3,a),(0,2,8,b),(0,3,15,c),(0,4,7,d),(0,5,6,e)$$

$$(0,6,13,f),(0,7,17,g),(0,8,16,h),(0,9,27,i),(0,10,19,j)$$

$$(0,11,22,k),(0,12,25,l),(0,13,12,m),(0,a,24,25)$$

$$(0,b,21,23),(0,c,18,15),(0,d,23,19),(0,e,10,5)$$

$$(0,f,11,17),(0,g,1,22),(0,h,4,24),(0,i,2,21)$$

$$(0,j,26,16),(0,k,9,26),(0,l,20,4),(0,m,5,20)$$

 $HSOLS(2^{17}15^1)$. This gives an $HSOLS(2^{23}3^1)$ by filling in the hole of size 15 with $HSOLS(2^63^1)$.

$$(0,1,8,a),(0,2,4,b),(0,3,6,c),(0,4,9,d),(0,5,11,e)$$
 $(0,6,18,f),(0,7,25,g),(0,8,30,h),(0,9,29,i),(0,10,31,j)$
 $(0,11,26,k),(0,12,20,l),(0,13,24,m),(0,14,15,n)$
 $(0,15,28,p),(0,16,32,22),(0,a,23,24),(0,b,12,14)$
 $(0,c,33,30),(0,d,27,23),(0,e,2,31),(0,f,19,25),(0,g,16,9)$

$$(0,h,7,33),(0,i,1,10),(0,j,3,27),(0,k,21,32),(0,l,13,26)$$

 $(0,m,5,19),(0,n,14,29),(0,p,10,28)$

HSOLS(2⁶3¹) (Lemma 2.2)

$$(0,1,2,4),(0,a,1,5),(0,b,4,9),(0,c,5,2)$$

HSOLS(2831) (Lemma 2.2)

$$(0,1,2,4),(0,3,1,7),(0,a,5,10),(0,b,6,13),(0,c,7,11)$$

HSOLS(2¹⁰3¹) (Lemma 2.2)

$$(0,1,2,4),(0,3,1,8),(0,4,7,15),(0,a,4,13)$$

 $(0,b,6,11),(0,c,8,14)$

HSOLS(2¹²3¹) (Lemma 2.2)

$$(0,1,2,4),(0,3,1,7),(0,4,15,10),(0,7,10,18),(0,a,5,15)$$

 $(0,b,7,16),(0,c,8,19)$

 $HSOLS(2^{14}3^1)$ (Lemma 2.2)

$$(0,1,2,4),(0,3,1,7),(0,4,9,16),(0,5,20,11),(0,11,5,18)$$

 $(0,a,10,20),(0,b,11,19),(0,c,13,25)$

 $HSOLS(2^{14}11^1)$ (Lemma 2.2) This gives rise to an $HSOLS(2^{18}3^1)$ by filling in the hole of size 11 with $HSOLS(2^43^1)$.

$$(0,1,3,5),(0,a,1,4),(0,b,2,6),(0,c,5,10),(0,d,6,12)$$

 $(0,e,7,15),(0,f,8,17),(0,g,9,19),(0,h,10,21),(0,i,11,27)$
 $(0,j,12,25),(0,k,13,20)$

Hence, we have

Lemma 2.3 There exists an HSOLS(2ⁿ3¹) for

$$n \in \{4,5,6,7,8,9,10,11,12,14,16,17,18,19,23\}.$$

Lemma 2.4 There exists an HSOLS(76).

Proof. Apply Lemma 2.1 with the following 4 – tuples:

$$(0,1,29,31),(0,2,28,14),(0,3,26,9),(0,4,6,18),(0,6,2,13)$$

 $(0,7,34,1),(0,8,17,33),(0,9,27,g),(0,11,a,3),(0,12,b,21)$
 $(0,13,c,4),(0,14,d,24),(0,16,e,23),(0,17,f,19),(0,a,16,24)$
 $(0,b,12,11),(0,c,8,21),(0,d,7,13),(0,e,22,29)$
 $(0,f,32,34),(0,g,11,7)$

0

Our recursive construction for HSOLS uses group-divisible designs. A group-divisible design (or GDD) is a triple $(X, \mathcal{G}, \mathcal{A})$, which satisfies the following properties:

- 1. G is a partition of X into subsets called groups
- 2. A is a set of subsets of X (called *blocks*) such that a group and a block contain at most one common point
- 3. every pair of points from distinct groups occurs in a unique block.

