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Abstract

We find the set of integers v for which AK,, may be decomposed
into sets of four triples forming Pasch configurations, for all \. We
also remove the remaining exceptional values of v for decomposing
K, into sets of other four-triple configurations.

Introduction

A \-fold triple system, or more simply, triple system, is a pair (V, B) where
V is a v-set of elements (or points) and B is a collection of 3-subsets of V'
(called triples or lines) such that every unordered pair of elements chosen
from V belongs to precisely A triples. (The case A = 1 is of course a Steiner
triple system of order v, or STS(v).) The cardinality v of V is called the
order of the triple system.

We may also think of a triple system as a decomposition of the complete

multigraph AK, into a collection of triples, so that if z and y are any two
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vertices then the edge {z,y} occurs in precisely X triples.

A partial triple system is a collection of triples chosen from a v-set
V so that each unordered pair of elements from V belongs to at most
one triple. We shall use the term configuration to describe any partial
triple system with a small number of triples. One such configuration is
known as the Pasch configuration that is defined by the four lines or triples
{a,b,¢},{a,d,e}, {b,d, f} and {c,e, f} with vertex set {a,bd,c,d,e, [} We
shall denote such a Pasch configuration by P(e, f;b, ¢; ¢, d) (or P(b, ¢;a, f; c,d),
etc.); the only pairs of points from the six not contained in any of the four
triples are {a, f}, {b, ¢} and {c, d}.

If in a triple system (V, B) we can partition B into |B|/4 Pasch config-
urations, we call this a Pasch-decomposition of the triple system.

Several recent papers, such as [4], [2] and [3], have considered decom-
positions of ST'S’s into small configurations. Both the problem of taking
any STS(v) and determining whether it might be decomposable into cer-
tain configurations, and also the problem of constructing a ST'S(v) which
may be decomposed appropriately, have been considered. In this paper we
restrict our attention to the Pasch configuration described above, and deal
with the latter problem, of eristence of a A-fold triple system which may
be decomposed into Pasch configurations.

Of the possible 16 four-line configurations (where lines are triples), only
one, the Pasch configuration, is on six points. See [3] for details of these
16 configurations. In that paper the authors solve the problem of existence
of an ST'S(v) which may be decomposed into any four-line configuration,
except for the value v = 81 for six of the configurations (in their nota-
tion, Cg, C10, C11,Ci2, C14 and Cjg, the Pasch one). We give these in the
Appendix (the five non-Pasch ones at the end).

It is clear that for a A-fold triple system of order v to be decomposable
into Pasch configurations, A(3;) must be divisible by 12 and A(v — 1) must
be divisible by 4. These translate into the necessary conditions given in
Table 1.

— T v ]
[ 1,5 (mod 6) | 1, 9 (mod 24)
3 (mod 6) 1 (mod 8)

2, 10 (mod 12) | 1, 9 (mod 12)
4, 8 (mod 12) | 0,1 (mod 3)
6 (mod 12) 1 (mod 4)
0 (mod 12) allv>6

Table 1: Necessary conditions for a Pasch-decomposition of AK,.

We shall now show existence of a triple system with a decomposition
into Pasch configurations whenever the above necessary conditions hold,



ezcept that the unique STS(9) cannot be so decomposed, as stated in [3].

For completeness we include the case A =1 ([3]). All our constructions
use a decomposition of the complete tri-partite graph K322 into a Pasch
configuration; we give this now. Let K3 2 2 have elements {a;, a2}U{b1, b2}U
{e1,c2}. Then the triples

{ala b1, cl}’ {01, b, c2}y {a2t bl’ 02}1 {a2, b, cl}

form a Pasch configuration; recall that we may also denote these four triples
by P(alt a2; bl! b2; c1, 02)'

Now our basic construction is as follows. If v = 23 4 h where k > 0, we
require a group divisible.design GD(3, A, M; s) where M = {g} or {g, f*}
(the asterisk means one group of size f), and decompositions into Pasch
configurations of AKgg4n, AK2s+n and (if A > 1) AK2g4n\AKp, which is
the complete multigraph on 2g + h vertices with a “hole” of size h, so
that all the ,\('2‘) edges on some set of vertices of size h are removed. The
required group divisible designs (G DDs) are either well-known, or obtained
from [1]. We also require decompositions of AK2,.5 for small values of s,
if no GD(3,, M; s) exists for small s. Then our decomposition of K, is
composed as follows, on the element set {(3,5)|0 < i < 8,5 =1,2} U {o0; |
1<i<h}.

