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Abstract. In this paper we consider some combinatorial structures called balanced
arrays (B-arrays) with a finite number of elements, and we derive some necessary con-
ditions in the form of inequalities for the existence of these arrays. The results obtained
here make use of the Hélder Inequality.

1. Introduction and Preliminaries

Consider aset § = {0,1,,...,s — 1} with s elements. An array 7 with m
constraints (rows), N runs (columns, treatment combinations) and with s levels
is merely a matrix 7 of size (m x N) whose elements are 0,1,2,...,s — 1.
Here we restrict ourselves to arrays with two levels denoted by 0 and 1, and are
called binary arrays. If o is any column of 7, we define weight of &, denoted
by w(g), to be the number of 1's in g. Clearly 0 < w(a) < m. The array 7
is said to be of strength (¢ < m) if in every sub-matrix 7*(¢ x N) of 7, the
vectors of weight 1(0 < 1 < t) occur with a frequency u;(say), and u; depends
only on 4. In this paper we confine ourselves to arrays with t = 4, but the results
presented can be extended to arrays of strength ¢ without much difficulty. Next we
give the definition of balanced array (B-array) by imposing further combinatorial
constraint on 7.

Definition 1.1. An array 7 of size (m x N) and of strength four is said to be
balanced if in every (4 x N) submatrix 7 of 7, every (4 x 1) vector of weight
i(i = 0,1,2,3,4) appears a constant number y;(say) of times. The vector p’ =
(150, 181, 2, B3, pa) is called the index set of 7, and 7 is sometimes denoted by
B-array (m,N; p',s = 2,t = 4). Itis quite evident that
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Itis quite clear that we obtain a different kind of array if we impose a different kind
of combinatorial structure on 7. These arrays have been found to be quite useful
in Statistical Design of Experiments and Combinatorics. B-arrays, for example,
are orthogonal arrays (O-arrays) when u; = p for each 1, and are the incidence
matrices of balanced incomplete block designs (BIBD) when ¢ = 2, and each
column of 7 has the same number of 1’s in it. It is quite clear that the parameters
(v, b,7,k,)\) ofaBIBD and (o, i1, 42) of B-array Taresuch that yy = \, g =
r—)and go = b— 2r+ X Also B-amrays have been extensively used in
the construction of fractional factorial designs of different resolutions. For those
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interested to gain further insight into the importance of B-arrays to combinatorics
and statistical design of experiments may consult the list of references given at the
end.

The existence and construction of B-arrays with ' = (po,p1,...,4¢) and
m > t is a non-trivial problem since such arrays may not exist even though the
parameter values satisfy all the known existence conditions. Furthermore, the
construction of these arrays with the maximum possible number of constraints is
an important problem both in combinatorics and design of experiments and its
study may lead to a solution to the packing problem. Such problems for O-arrays
for a given » and m have been studied, among others, by Rao [11], Seiden [14],
Seiden and Zemach [15], etc. etc. For B-arrays the corresponding problems have
been investigated by Chopra [6], Longyear [8], Rafter and Seiden [10], and Saha
et. al. [13]. In this paper we obtain similar results for arrays with ¢ = 4, but these
results can be easily generalized to B-arrays with t = 2! resulting in a notation
which is both messy and cumbersome. For B-arrays with ¢t = 2 + 1, similar
results can be obtained by considering them as arrays with ¢ = 21,

2. Main Results with Discussion
Lemma 2.1. A B-array 7 of strength four and with m = 4 always exists.

Lemma 2.2. A B-array 7(m, N;p' = (po, p1, 82,43, 14)) is also of strength
t' where 0 < t' < 4. The index sets of T when considered as an array of strength
3,2, and 1 are respectively (oo, 01, a2, a3), (Bo, B1,B3), and (~o0,m) where
Q= “i+pi+l(i = 03192)3)' ﬁ) = aj"' a)'#l(j = 0,1,2),8Hd'7k = ﬂk"'
Brn1(k=0,1).

Remark. It is quite evident that o, 8, and , are all linear functions of the u;’s.

Definition 2.1. A B-array 7(m x N) is said to be trim if 9 = z, = 0 where
z; denotes the number of columns of weight j in 7, and 7 is called non-trim if at
least one of z¢ or z,, # 0.

Remark. It is obvious that the existence a trim B-array 7 with ' = (po, p1, p2,
U3, pe) implies the existence of 7 (7* being non-trim) with index set (ug., &1,
B2, p3, 4 ) satisfying strict inequality in at least one of uf > u;(i=0,4). If we
delete from an array T all vectors of weight o and m, then we obtain an array 7*
which is trim.

Definition 2.2. Two columns of an (m x N) B-array 7 with elements 0 and 1
are said to have (0 < i < m) coincides if these columns have 1 occurring in {
of the corresponding positions.

Theorem 2.1. Considera B-amray T(m,N;s=2,t=4,u' = (po, 1, b2, p3,
pa)). If w(a) = l, a being some column, say the first, of T, then the following
results are true;

48



m

>z =N-—1=Ao(say) @)
j=0
= L[\ (m—1
DT () (l .)w — 1) = Ai(say) @2
P o\ -1

2 1
> ita=23 (f) (;":f)(ﬂs- D+ (f) (’1"_' f)(rn— 1) = Az(say)

i=0 §=0
2.3)

S a6 3 ()G )@-n+s > O Go)@-n

i=0 i=0

+T Q) () m-n=sem o

' S/ fm— 1 /0 (m—1
Sitn=23 () (FT)w- 33 () (3270

i=0 i=0

S (O (7 om0+ () (7w = ey

i im0 \V 2.5)

where z; = number of columns of T other than the first having exactly j coinci-
dences with the first column,

Proof Outline: We can obtain (2.1) through (2.5) from the results given below
obtained by counting in two ways the total number of (4 — 1) -tuples appearing in
columns other than the first which are identical with the comresponding (4 — 1)-
tuples in the first column.
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Next, we state Holder Inequality for later use.
Holder Inequality. If z;,y; > 0,p > 1 and §+ L=1, then

gzsw < (Zz}’)l/p (E )llq E”l/p o ¢ (E xl/PZyllq)

Remark: The above inequality is reversed if p < 1(p # 0). The equality holds if
and only if the sets {x} and {y} are proportional.