A transversal design TD(k, n) is a GDD with kn points, k groups of size n, and n^2 blocks of size k. (A TD(k, n) is equivalent to k-2 MOLS of order n)

The following construction is essentially [8, Lemma 2.2].

Lemma 2.5 Suppose $(X, \mathcal{G}, \mathcal{A})$ is a GDD and let $w: X \to \mathbf{Z}^+ \cup \{0\}$. Suppose there exist HSOLS of type w(A) for every $A \in \mathcal{A}$. Then there exists HSOLS of type $\{\sum_{x \in G} w(x) : G \in \mathcal{G}\}$.

We shall use the following specialization.

Corollary 2.6 Suppose $(X,\mathcal{G},\mathcal{A})$ is a GDD where every block has size at least four. Suppose also that there is an $HSOLS(2^{|G|}3^1)$ for every $G \in \mathcal{G}$. Then there is an $HSOLS(2^{|X|}3^1)$.

Proof. Let ∞ be a new point (not in X). Define a new GDD $(X', \mathcal{G}', \mathcal{A}')$, where $X' = X \cup \{\infty\}$, $\mathcal{G}' = \{\{y\} : y \in X'\}$, and $\mathcal{A}' = \mathcal{A} \cup \{G \cup \{\infty\} : G \in \mathcal{G}\}$ (i.e. we add the new point ∞ to each group in \mathcal{G} , and form a new GDD with groups of size one). Define the following weighting w of X':

$$w(y) = 2$$
 if $y \in X$
 $w(y) = 3$ if $y = \infty$.

Now, apply Lemma 2.5. For each $A \in \mathcal{A}$, we require $HSOLS(2^{|A|})$, which exist by Theorem 1.1. For each $A = G \cup \{\infty\}$ ($G \in \mathcal{G}$), we require $HSOLS(2^{|G|}3^1)$, which exists by assumption. We obtain $HSOLS(2^{|X|}3^1)$, as desired.

Theorem 2.7 For $h \ge 2$, there exists an $HSOLS(h^n)$ if and only if $n \ge 4$.

Proof. We need only give an $HSOLS(13^6)$. Take a TD(6,7) having two disjoint blocks A and B. Delete all points in B. Give weight 3 to each point in A and weight 2 to all other points. Since the GDD has block sizes 5 and 6, we need input HSOLS of types 3^6 , 2^6 , 2^5 , 2^43^1 and 2^53^1 , which are all known. This gives an $HSOLS(13^6)$.

3 $HSOLS(2^n3^1)$

We begin by noting a trivial necessary condition for the existence of HMOLS.

Lemma 3.1 If there exists $HMOLS(a^nb^1)$, then $n \ge 1 + 2b/a$.

Proof. Trivial.

Corollary 3.2 If there exists an $HSOLS(2^{n}3^{1})$, then $n \ge 4$.

In order to close the spectrum of $SOLS(2^n3^1)$, we use the GDD construction (Corollary 2.6). We shall use the following classes of GDDs.

Lemma 3.3 [1, Lemma 2.5] Suppose there is a TD(6, m) and $4 \le r \le m$. Then there is a GDD of group-type $4^{m-r}5^r$ in which every block has size at least 4.

Lemma 3.4 [1, Lemma 2.6] Suppose there is a TD(5+r, m) and $r \ge 1$. Then there is a GDD of group-type $4^{m-r}5^r$ in which every block has size at least 4.

Lemma 3.5 For $n \ge 48$, there exists an $HSOLS(2^n3^1)$.