(1) On the set Z, take a GD(3,\, M; s) where M = {g} or {g, f*}.

(2) If h=0or 1, for each group {i1,%2,...,4w} of the GDD, wherew =g
or f, place on the set

.S= {(il,j)1 (iz,j),- v('w:J) |.7 =1, 2}

(if h = 0) or SU{oo} if h = 1, & decomposition of AKag1n or AK2pin
into Pasch configurations.
OR

(2) If h > 2, for one group of the GDD (of size f if M = {g,f*}),
place on the set SU {oo;}2., a decomposition of AK2s,» into Pasch
configurations. For the remaining groups, all of size g, place on SU
{oos}2., a decomposition of (AK34+4\AKp) into Pasch configurations.

(3) For each block {11, 2,13} of the GDD, on the set {(i1,1), (31,2)} U
{(32,1), (32, 2)}U{(i3, 1), (i3, 2)}, place a Pasch configuration of K222,
described earlier.

The collection of Pasch configurations in (2) and (3) (if 5 < 1) orin (2)’
(if h > 1) and (3) gives a suitable decomposition of K,,.
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2 The cases A=1 and 2

For A = 1 (done in {3]), v = 245+ 1 or 243 + 9. In the former case we
use a GD(3,1,12;12s),s > 3, and decompositions of Ko and Ky9. In the
latter case we use a GD(3,1, {12,16*};123 + 4), s > 4 ([1]), together with
decompositions of Ka5, K33, K57 and Kg;; these are all given below.

Lemma 2.1 For each v € {25,33,49, 57,81}, there exists a STS(v) which
can be decomposed into Pasch configurations.

Proof: For v = 25, with point set Zo5, take the following Pasch configu-
rations (addition is modulo 25).

{P(0,13;1,2;6,10) +i | 0 < i < 24}.

For v = 33, with point set {(z,y) | = € Z;,,y = 1,2, 3}, the following
Pasch configurations decompose Kgs:

P((0,1), (0,3); (1, 1), (0, 2); (3,1), (5, 1)) + (£, 0),
P((0,2), (10,3); (1, 2), (6,1); (7, 2), (9, 2)) + (3, 0),
P((0,3), (8,2); (1,3),(9,1);(3,3), (5,3)) + (3, 0),
P((0,1),(9,1);(2,2),(7,2);(1,3),(9,3)) + (3, 0),

where 0 < ¢ < 10 and addition is modulo 11.
For v = 49, with point set Z,9, we may take the Pasch configurations:

{P(0,22;1,12;3,5) + i, P(0,42;6,8;22,31) +i | i € Zy9}.
For v = 57, on the point set Zyg x {1,2,3}, and with ¢; as below, we
7
may take the Pasch configurations ‘l_JI {@ + (5,0)} (addition modulo 19).

’Ezlg

a1 = P((0,2),(7,3);(6,2),(10,1); (6,3), (11, 3)),
@2 = P((0,3),(7,3); (10, 2),(10,3); (12, 1), (16, 1)),
g = P((ov 3)’ (14| 3); (21 3)v (6) 3); (4.; 2)7 (7v 2))1 .
Qg = P((ot 1), (6’ 1); (lt 1), (Gt 3);(2,2),(12,2)),

g = P((0,1),(7,3);(8,1),(2,3);(17,1),(18,2)),
g = P((O, 1)1 (18» 1); (3v 1)’ (61 1); (31 2): (11,3))1

@ = P((0,2),(17,2);(1,2),(7,2); (12,1),(15,2)).
For v = 81, on the point set Z27 x {1,2, 3}, and with ¢; as below, the
10
set U {g+ (4,0)}, addition modulo 27, is a Pasch-decomposition.
=1
Ty A%

qa = P((O, 1)' (231 1); (10, 2)s (23v 2); (17, 2)v (22’ 3)),
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P((0,1), (8,3); (3,2), (11,1); (13,2), (7, 3)),
P((O, 1)’ (25’ 1); (7: 2), (4s 1); (4v 3)» (26v 2)),
P((0,1), (12,1); (7, 1), (5, 2); (4, 2), (18,2)),
P((0,1), (2,3); (8,2), (24,1); (10, 1), (12,2)),
P((0,1), (24,3); (2,3), (3,3); (16,2), (15,1)),
P((O, 1), (17, 1); (8, 3), (11, 3); (18, 1), (25, 1)),
P((O, l), (10, 2); (1: 3): (12’ 3); (16» 3)! (25t 3))’
P((0,2), (14, 3); (3, 2), (25,3); (18,2), (25, 2)),
qio = P((O, 2),(12,3);(3, 3), (20,3);(11,2), (10, 3)).

