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Abstract

The basic interpolation theorem states that if graph G contains span-
ning trees having m and n leaves, with m < n, then for each integer
k, m < k < n, G contains a spanning tree having k leaves. Various
generalizations and related topics will be discussed.

1 Introduction

All graphs we consider are finite, undirected graphs without loops or
multiple edges. V(G) and E(G) denote the vertex set and the edge
set of graph G. The order of G is the number of vertices and the size
of G is the number of edges. If H is a subgraph of G then ni(H) is
the number of vertices of degree k£ in H. If Q is a family of subgraphs
of G then ny interpolates on Q if given g, g2 € @ and integer j such
that ng(g1) < j < ni(g2) then there exists a subgraph g ¢ Q with

nk(g) = Jj.

The pendant polynomial of G is Pi(G) = Y2 brzF,

where b; is the number of spanning trees in G with k leaves, b, #
0 and b, # 0.

The cycle rank of G is p(G) = |E(G)| - |V(G)| + 1.

Theorem 1 (Schuster, 1983) n; interpolates on the spanning trees
of a connected graph.

Theorem 2 (Heinrich & Liu, 1988) Given a connected graph G
with Pi(G) = 32 bex® then b; > 2p, where r < j < s.
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EXAMPLE 1

P, = 120z? + 820z° + 810z + 2402° + 102°

EXAMPLE 2
The pendant polynomials of a few well known graphs

Pl(K3,3) = 3622 4 3623 4 9z
P](I\’s) = 60z2 + 60z3 + 5z4
Py(Ke) = 36022 + 72023 + 210z* + 62°

ZP](G - e)
Lemmal P (G) = -& 5

Proof: The sum counts each spanning tree T exactly p times because
there are p edges that are not in T'.

Lemma 2 Let G and G; be the graphs shown below, where u is a
cut vertez in both graphs.Then

117G
P(G) = ﬂ"xT'— (1)




Proof: Let T be a spanning tree of G with k leaves. Since the leaves
of T must be in §5y,--+, 5, we have

Li+Lo+-+Ly=k (2)

where L; is the number of leaves in T from S;. Thus we see that the
number of spanning trees with & leaves corresponds to the number of
solutions of equation (2). This number can be found using the simple
polynomial generating function given in equation (1). The factor z¢
accounts for the extra leaf in each of the G;.

EXAMPLE 3

An example using Lemma 1.

Pi(Ke—e
; 1(Ks—e) 15P,(Ks - €)

> = T = P;(Ks)
= 36022 4 72023 + 210z* + 62°
Pi(K¢—e€) = 3@ = 240z% + 480z + 140z* + 42°
EXAMPLE 4
An example using Lemma 2.
1 2

[ 2k K
H 2k—1 .G 4

P(H) = 2z% + 23
2, .3k
Py(G) = &:FLL = 2% 4 2kz%—1 4 ... 4 (22)F
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Notice that in P;(G) the coefficient of z2*~! is 2k = 2p. Therefore
the lower bound given in Theorem 2 is sharp.

EXAMPLE 5
An approximation of P,(G)

Instead of enumerating all 354 spanning trees of the above graph,
generate 75 random spanning trees and find the pendant polynomial
P/ of this set of 75 trees. Thus we will have

P(G) P
(G) ~ 75

where 7(G) = 354.

= 0.122 + 0.462* + 0.362°% + 0.05z°

2 Generalizations and Variations

The following definitions are due to Harary and Plantholt [6, 1989].

Let f: F — N, where F is a family of subgraphs of

a graph G and N is the set of nonnegative integers. Then f is a
positive invariant if H ¢ F and e ¢ E(H) implies that

f(H)< f(H +e) < f(H)+1. (3)

On the other hand, f is a negative invariant if H ¢ F and e ¢ E(H)
implies that
J(HY-1Z f(H +e) < f(H). (4)
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EXAMPLE 6
The maximum degree A(G) is a positive invariant and the independence
number a(G) is a negative invariant.

Let T be a spanning tree of G and e ¢ E(G) — E(T).