Proof. Write n = 6m + r, where m is odd and $4 \le r \le m$ (this can be done in a unique way). There is a TD(6, m) by [4]. Apply Lemma 3.3, obtaining a GDD of group-type $4^{m-r}5^r$ in which every block has size at least 4. Then, apply Corollary 2.6.

Lemma 3.6 There is an $HSOLS(2^n3^1)$ for $32 \le n \le 45$.

Proof. Apply Lemma 3.3 with $m = 7, 4 \le r \le 7$; with $m = 8, 4 \le r \le 7$; and with $m = 9, 4 \le r \le 9$. Then, apply Corollary 2.6.

Lemma 3.7 There is an $HSOLS(2^n3^1)$ for n = 46 and 47.

Proof. Apply Lemma 3.4 with m = 11, r = 2 and 3. Then, apply Corollary 2.6.

We present constructions for several other GDDs in Table 1. In each case, we obtain $HSOLS(2^n3^1)$ from Corollary 2.6.

Lemma 3.8 There is an $HSOLS(2^{n}3^{1})$ for n = 21, 22, and 31.

Proof. Take a TD(6,5) and let A be a block. Keep the points in A and delete all other points in the last two groups. Give weight 3 to the point which is the intersection of A and the last group. Give weight 2 to other points. We obtain an $HSOLS(2^{21}3^1)$.

In a TD(8,7), keep the points in one block A and delete other points in the last four groups. A similar weighting gives an $HSOLS(2^{31}3^1)$.

In a (21,5,1) -BIBD give weight 3 to five points in a block and weight 2 to all other points. We get an $HSOLS(2^{16}15^1)$, and then an $HSOLS(2^{22}3^1)$ by filling in the size 15 hole with an $HSOLS(2^63^1)$.

0

Table 1: Constructions of $HSOLS(2^n3^1)$

	group-type	
n	of GDD	construction
16	44	TD(4,4)
20	4 ⁵	TD(5,4)
24	5 ⁴ 4 ¹	TD(5,5) minus a point
25	5 ⁵	TD(5,5)
26	4 ⁴ 5 ²	TD(6,5) minus one point each from the first four
27	4 ³ 5 ³	groups such that no three are in the same block $TD(6,5)$ minus one point each from the first three groups such that they are not in the same block
28	5 ⁴ 4 ²	TD(6,5) minus one point from each of two groups
29	5 ⁵ 4 ¹	TD(6,5) minus a point
30	56	TD(6,5)

We then obtain the following existence theorem.

Theorem 3.9 An $HSOLS(2^n3^1)$ exists if and only if $n \ge 4$, except possibly for n = 13 or 15.

4 An application

 $HSOLS(2^n)$ played an essential role in a construction for 2-perfect m-cycle systems [11]. In this section, we give an alternate proof of a known result on intersections of transversal designs using the $HSOLS(2^n 3^1)$ that we have constructed.

Suppose $(X, \mathcal{G}, \mathcal{A}_1)$ and $(X, \mathcal{G}, \mathcal{A}_2)$ are both TD(4, m) (having the same group set). The *intersection* of the two TD's is defined to be the number of common blocks, i.e. $|\mathcal{A}_1 \cap \mathcal{A}_2|$. Define TI(m) to be the set of all possible intersection numbers of two TD(4, m)'s. An almost complete determination of the sets TI(m) is proved by Colbourn and Royle in [7]. This is accomplished using incomplete transversal designs. Following the remark made in [7, p. 46], we prove a similar result (for even m) using

 $HSOLS(2^n3^1)$. (Actually, it suffices to use $HMOLS(2^n3^1)$ in this construction.)

The following result can be proved in a similar manner as the constructions in [7]. We state it without proof.

Theorem 4.1 Suppose there is an $HMOLS(2^n3^1)$. Let $0 \le \alpha \le n$, let $\beta \in \{0,1,3\}$, let $\delta_i \in \{0,2,8\}$ $(1 \le i \le n)$, and let $\epsilon \in \{0,1,3,7,15\}$. Then

$$\alpha(4n+2) + \beta(2n) + \sum_{i=1}^{n} \delta_i + \epsilon + 1 \in TI(2n+4).$$

Now, simple arithmetic yields the following corollary:

Corollary 4.2 Suppose $m \ge 12$ is even, $1 \le t \le m^2$, and $t \ne m^2 - s$ where

$$s \in \{1, 2, 3, 4, 5, 7, 9, 10, 11, 13, 17, 19\}.$$

Then $t \in TI(m)$.