A crucial decomposition required when A = 2 is one of 2Kj; recall that
Ky has no Pasch decomposition.

Lemma 2.2 2Ky has a decomposition into Pasch configurations.

mnn

Co RS -
]

Proof: Let the element set be Z3 x Z3. A decomposition is:

{P((0,0), (2,2);(0,1),(1,0);(0,2), (2, 1)) + (3,0),
P((0,0),(2,2);(0,1),(2,0);(1,1), (1,2)) + (,0) |0 < i < 2}.

Now when v = 12341, we use two copies of a GD(3,1,6;6s),s > 3, and
Pasch decompositions of 2K33 and 2K25. When v = 128 + 9, we use two
copies of a GD(3, 1, {6,4*}; 68 + 4), 8 > 3, together with Pasch decomposi-
tions of 2Ky, 2K5; and 2Kg3. Obviously we may use our decompositions of
Kos and K33 in Lemma 2.1; the other ones are given below.

Lemma 2.3 There are Pasch-decompositions of 2K 3 and 2Ko;.

Proof: For 2K;3 we use the point set Z;g, and the Pasch configurations
{g+ 1] 0 < i <12} where addition is modulo 13, and

g= P(0,10;1,7;2,3).
For 2K5;, we use the point set Z7 x {1,2,3}. Then, with ¢; as below,
5
U {a + (5,0)} is a Pasch-decomposition of 2Kj;.
=1

iezr
a = P((ot 1)’ (6’ 3); (lt 1): (5’ 1); (2v 2)’ (6a 2))’
e = P((0,1),(5,2);(3,1),(0,2);(2,1),(3,3)),
B = P((or 1)1 (st 3); (0, 2): (6' 2); (31 1)’ (0, 3)):
a = P((0,2),(5,3);(3,2),(23);(1,2),(6,2),

G = P((O: 3)1 (31 3); (la 3)! (6’ 3); (2' 1): (4s 1))'
This completes the case A = 2.
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3 The cases A =3,4,6 and 12,

From now on we shall list necessary Pasch-decompositions in the Appendix,
as the reader has probably seen enough to get the picture!

For A = 3 we have v = 85 + 1, and use three copies of a GD(3, 1, 4;43)
if s> 3 and s = 0 or 1 (mod 3), or three copies of a GD(3, 1, {4,8%};4s)
if 8 > 5 and s = 2 (mod 3). Then Pasch-decompositions of 3Ky and 3K,7
are also required; see the Appendix. This completes the case A = 3.

When A =4,v=0 or 1 (mod 3): we write v =63+ h where h =0,1,3
or 4. Then we use two copies of a GD(3,2,3;3m),m > 3, together with
Pasch-decompositions of 4K, as follows:

h v

0 6, 12

1 7,13

3 9, 9[3], 15

4 10, 10(4], 16

(Here 9[3) means 4(Kp\Ks), and 10[4] likewise.) For v = 9 and 13, see
Lemmas 2.2, 2.3; for the rest, see the Appendix.

When A =6,v =1 (mod 4): if v =1 (mod 8), we may take two copies
of a Pasch-decomposition of 3Ky, so assume that v = 5 (mod 8) and let
v=28s+5. If s=1 or 2 (mod 3) then v =1 or 9 (mod 12) and we may
take three copies of a decomposition of 2K,. So let s = 0 (mod 3) and
write v = 245 + 5. We use a GD(3,1,{6,8%};12S + 2) when S > 2, and a
Pasch decomposition of 6 K29, given in the Appendix.

. When A = 12, the only cases left to consider are v = 2,8 or 11 (mod
12). When v = 125 + 2 we use twelve copies of a GD(3,1, {3,7*}; 65+ 1)
for s > 3, and Pasch-decompositions of 12K;4 and 12K2s. When v =
125 4 8, we use twelve copies of a GD(3,1,{6,4*};6s + 4) for s > 3, and
Pasch-decompositions of 12Kg, 12K5 and 12K3;. Finally when v = 125+
11 we use a twelve-fold GD(3,1,{3,5%};6s + 5) for s > 2, and Pasch-
decompositions of 12K; and 12K>3. See the Appendix for all these Pasch-
decompositions.