The subgraph T + e contains a unique cycle C. Let f be an edge
of C such that f # e. The operation T' + e — f is an elementary
exchange and T + e — f is a spanning tree distinct from T'.

Theorem 3 (Harary & Plantholt, 1989) Let Z be a positive or
negative invariant defined on a family F of graphs. Then I interpo-
lates on F if F has one of the following properties:

1. For any two graphs F, H ¢ F there is a sequence of elementary
ezxchanges from F to H consisting entirely of graphs from F.

2. For any two graphs F, H ¢ F, graph H can be obtained from F
by a sequence of single edge deletions or additions, with each
intermediate graph also in F.

Corollary 1 Let I; = &(G), I, = '(G), I3 = a(G), Z4 = the dom-
ination number of G and Is = A(G). Define the following sets of
subgraphs of G:

o Fy = Spanning subgraphs of size at least s; and at most s;.
e F, = Spanning subgraphs with mazimum degree at most M.
o F; = Spanning subgraphs with hereditary property P.

o F; = Connected spanning subgraphs of size s.

Then I; interpolates on Fy,, where 1< j<5;1<m <4,

2.1 Spanning trees of maximum degree at least 4

First, a few definitions.

Q4(G) is the set of spanning trees of maximum degree

at least 4.

69



Let g be a connected subgraph of G. A maximum

intersecting spanning tree with respect to g, denoted M(g;G) or
M(g), is a spanning tree T such that

|E(T)n E(g)| = [V(g)] - 1.

Theorem 4 (Barefoot) n, interpolates on M(g).

Proof: See the appendix.

Let @ be a set of spanning trees. Then P(Q) =
2 i @;z* where a; = the number of spanning trees in Q with ¢ leaves.

A polynomial §; a;z* is gapless if a;_ja;41 # 0 implies that a; # 0.
Theorem 5 (Barefoot) P1(Q4) is gapless.

Proof: By induction on the size of G. The result is easily verified if
G is a tree or a unicyclic graph. Thus, let G be a smallest counterex-
ample of order n and size m > n + 1. Let Q4(G)= {T1, T2, -+, Th},
where

n1(T) < ni(Tiga), (5)
nl(T,) S nl(Tr.H) -2. (6)

Assume that there exists an elementary exchange with edges e =
uju2 and f = vyv, such that

e ¢ E(Trq1) - E(T3), (7)
f € E(Ty) = E(Tr1), (8)
Tr41 — e+ f € Q4(G). (9)

Let H = r41 — € + f Notice that |7I.1(T,-.|.1) - 'I’I.](H)I < 2.
If ni(H) 2 n1(Tr41) then H and T, are in G — e. This would be
a contradiction because G is a smallest counterexample. Therefore
n1(H) £ n1(Tr41) — 1. Consequently ny(Tr41) — ny(H) = 2. This
implies that u; and u; have degree at least 3 in T}.4; while v; and v,
are leaves of T;4; — e. Thus, u; # v; in Tr4; and we conclude that
v; and v, have degree 2 in Ty 4y + f.
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Let C = vy,vp,---,vs be the cycle of T,4; + f and let h be
the smallest integer such that d(v1) = d(v3) = -+ = d(vp-1) = 2
and d(v;) > 3. The integer h exists since u; and up are on C.
Thus, n1(Tr41 + f — vh—1vr) = 21(Tr41) — 1. Moreover, Tryg +
f — vp—1vs € Q4 unless vy is the only vertex of degree at least 4
in T,4;. If this is the case let j be the largest integer such that
d(v) = d(vs) = -+ = d(v;) = 2 and d(v;41) > 3. Vertices u; and
4y are on C therefore j + 1 # h. Thus, T41 + f — v;vj41 € Q4 and
1 (Tr41 + f — vj9j41) = n1(Tr41) — 1. This contradicts equations
(5-6).

The remainder of the proof concerns the more difficult case when
Tr41 — e+ f ¢ Q4 whenever e € E(Tr41) — E(T;) and f € E(T;) —
E(T,41). Let u be a vertex of degree at least 4 in T;.4; and v a vertex
of degree at least 4 in T;.