Theorem 2.2. Considera B-aray T(m,N;s=2,t=4,p' = (po, p1, p2, 13,
pa)). If 1 is the weight of some (m x 1) column of T, then the following are
true:

(@ A} < A4

(®) A} < AtA

(©) A3 < Ao A} where A; s are as defined in theorem 2.1, and are functions of
l,m,andy’.

Proof: In Holder Inequality, choose p = 3,theng = 5. To obtain the result in (a),
we pick z; and jz; and y; = j*z; and use Holder Inequahty,

E(.jfﬂj)lﬁ(}"‘zj)zﬂ < (ijj)l (Ej4x’-)2/3

> Pz T} EJ’%‘V (Ei‘%’)z

Raising both sides to the power 3, we obtain

(2133;,) < E]x, (Z] a:,) ie. A} < A1 A2

2
(®) If we choose z; = 7z, s = jz;, weobtain 3 7235 < (X 74z;)} (T jiz;)¥
and the result follows.

(c)Here weletz; = zj,y; = j>z;,andwehave 3 j2z; < (3 a:;)} \/(2]3:::,

and we obtain the result.
Remark: From (b) and (c), it is clear that A3 < min(A? A4, AgA2).
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Theorem 2.3. If there exists a B-amray 7 of size (m x N) with ' = (po, 1,
B2, b3, pa) and having a column vector with | 1's in it, then we must have:

@ Af < AoAj
() A} < A3 A4 where A;’s are functions of |, m, and y'.

Proof: In Holder Inequality, take p = 4, and then ¢ = ;'—. To prove (a), we choose
xz; = z;,and y; = j*z; and using Holder Inequality, one obtains

i< (Ez;) v (Zj4zi)
ie. (E j3zj)4 <Yz (E j‘z,)3 ie. A3 < ApA3

(b) Similarly, here we take z; = j*z;, and j; = z; which will prove this part.
Remark. The results of theorems 2.2 and 2.3 are quite useful in discussing the
existence of B-arrays r for given y' provided some information on ! (the number
of 1’s in some column of 7) is available (in the absence of information on [, one
can always attach a vector of weight O or of m to 7, and deal with the existence
of this new array. For a given p' we can prepare a computer program to check the
results of theorems 2.2 and 2.3 for values of m > 5. If any one of these results
is contradicted for m = m*(say), then 7 may exist for values of m satisfying
5 < m < m*. Consequently the maximum number of constraints for such an
amaytism* — 1.

3/4

References

1. Beckenbach, E.F. and Bellman, R., “Inequalilies”, Springer- Verlag, New York,
1961.

2. Bose, R.C. and Bush, K.A., Orthogonal Arrays of Strength Two and Three,
Ann. Math. Statist. 23 (1952), 508-534.

3. Cheng, C.S., Optimality of Some Weighing and 2™ Fractional Design, Ann.
Statist 8 (1980), 436—444.

4. Chopra, D.V., On Balanced Arrays With Two Symbols, Ars Combinatoria
20A (1985), 59-63.

5. Chopra, D.V. and Dios, R., On the Existence of Some Balanced Arrays, Jour-
nal of Combinatorial Mathematics and Combinatorial Computing 6 (1989),
177-182.

6. Chopra, D.V., Balanced Arrays and Minkowski's Inequality, Journal of Com-
binatorial Mathematics and Combinatorial Computing 10 (1991), 213-216.

7. Kuwada, M., Balanced Arrays of Strength Four and Balanced Fractional 2™
Factorial Designs, Jour. Statl. Plann. and Inf 3 (1979), 347-360.

51



8. Longyear, J.Q., Arrays of Strength s on Two Symbols, Jour. Statl. Plann. and
Inf. 10 (1984), 227-239.

9, Mukllopadllyay, A.C., Some Combinatorial Arrangements and Incomplete
Block Designs Through Them, Ph.D. dissertation, Indian Statistical Institute
(1974).

10. Rafter, J.A. and Seiden, E., Contributions to the Theory and Construction of
Balanced Arrays, Ann. Statist. 2 (1974), 1256-1273.

11. Rao, CR., Factorial Experiments Derivable from Combinatorial Arrange-
ments of Arrays, Roy. Statist. Soc. Suppl. 9 (1947), 128-139.

12. Rao, C.R., Some Combinatorial Problems of Arrays and Applications to De-
sign of Experiments, in “A Survey of Combinatorial Theory”, North-Holland
Publishing Co., 1973, pp. 349-359.

13. Saha, G.M., Mukerjee, R. and Iageyama, S., Bound on the Number of Con-
straints for Balanced Arrays of Strength t, Jour. Statl. Plann. and Inf. 18
(1988), 255-265.

14. Seiden, E., On the Maximum Number of Constraints of an Orthogonal Array,
Ann. Math. Statist. 26 (1955), 132-135.

15. Seiden, E. and Zemach, R., On Orthogonal Array, Ann, Math. Statist. 27
(1966), 1355-1370.

16. Wallis, W.D., “Combinatorial Designs”, Marcel Dekker Inc., New York, 1988.

17. Wilf, Herbert S., “Finite Sections of Some Classical Inequalities”,
Springer-Verlag, New York, 1970.

52