4 Summary

Having dealt with AK, for A =1,2,3,4, 6 and 12, it can easily be checked
from the necessary conditions in Table 1 that all other values of A may
be dealt with by combining Pasch-decompositions for smaller values of A.
Thus we have proved:
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Theorem 4.1 There exists a A-fold triple system of order v which can
be decomposed into Pasch-configurations if and only if A and v satisfy the
necessary conditions in Table 1, and (A, v) # (1,9).
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Appendix

3Ky: (Z9,B) where B = {P(0,6;1,8;2,3) +1i | i € Zp}.
3K17: (Z17,B) where

B = {P(0,9;1,5;2,3) +4, P(0,12;1,3;7,8) +i | i € Zu7}.
4Keq: (Zg,B) where B is the complement of a 1-factorization of Kg (for
example, the 1-factor {0,1}, {2, 3}, {4,5} yields the Pasch configuration
P(0,1;2,3;4,5), and similarly for the other four 1-factors).
4K7: (Z7,B) where B = {P(1,6;2,5;3,4) +i | i € Z7}.
4K13: (Zy13 U {00}, B) where

B = {P(0,6;1,4;2,3) +1, P(c0,9;1,10;4,5) +i|i € Z1,}.
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4Ks: ((Z7 x {1,2}) U {oc}, B) where B =f;_,{P: + (,0) | j € Z+};

P = P((0,1),(4,2); (3,1),(3,2); (4,1),(5,2)),
R = P((0,1),(6,1);(1,1),(4,2);(1,2),(4,1)),
B = P((0,1),(5,2); (1,1),(1,2); (0,2),(2,1)),
Py = P((o0,(4,2);(0,1),(0,2); (2,1),(2,2)),
B = P((co,(4,2);(0,1),(5,1); (1,2),(3,2)).

4Kse: ((Zs x {1,2},B) where B =J}_ {P; + (5,0) | j € Zs};

A = P((0,1),(7,1); (1,1), (6,2); (2,1),(7,2)),
P = P((0,1),(3,1); (3,2), (6,1); (5,1),(7,2)),
P = P((0,1),(6,2); (1,1),(1,2); (0,2),(4,1)),
Py = P((0,1),(6,2); (0,2),(1,2); (4,1),(3,2)),
R = P((0,2),(3,2);(1,2),(7,2); (5,1),(6,1)).

4(Ko\K3): Element set {1,2,...,9} with hole {1,2,3}. A Pasch-decomposition
is:
{P(1,2;4,5;6,7), P(1,2;6,7;8,9), P(1,2;4,5;8,9),
P(1,3;4,6;5,7), P(1,3;6,87,9), P(1,3;4,8;5,9),
P(2,3;4,7;5,6), P(2,3;6,9;7,8), P(2,3;4,9; 5,8),
P(4,5;6,7;8,9), P(4,5;6,7;8,9)}.
4(K10\K4): Element set Zg UH where the hole H is {001, 003,003,004}. A
Pasch-decomposition is:

{P(001,002;0,4;1,3) +1, P(c01,002;0,3;1,4) +1,
P(W3,w4;0,3; 1’4)+ivP(w3)w4;0) 1; 3:4)+iy
P(0,3;1,4;2,5) | 0< i < 2}.

6Ka0: (Z29,B) where

B = {P(0,20;1,2;10,12) +i, P(0,17;1,16; 21, 24) +1,
P(0,16;1,6;22,25) + i, P(0,7;1,5; 2, 3) +1, P(0, 20; 2,17; 5, 6) + i,
P(0,19; 3,26;12, 15) +1, P(0, 26;4,6;13,18) +1 | i € Zno}.

12Ka: (Z7 U {00}, B) where B =|Ji_ {P:+j|Jj € Z+};

P, = P(0,51,6;3,4), P2 = P(00,4;1,3;0,2),
P; = P(o,5;1,2;0,3), Py = P(00,5;1,2;0,3).
12Ku: (Z11,B) where B =J;_,{Pi+3j i € Zu);
Py P(0,5;1,4;2,3), 2 = P(0,5;1,4;2,3), P3 = P(0,9; 1, 3;4,6),

F" P(0110; 114; 5:6))P5 = P(org; 2s3; 6: 7)'



12K14: (Z13U {o0},B);B=UL_,{Pi+i|]j € Zis};

P = P(0,6;1,2;3,9), R = P(0,2;1,9;7,12),
P = P(0,51,4;2,3), P = P(0,9;1,4;2,3),
B = P(,8;0,1;5,6), Ps = P(c0,9;0,1;5,6),
P = (00,10;0,1;6,7).