Proposition 1 Every edge of G is in either T,y or T;.
Proof: G is the smallest counterexample!
Proposition 2 Vertices v and v have degree ezactly 4 in G.

Proof: If d(u) > 5 in Ty41 then d(u) > 4 after any exchange. Thus
d(u) = 4 in T,4;. Now, if d(u) > 5 in G then we can find an edge
f ¢ E(Tr41) that is incident to u in G. Consequently d(u) > 4 after
any exchange of the form T4y + f — e, where € € E(T;) — e(Tr41)-
Therefore d(u) = 4 in G and the same argument applies to v.

Proposition 3 Ife ¢ E(T,41) — E(T;) then e is incident with u in
Ty41 and if f ¢ E(T}) — E(Ty41) then f is incident with v in T;.

Proof: If eis not incident with « in T4, then d(u) = 4in T4y —e.
This implies that Ty4; — e + f' € Q4 for some f' € E(T;) — E(Tr41)-
The same argument applies to v.

Proposition 4 |E(G)| < |V(G)| + 2.

Proof: From Proposition 1,

E(G) = E(Tr1) U E(T}) = E(Tr41) U(E(T}) = E(Tr41)).
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From Proposition 3, we know that each edge of E(T,) — E(T,41) is
incident with v. Furthermore, v is incident with at least one edge of
T;41. Thus, we have |E(T,) — E(Tr4+1)| < 3. Therefore

|E(G)| = |E(Tr41)|+|E(Tr) = E(Tr41)| < IV(G)|-143 = |V(G)|+2.
Proposition 5 Neither u nor v has degree 4 in both T,,, and T,.

Proof: Assume u has degree 4 in T,4; and T,. Let g be the
subgraph consisting of the 4 edges incident to u. By Theorem 4,
n1 interpolates on M(g), the set of maximum intersecting spanning
trees with respect to g. Notice that both T4, and T, are in M(g).
Thus, there is a tree T ¢ M(g) with ny(T) = n,(T}) + 1. Since
T € Q4 this is a contradiction. Therefore u cannot have degree 4 in
both T;4; and T;.

Definition 8|Let {u;,u2, u3,us} be the neighbors of u and {v;, vo, v3, v4}

the neighbors of v. E(u) is the subgraph consisting of the 4 edges
incident with u, E(v) is the subgraph consisting of the 4 edges in-
cident with v and E(u,v) is the subgraph consisting of the edges
incident with u or v. The wug-branch of T;4; is the component
of Tr41 — u that contains ux. E, = E(T}),Eryy = E(Ty1),E™ =
E(T;) - E(T;41) and E™*! = E(T,4,) — E(T,). Now, if e ¢ E” let
Ce be the cycle of Ty4; +e.

Proposition 8 E(u,v) contains a cycle.

Proof: If E(u,v) is acyclic then there is a spanning tree T that
contains E(u,v). Let @ = M(E(u)) U M(E(v)). By Theorem 4,
Py(M(E(u))and P(M(E(v))are gapless. Furthermore, T ¢ M(E(u))N
M(E(v)). This implies that the coefficient of z™(T) is nonzero in
P (M(E(u)))and Pi(M(E(v))). Consequently P{ = Py(M(E(u)))+
P(M(E(v))) is gapless. Since each coefficient of P;(Q) is nonzero
iff the corresponding coefficient of PJ is nonzero, we conclude that
Py(Q) is gapless. By definition Tr4; and T, are in Q. Therefore,
there is a tree T’ € Q such that n{(T') = ny(7}) + 1. Since this is a
contradiction we conclude that E(u,v) contains a cycle.

From Proposition 6 we conclude that » and v have at least one
common neighbor. There are six cases to examine according to the

72



degree of v in T,,; and whether uv is an edge of G. In Cases 1-3
we will assume that uv is not an edge and wu,u;,v,u2 is a cycle in
E(u,v). In Cases 4-6, uv is an edge and u,u;,v is a cycle in E(u,v),
where v = us.