Remarks.

- 1. It is easy to see that $0 \in TI(m)$ for any $m \ge 3$, $m \ne 6$.
- 2. From the proof of [6, Lemma 2.1], it follows that $m^2 s \notin TI(m)$ if $s \in \{1, 2, 3, 4, 5, 7\}$.
- 3. In [7, Lemma 3.6], it is proved that if m = 9 or $m \ge 12$, $m \ne 14$, $0 \le t \le m^2$, and $t \ne m^2 s$, where

$$s \notin \{1,2,3,4,5,7,10,11,13,19\},\$$

then $t \in TI(m)$. So the case m = 14 is the only "new" case covered by Theorem 4.1.

Acknowledgements

D. R. Stinson's research is supported by NSF Grant CCR-9121051. L. Zhu's research is supported by an NSFC grant.

References

- [1] A. Assaf, E. Mendelsohn, and D. R. Stinson. On resolvable coverings of pairs by triples. *Utilitas Math.* 32 (1987), 67–74.
- [2] F. Bennett, L. Wu, and L. Zhu. Conjugate orthogonal Latin squares with equal-sized holes. *Ann. Discrete Math.* 34 (1987), 65-80.
- [3] F. Bennett, L. Wu, and L. Zhu. On the existence of COLS with equal-sized holes. *Ars Combin.* **26B** (1988), 5-36.
- [4] Th. Beth, D. Jungnickel, and H. Lenz. *Design Theory*, Bibliographisches Institut, Zurich, 1985.
- [5] R. K. Brayton, D. Coppersmith, and A. J. Hoffman. Self-orthogonal Latin squares, *Teorie Combinatorie*, *Proc. Rome Conf.* (1976), 509-517.
- [6] C. J. Colbourn, D. G. Hoffman, and C. C. Lindner. Intersections of S(2,4,v) designs. Ars Combin. 33 (1992), 97-111.
- [7] C. J. Colbourn and G. F. Royle. Supports of (v, 4, 2) designs. Le Matematiche XLV (1990), 39-60.
- [8] J. H. Dinitz and D. R. Stinson. MOLS with holes. *Discrete Math.* 44 (1983), 145-154.
- [9] E. R. Lamken. The existence of three orthogonal partitioned incomplete Latin squares of type t^n . Discrete Math. 89 (1991), 231-251.
- [10] C. C. Lindner, R. C. Mullin, and D. R. Stinson. On the spectrum of resolvable orthogonal arrays invariant under the Klein group K_4 . Aequationes Math. 26 (1983), 176-183.
- [11] C. C. Lindner and C. A. Rodger. 2—perfect m—cycle systems. Discrete Math. 104 (1992), 83-90.
- [12] R. C. Mullin and D. R. Stinson. Holey SOLSSOMs. *Utilitas Math.* **25** (1984), 159-169.
- [13] R. C. Mullin and L. Zhu. The spectrum of $HSOLSSOM(h^n)$ where h is odd. *Utilitas Math.* 27 (1985), 157-168.

- [14] D. R. Stinson and L. Zhu. On sets of three MOLS with holes. *Discrete Math.* 54 (1985), 321-328.
- [15] D. R. Stinson and L. Zhu. On the existence of MOLS with equal-sized holes. *Aequationes Math.* 33 (1987), 96-105.
- [16] D. R. Stinson and L. Zhu. On the existence of three MOLS with equalsized holes. Australasian Journal of Math. 4 (1991), 33-47.
- [17] L. Zhu. Existence of holey SOLSSOMs of type 2ⁿ. Congr. Numer. 45 (1984), 295-304.
- [18] L. Zhu. Existence of incomplete self-orthogonal latin squares ISOLS(6m+2,2m). To appear in Ars Combin.