12K30: (Z19U {00}, B); B =i, {P1 +j | i € Z1o};

P, = P(0,17;1,12;5,11), P2 = P(0, 3;1,16; 5,12),
Ps = P(0,9;1,14;3,12), Py = P(0,17;1,13;6,11),
Ps = P(0,8;1,17; 5,18), Ps = P(0,5;1,4;2,3),

Py = P(0,12;2,9; 5,6), Ps = P(00,10;1,14; 4,5),
Py = P(00,13;0,1; 8,9), Pio = P(00,14;0,1;8,9).

12Kz: (Zas,B;;B=J},{Pi +ilj € Zas};
P, = P(0,11;1,19;7,12), P2 = P(0,16; 1,21, 3, 8),
Py = P(0,2;1,22;12,15), Ps = P(0,8;1,11; 13,14),
B = P(0,7;1,14;5,13), Ps = P(0,6;1,4;2,3),
Py = P(0,9;2,7;4,5), Bs = P(0,13;3,10;6,7),
Py = P(0,20;4,14;8,9), Pio = P(0,20;4,6;12,15),
Py = P(0,22;5,8;13, 14).

12Kas: (225 U {00}, B);B= .2, {Pi +i | j € Zask;

P, = P(0,4;1,3;13,15), P, = P(0,8;1,4;5,24),

B = P(0,5;1,8;16,17), Py = P(0,12;1,23;18,21),
Bs = P(0,10;1,7;11,16), Ps = P(0,3;1,20; 14,17),
Pr = P(0,14;1,22;5,24), Ps = P(0,9;2,7;4,5),

P» = P(0,11;2, 8;4,5), Pio = P(0,23;4,17;10,11),
Pu = P(,13;1,19;6,7), P2 = P(co,16;1,22; 8,11),
P13 = P(co,16;1,23;8,11).

12K32: (Z31 U {00}, B); B =% {Pi +i | ] € Za1}

Py = P(0,4;1,26;18,28), P, = P(0,17; 1,14; 5, 16),

Ps = P(0,13;1,18; 24,30), P = P(0,23;1,11; 16, 27),
Ps = P(0,13;1,20;8,9), Ps = P(0,23;1,18;5,6),

Pr = P(0,8;1,23;7,16), Ps = P(0,22;1,6;8,30),

P = P(0,30;2,8;4,16), Pio = P(0,9;2,7;4,5),

Py = P(0,20;2,12;6,8), Pz = P(0,16;3,25; 6,13),
P13 = P(0,23; 3,10; 13,20), Pia = P(c0,21;1,27;7,10),
Py = P(c0,19;1,28;7,10), Pi¢ = P(c0,21;0,1;10,11).
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Decompositions of Ks; into configurations Cs,Ci0,Ci11,C12 and C4 (see
E3]). A)ll use the element set Zy7 x {1,2,3}, and are starter configurations mod
27,-).

Ce: {{(0,1), (11,2), (5, 3)}, {(5,3), (2,2),(3,2)}, {(0, 1), (3, 2), (18, 3)},
{(15,3), (25,3), (9, 2)}}, {{(0, 1), (4, 2), (17,2)}, {(17, 2), (3,3), (25, 3) },
{(0,1),(25,3), (16, 3)}, {(26, 3), (12, 1), (14, }}, {{(0, 1), (6, 2), (13,2)},
{(13,2), (23, 3), (16, 2)},{(0, 1), (16, 2), (25,2)}, {(3, 1), (2, 3), (5, 3)} ),
{{(0,1),(5,2),(9, )}, {(9, 1), (1, 2), (6, D}, {(0, 1), (6, 1), (15,3)},
{(20,3), (12, 3), (24, 3)}}, {{(0, 1), (7, 2), (13, 1)}, {(13, 1), (9, 3), (20, 3)},
{(0,1),(20,3),(9,2)}, {(19, 1), (0,3), (25, 3)}}, {{(0, 1), (14,2), (17, 1)},
{17,1),(25,1),(8,2)}, {(0, 1), (8, 2), (20, D)}, {(1, 1), (2, 1), (12, 3)}},
{{(0,1), (0,2),(17, 3)}, {(17, 3), (16, 2), (23, 1)}, {(0, 1), (23, 1), (0, 3)},
{(1,2),(5,3), (2, }}, {{(0, 1), (1,2), (16, 1)}, {(16, 1), (21,1),(13,3)},
{(0,1),(13,3), (12, 1)}, {(1,1),(3,2),(23,3)} }, {{(0,2)(2, 2)(6, 2)},
{(6,2),(1,2), (16,2)}, {(0,2), (16, 2), (25, 3)}, {(3,2), (11, 2), (8, 3)}},
{{(0,3), (6,3),(15,2)}, {(15,2),(7,3), (14, 3)}. {(0, 3), (14, 3), (0, 2)},
{(1,2),(23,3),(24,3)}}.