The basic proof technique is outlined below:

Proof technique using a non-elementary exchange method

1. From Propositions 3 and 4: d(v) in T;41 = d(u) in T;.. T} is
obtained from 7,4, by the equation

T, =Tpp1 — ETHV 4+ ET|E™H| = |ET| < 3. (10)

All edges of E™*! are incident to u and all edges of E™ are

incident to v. The edges of E™ must be incident with the com-
ponents of Ty4; — E™+! so that T; is connected. Define Sp by
the equation

So = Tr41 — E™' + E',where E' C E". (11)

Count the components, edges and leaves of Sp and keep in mind
that
nl(T,-) S nl(T,..H) - 2. (12)

In some cases the configuration of Sp forces ny(T;) > n1(Tr41)—
1 so that T, has too many leaves. In other cases, Sp forces cer-
tain neighbors of v to be leaves, or forces certain neighbors of u
to have degree at least two; otherwise equation (12) is violated.
(see Figure 1)

2. Use the configuration of T; to find an elementary exchange
that produces the spanning tree T with ny(T) = n1(T;) + 1
and T € Q4!

Case 1 Assume that uv is not an edgé of G and d(v) =3 in Ty 4.

Consider Ty +vv;, where vv; € E". Since this graph has at least two
vertices of degree > 4 and uv is not an edge, we conclude that there
exists an exchange of the form T4 + vv; — e satisfying equations
(7-9).
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Case 2 Assume that uv is not an edge of G and d(v) = 2 in T\ 4.

Subcase 1 u is nonadjacent to u; and uy in Ty,
and v is nonadjacent to u; and uy in Tpyg.

Since u has degree 2 in T}, we see that
Ty = Try1 — uuy — utg + vup + vu,. (13)

Notice that this transformation preserves the degree of every vertex
except u and v. Therefore n1(7;) = n1(Tr41). Since this is a contra-
diction we conclude that v is adjacent to u; or uy in Tr41. Assume
that v is adjacent to u; in T}4q.

Subcase 2 u is nonadjacent to u; and uy in Ty,
and v is adjacent to uy in Tpq,y.

Let So = Tr41 — uu; — wug + vuy. This transformation preserves
the degree of every vertex except u, v and u;. Since Sy has two
components and T, = So+vv;, we conclude that ny(T;) > n1(Tryq)—
1. Since this is a contradiction we conclude that u is adjacent to u,
or up in T, but not both. Assume that u is adjacent to u; in 7.

Subcase 3 u is adjacent to u; in T,
and v is nonadjacent to u; and up in Try,.

Let v be on the uz-branch of T}, and consider So = T4y — vup —
uuz + vug. Counting components and leaves of Sy, we see that
n(Tr) 2 ni(Try1) - 1.

Subcase 4 u is adjacent to uy in T,
and v is adjacent to uy in Tpyy.

Assume that u is adjacent to u3 in T, and let So = Ty — uug —
uug + vuz. Counting components, leaves and edges of So we see that
T, has too many leaves. In other words, n1(T}) > n1(Tr41) — 1.

Subcase 5 u is adjacent to u; in T,
and v is adjacent to uy in Try,.
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Assume that u is also adjacent to u3 in T,4+; and let So = Trq1 —
uug — uuyq + vu;. Notice that if v, is not a leaf of Ty41 then n,(T;) >
n1(Tr41) — 1. Also d(u4q) 2 2 in Trya, otherwise T, has too many
leaves. Let v4 be the leaf in the uy4-branch of T;41. This implies that
d(vg) =2in Ty. Let Cyo,t = (21 = 04),++, 20 = Ugy 2o41 = Uy 2242 =
v and h the smallest integer such that d(z) = - -+ = d(zx—1) = 2 and
d(zp) > 3. Since u4 is on this cycle h < z. The spanning tree
T, + uug — 2,123 has nl(T,) + 1 leaves and is a member of Q4.

Case 3 Assume that uv is not an edge of G and d(v) =1 in T, ;.
Since v is a leaf of Ty41, u is a leaf of T5.

Subcase 1 u is nonadjacent to u; and up in T,
and v is nonadjacent to u; and ug in T4,

This case is similar to Case 1, subcase 1. Assume that uus € E(T;)
and let So = T,41 — wuy — vug — vug + vuy + vuz. Regardless of
whether v is in the ugz-branch or u4-branch of T4, we conclude that
n1(Ty) 2 n1(Tr1)

Subcase 2 u is nonadjacent to uy and up in T,
and v is adjacent uy in Try.

Assuming that uuy € E(T}), let So = Ty41 — uuy — uup — uug + vug.
If uz is a leaf of T4 then we conclude that T} has too many leaves.
Actually neither u3 nor u4 are leaves of Sp for the same reason. Let
v3 be on the us-branch of T,41 and v4 on the u4-branch of Tiyy.
Since n1(So) > n1(Tr41), vs and vg must be leaves of Sp. Thus,
d(v3) = d(v4) =2 in T,. Let Cuuy = (21 = v4),22,++*, 2z = Uz, "+, ¥
and let h be the smallest integer such that d(z;) =« = d(2p-1) = 2
and d(zp) > 2. With uz on Cyy,, b < 2. The spanning tree T =
T, + uug — zn_12; provides a contradiction. Hence, we will assume
that uu; is an edge of T;.

Subcase 3 uu; ¢ E(T;,) and v is nonadjacent to uy and ug in Tryi.

Assume that v is on the usz-branch of T4;. If u; is not a leaf of T,y
then T, has too many leaves. Thus, d(u;) = 2 in T,. This implies
that ug is not a leaf of T,. Therefore, n1(Ty+uuz—uuy) = n1(T7)+1.

tWe are employing step 2 of the proof technique.
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Subcase 4 uu; € E(T}) and v is adjacent to uy in Try,.

Looking at So = T4 —uuz —uuz —uug+vup we see that v3 and v, are
leaves, where ; is on the u;-branch of ;4. Moreover, d(u3) > 2 and

d('llq) > 2in So. Let Cu‘ua = (’U3 = 21),22,"',23; = U3yttt Zpyl =
U, Zz42 = U1,2z43 = v and h the smallest integer such that d(z;) =
d(z) = -+ = d(zp-1) = 2 and d(z,) > 3. The spanning tree T}, +

uU3z — Zp—12x provides the contradiction.
Subcase 5 uu; € E(T;) and v is adjacent to ug in Tyy,.

Let So = Try1 — uup — uuz — uuy + vuy. If uy is not a leaf of T4y
then apply the agrument of the previous case. If u, is a leaf of T\,4;
then ny(T}) = n1(Tr41) — 1. Therefore, d(uz) > 2 and d(u4) > 2 in
So. There must be a leaf in the uz-branch or the u4-branch of T,.H.
If this leaf is in the uz-branch then use T} + uug to find the spanning
"~ tree T =T, + uuaz — z4_12; as in the previous case and if the leaf is
in the u4-branch use 7, + uuqy.

Since every case leads to a contradiction we now know that uv €
E(G).

Assume that u,u;,v is a cycle in E(u,v) and let v = u,.
Case 4 uv ¢ E(G) and d(v) = 3 in Try1.

Let f € E7. Some edge e of the cycle Cy is not in T,. Since uv is in
T, and Ty41, € # uv. Thus, T4 + f — e is an exchange satisfying
(7-9) with d(v) = 4.

Case 5 uv € E(G) and d(v) =2 in T,4,.

Vertex u has degree 2 in T,.. Edge uv, is not in T, because uv and vu,
arein T,. Wlog, let uus € E,. Set So = T41+vu; —uuy —uuy. If ug is
aleaf of T'.;; then we conclude that n1(T}) = n1(Tr41). On the other
hand, if u4 is not a leaf then we conclude that n(T}) > n1(Tr41) - 1.

Case 6 uv e E(G) andd(v) =1 in Tp 4.