Cio: {{(0, 1), (17, 2), (10, 2)}, {(10, 2), (23, 3), (22, 3)}, {(22, 3), (23, 2), (13,3)},
{(0,1),(13,3), (3,3)}}, {{(0, 1), (11,2),(7,2)},{(7, 2), (8, 1), (7, 3)},
{(7,3), (26, 1), (4, )}, {(0, 1), (4, 3), (25, 1)}}, {{(0, 1), (14, 2), (3, 2)},
{(3,2),(0,3), (5, D}, {(5, 1), (5, 2), (20,2)}, {(0, 1), (20, 2), (16, 3)} },
{{(0, 1), (23,2), (10, )}, {10, 1), (7,2), (5, 1)}, {(5, 1), (22, 3), (21,2)},
{(0,1),(21,2),(18,2)}}, {{(0, 1), (1,2), (16, 1)}, {(16, 1), (9, 1), (24, 1)},
{(24’ l)’ (7' a)' (21! 3)}’ {(0' l)' (21’ 3)’ (l’ l)}}l {{(ol 1)’ (51 2)' (191 2)}’
{(19,2), (15, 1), (11, 1)}, {(11, 1), (20, 1), (14, )}, {(0, 1), (14, 1), (9, 2)} },
{{(0, 1), (6,2),(0,3)}, {(0,3),(2,2), (7, 2)}, {(7, 2), (1, 2), (9, 3) },
{(0,1),(9,3),(1,3)}}, {{(0, 1), (2,3),(7,3)}, {(7, 3), (9, 1), (0, 3)},
{(0,3),(8,2),(11,3)}, {(0,1), (11, 3), (23, 3)}}, {{(0, 1), (12, 3), (14,3)},
{(14,3),(0,2), (26, 2)}, {(26, 2), (9, 2), (15, 3)}, {(0, 1), (15, 3), (19, 3) }},
{{(0,2),(2,2),(9,3)}, {(9,3), (5, 2), (14,2) }, {(14,2), (22, 2), (5,3)},
{(0,2),(5,3),(11,3)}}.

: {{(0, 1), (12, 2), (16, 3)}, {(16, 3), (8,2), (17, 3)}, {(17,3), (20, 3), (20, 2)},
{(16,3),(20,2), (2, 1)} }, {{(0, 1), (6, 2), (26, 2)}, {(26,2), (8,2),(10, 1)},
{(10,1),(13,2),(3,2)}, {(26, 2), (3, 2), (25, 1)} }, {{(0, 1), (9,2), (12, 3)},
{(12,3), (20, 1), (25,3)}, {(25, 3), (7, 2), (0, 3)}, {(12,3), (0, 3), (9, 1)} },
{(0,1),(17,2), (14, 2)}, {(14, 2), (8, 2),(20, 3)}, {(20, 3), (1, 3), (9, 2)},
{(14,2), (9,2),(22,2)}}, {{(0,1),(13,2), (21, 1)}, {(21, 1), (9, 1), (4,2)},
{(4,2),(26,3), (24, )}, {(21, 1), (24, 1), (10, 1)}}, {{(0, 1), (8, 2), (21, 3)},
{(21,3), (20, 2), (22, 2)}, {(22,2), (10, 2), (11,2)}, {(21, 3), (11, 2), (0, 3)}},
{{(0,1),(0,2),(7,3)}, {(7,3),(1,1), (3, 1)}, {(3, 1), (0,3), (7, 1)},
{(7,3),(7,1),(8, 1)}}, {{(0, 1), (2, 2), (5, D}, {(5, 1), (13, 1), (22, 1)},

{(22, 1), (15, 1), (26, 2)}, {(5, 1), (26, 2), (16, 3)}}, {{(0, 1), (15, 2), (17,3)},
{(17,3),(7,1),(3,2)}, {(3,2), (18, 3), (8,3)}, {(17, 3), (8, 3), (22, 1)}},
{{(0,1),(1,8), (23, 3)}, {(23, 3), (8, 1), (16, 3)}, {(16, 3), (18, 1), (0, 3)},
{(23,3),(0,3),(2,2)}}.