Vertex u has degree 1 in 7, and uu; ¢ E,. Set S = Tpyq + vu; —
uuy — uuz — uug. If u3 or uy is a leaf of T;4; then we conclude
that 7, has too many leaves. In fact, uz and u4 have degree at
least in 3 in Ty4;. Let vz be the neighbor of v in the uz-branch of
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Tr41. Notice that v3 must be a leaf of Tp4y. Let Cyyy = (21 =
V3)yr 2z = U3, 2z41 = U, 2z+2 = ¥ and h the smallest integer such
that d(z; = v3) = -+ = d(zp-1) = 2 and d(z,) > 2, where b < z.
T = T, + uus — 2,3 z5 provides the contradiction.

Since every case leads to a contradiction we conclude that there
is an exchange that satisfies (7-9). (Phew!). Therefore, P,(Q4) is
gapless.

Conjecture: Let g3(G) be the spanning trees with maximum degree
3. Then n; interpolates on gs.

EXAMPLE 7

An example of Pi(Q4) and P1(g3).

Pi(G) = 922 + 1072% + 292z* + 2472° + 602° + 427

Py(Q4) = 472 + 12425 + 552° + 427
Pi(g3) = Pi(G) — P(Q4) — 92% = 107z + 245z* + 1232° + 52°
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(v) @0

() =(n) e

——O— © O @
©— s

Figure 1. Non-elementary exchange with d(v) = 1in T,y
and uv ¢ E(G).

2.2 q-Filters

Consider the following question for the graph shown below: Is there
an edge set @ such that G; — Q is connected and contains no span-
ning tree with 5 leaves?

3 411
eIl G
5 9 8 10

Py = 2% 4 4623 + 180z* + 19425 + 622 + 427

Find a spanning T with k£ # 5 leaves and let Q = E(G)— E(T). Then
G - @ will have k leaves! Thus, as long as P,(G) has at least two
nonzero coefficients it is always possible to find a connected spanning
subgraph without any spanning trees with k leaves.
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Let Pi(G) = % bya*. Then a g-filter is a minimum

edge set @ such that G — @ is connected and does not contain a
spanning tree with ¢ leaves. |Q| is denoted ,(G).

Since G has only one Hamiltonian path us = 1. An exhaustive
search shows that us = 3. To show that us < 3, let Q@ = {18,59,48}.
To calculate P;(G); — Q) use the fact that 23 is a cut edge of Gy — Q.
Using Lemma 2 we see that P;(G1 — Q) = 6z3 + 6z*.

2 3 4 11 —o

6(;7 2x2 4 273 4:3
5 9 8 10
323(2z2 + 223
P(G1-Q)= —u—xf—”’) = 62° + 624

Given ¢-filter @, we know that P,(G — Q) is gapless. Therefore, all
trees of G — @ have at least g+ 1 leaves or all trees of G — @) have at
most ¢ — 1 leaves.

Definition 10|If P;(G) = 3.2 bxz* then the filter polynomial of G
is p(G) = 2] .
The g¢-filter @ is low if

H
P(G-Q)= Zakxk, where g+ 1< L<H<s
=L
and high if
H
P(G-Q)= Zakxk, wherer < L< H<q-1
k=L

A high g-filter is denoted ¢+ and a low g-filter is denoted ¢g~—. Re-
turning to graph G,, we find that

p(G1) = 22 + 223 + 32" + 32° 4+ 225 + 27

According to the definition a 2-filter of G, is low and a 7-filter of G
is high. What can we say about the g-filters when 3 < ¢ < 67
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Definition 11| To indictate whether g¢-filters are low or high an un-

derline or overline is used with the coefficient of 2% in u(G) = 2 prz*.
If there are g*-filters and ¢~ -filters then no symbol is used with the
coefficient of z9.

For example,

w(G1) = 2% + 22> + 32 + 325 4+ 225 + 27

Thus, if ¢ < 4 then all ¢-filters are low; and if ¢ > 5 then all g-filters
are high.

Proposition 7 If Q is a gt-filter and p > g then py, > p,. If Q is
a g~ -filter and p < q then g > pp.

Proof: If Q is a ¢*-filter then all spanning trees of G — Q have at
most ¢ — 1 leaves. Thus, deleting () also removes all spanning trees
with at least g leaves.Therefore |Q| is an upper bound for yx,, where
p > q. The same idea can be applied to ¢~ -filters.

Another possibility is shown in the following two examples.

EXAMPLE 8

An example with g*-filters and ¢~ -filters.

G,

Py (G2) = 462% + 10923 + 4824 + 25
(Ga) = 322 + 4% + T T o

Notice that there are 3*-filters and 3~ -filters.
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EXAMPLE 9

Ga

4
P(G3) = 102% + 90z3 4 147z% + 7725 + 132©
w(G3) = 22 + 223 + 324 + 225 + 26

Theorem 5 (q-filter theorem) Let Pi(G) = Y2 bpz* , where r <
s — 1. Then there exists integers L and H such that 1 < H — L <2
and '

g < L implies that all g-filters are low.

q > H implies that all g-filters are high.

Proof: The proof will be by induction on the size of G. The
theorem is obvious if G is unicyclic because x(G) has at most three
terms. Therefore assume that G is a smallest counterexample of
order n and size m > n + 1. The following proposition will help
determine u(G).

Proposition 8 Suppose that Fy is a j*-filter and F; is an h™ -filter,
where j < h -1 then

o 1 = pn
o Fy is an ht-filier and F; is a j~-filter.

Proof: By Proposition 7, p;j < pp and pj > pp. Therefore pj = py.
Since |Fi| = p; = pr and G — Fy has no spanning trees with A
leaves we conclude that Fy is an h-filter. Therefore Fj is a h*-filter.
Similarly, F, is j~-filter.

Proposition 9 If all k-filters are high then ¢ > k implz'eskthat all
g-filters are high and if all k-filters are low then q < k implies that
all g-filters low.
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Proof: Assume that all k-filters are high and that @ is a ¢~ -filter,

g 2 k. According to Proposition 8, @ is a k™ -filter. Since this is a

contradiction, () does not exist. The same idea applies for low filters.
We can use Propositions (7-9) to conclude that

1. There must be at least two integers A and j such there are
ht-filters, h~-filters, jt-filters and j~-filters.

2. pj = pn.

3. If P(G) = 32 brz* then all r-filters are low and all s-filters
are high.

4. If po = pj = pp then for every integer i, po > p;.

Thus, we can assume that

p—t1 h s
WG = ez + pod 2* + Y pyak (14)
T 14 h+1

where po > p; and p < h. Equation (14) implies that p, = pp4q and
there is a p*-filter Q@ and a (p + 1)~ -filter Q,. Furthermore, Q, is a
(p+ 1)*-filter and @, is a p~-filter.

Let e be an edge of G that is not a cut edge. Notice that if G
has a tree with at least p leaves then @, — e is a p*-filter of G — e.
Suppose that all spanning trees of G — e have at most p — 1 leaves.
This means that e is a p*-filter. Consequently pp = pp41 = po = 1.
Therefore let f be a (p 4 1)~ -filter. Since e is a p*-filter and f is a
(p + 1)~ -filter we see that every spanning tree of G contains e or f.
Thus, {e, f} is an edge cut. Let Ty be a spanning tree of G with at
least p + 2 leaves. Clearly e is an edge of To. Furthermore we can
assume that f is not an edge of Ty because if f is in every spanning
tree with at least p + 2 leaves then f must be in every spanning tree
and this would mean that f is a cut edge.

Given the configuration that we now have for G we see that T —
e+ f is a spanning tree of G. Since an exchange can decrease the
number of leaves in Ty by at most two we see that Tp — e + f has at
least p leaves. This is a contradiction because e is a p-filter! Thus,
we conclude that every spanning tree of G has at most p + 1 leaves.
Let T} be a spanning with at most p — 1 leaves. Using an argument
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similar to the one in the previous paragraph we can assume that f is
in T; but e is not. Similarly we see that 77 — f + e is a spanning tree
with at most p + 1 leaves that does not contain f. This contradicts
the fact that f is a (p + 1)~ -filter. Therefore every spanning tree of
G has at least p leaves. This means that P,(G) = bpaP + byy12”*1.
This is an obvious contradiction. Thus, we must conclude that G—e
has a spanning tree with at least p leaves. Therefore @, — e is a
pt-filter of G — e. The same type of argument shows that Q2 — e is
a (p+ 1) -filter of G —e.