C1

[
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Ciz: {{(0,1), (22,2), (11, 1)}, {(11,1),(21,2), (5, 3)}, {(0, 1), (5,3), (6, D},

Cia:

{(22,2), (26,3),(7, D}}, {{(0,1),(25,2), (14,2)}, {(14,2), (11, 1), (2, D},
{(0,1), (2, 1), (18,3)}, {(25,2), (0, 3), (3, 3)}}, {{(0, 1), (21,2), (6, 2)},
{(6,2), (15, 1), (23,2)}, {(0, 1), (23, 2), (5, 2}, {(21, 2), (12,1), (10, 3)} },
{{(0,1),(24,2),(5, 1)}, {(5, 1), (18,2), (17, )}, {(0, 1), (17, 1), (7, 2)},
{(24,2), (8,1), (4, 1)}}, {{(0, 1), (0, 2), (22, 3) }, {(22, 3), (13, 1), (26, 1) },
{(0, 1), (26,1),(7, D}, {(0,2), (20, 2), (22, 2)} }, {{(0, 1), (26, 2), (24, D},
{(24,1),(1,2),(0,3)},{(0,1),(0,3),(7,3)}, {(26,2),(7, 2), (22,3)}},
{{(©,1),(1,3),(2,3)},{(2,3),(1,2), (4, 3)}, {(0, 1), (4, 3), (10, 3)},
{(1,3),(4,1),(17,3)}}, {{(0, 1), (8, 3), (20,3)}, {(20, 3),(3, 1), (15, 3)},
{(0,1), (15,3), (11,3)}, {(8,3), (2, 1), (16, 3)}}, {{(0,2),(1,2), (7, 3)},
{(7,3),(10,2), (14,2)},{(0, 2), (14, 2), (8, 3)}, {(1,2), (4, 2), (18, 3)} ],
{{(0,2), (s,2), (19, 3)},{(19,3),(1,2), (10, 3)}, {(0, 2), (10,3), (0, 3) },
{(6,2),(4,3),(18,3)}}.

{{(0,1),(1,2), (17,3)},{(17, 3), (22, 2), (0, 2}, {(0, 1), (0, 2), (20, 3)},
{(22,2), (20,3), (1, D}}, {{(0, 1), (26,2), (6, 3)}, {(6, 3),(18,3),(7,2) },
{(0,1),(7,2),(16,2)}, {(18,3), (16, 2), (2, D}}, {{(0, 1), (17,2), (13, 3)},
{(13,3), (19,3), (12,3)}, {(0, 1), (12,3),(3, 3)}, {(19, 3), (3, 3), (1, }},
{{(0,1), (9,2), (24, D}, {(24, 1), (18, 1), (22,2)}, {(0, 1), (22,2),(25,3)},
{(18,1), (25,3), (1, D}}, {{(0,1),(20, 2), (8, 2)}, {(8,2), (11,2),(25, 1)},
{(0,1),(25,1),(8,3)}, {(11,2),(8, 3), (8, )}}, {(0, 1),(24,2), (5, 3)},
{(9.3),(10,1), (15,2)}, {(0, 1), (15, 2), (23, )}, {(10,1),(23,1),(1, 1)}},
{{(0,1),(6,2), (21,3)}, {(21, 3), (19,3),(11,3)},{(0, 1), (11,3), (14, 3)},
{(19,3), (14,3),(1,2)}}, {{(0, 1), (2,2), (11, )}, {(11, 1), (18, 1), (26, 1)},
{(0,1),(26,1), (22,3)}, {(18, 1), (22,3), (14,2)}}, {{(0, 1), (11, 2), (15,3) },
{(15,3),(23,2),(1,3)},{(0,1),(1,3), (5,3) }, {(23,2), (5, 3),(22, 2)} },
{{(0,2),(4,2),(11,2)}, {(11,2), (13,2),(21,2)}, {(0,2), (21,2), (0, 3)},
{(lai 2)» (0: 3): (261 2)}}' \
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