We know that there are integers o and 3 such that ¢ < o implies
that all g-filters are low in G — e and ¢ > 3 implies that all g-filters
are high in G —e. Apparently a < p—1and 8 > p+2. Thus,G—e
is also a counterexample. Since this is impossible equation (14) must
be false. Therefore we see that |h — p| = 0 or » < k < s implies that
all k-filters are high or all k-filters are low.

Definition 12] A graph is slow if H — L = 2 and fast if H — L = 1.

EXAMPLE 10

P, = 12022 + 82023 + 8102* + 240z° + 1026
p =322 + 523 + 524 4 325 + 326
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EXAMPLE 11

P, = 3223 + 12824 + 15225 + 762% + 1627 + 28
p=z3+4 2% + 425 + 326 + 227 4 18

P(G - {29,36,47,78}) = 22° 4 527 4 2®
= {29,36,47,78} is a 5~ —filter.

Pi(G - {15,25,35,45}) = 423 4 7z*
= {15,25,35,45} is a 5 —filter.

3 Counting vertices of degree 2 - P(G)

Instead of counting leaves we will consider the more difficult (and
more interesting) problem of counting vertices of degree two.

Definition 13| Po(G) = Y2 cxz*, where ¢, is the number of span-

ning trees in G with k vertices of degree two. The minimum size of
an edge set @ such that G—@ is connected and has no spanning trees



with g vertices of degree two is denoted ;132) and u(G) =12 pﬁz)x".

‘The following examples show that P»(G) may not be gapless.

EXAMPLE 12

Py =10 + 24022 + 810z* + 820z% + 12028

EXAMPLE 13
2 3 41
61 G
\7\ 1
2 8 10

P, = 22 4 4623 + 180z 4+ 19425 + 6225 + 427

P, = 2 + 21z + 33z% + 13823
+66z% + 1652° + 1528 + 4627 + 22

P,(G) usually has more terms than P;(G) because it is possible for
a spanning tree to have no vertices of degree two. Consequently, the
spanning trees of G are more dispersed. The next example shows
that it is possible for P, to be gapless although this appears to be
the exception.
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EXAMPLE 14

Py = 4223 + 156z + 18225 + 9926 + 3027 + 428
P =2+ 16z + 5222 + 9323 + 1322* + 1042% 4+ 7226 + 4227

Lemma 3 If T is a tree of order n 2 3 then ny = 2+ 3 (k—2)ng.

Proof:

Y d(v) = ¥ kny = 2|E(T)| = 2(V(T)| - 1)
v k

=2(-1+) ng)=-2+2) ng.
k k

Solving for n; gives n; = 2+ Y i (k — 2)n.

Lemma 4 Let G be a connected graph of order n > 3 and A(G) < 3.
If T is a spanning tree then no(T) = n(mod 2).

Proof: From Lemma 3, we have n; = 2+n3. Also,n = n1+n2+n3.
Therefore, n — ny = 20, — 2.

Lemma 5 IfT is a tree of order n > 3 then ny # n — 3.

Proof: By Lemma 3,7, = 24+n3+2n4+: .. Assume thatn, = n-3.
This implies that A(T) > 3, otherwise T is a path with ne(T") = n—2.
Thus, for some j > 3, we have n; > 1. Now, 7, > 2+ (j—2)n; >3
sothat n = [V(T)| 2 n1+n2+n; =3+4+(n—-3)+1 = n+1. Therefore
ny#n-—3.

© The previous Lemmas tell us that if G has order n then
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o if A(G) = 3 then
— neven = P»(G)is an even polynomial and n odd = P5(G)
is an odd polynomial.
— if T is a spanning tree then ny(7T) = n + 2 — 2n,(T).
- — (2 db. =
Bk = Hpyoop aNd Ok = Cni2-2k-

e If G is Hamiltonian and A(G) 2 3 then P,(G) has at least one
gap. This means that P;(G) may have gaps even if G has lots
of edges.

Thus, if A(G) = 3, there is no significant difference between nq, Py,
and ng, Py, u(® as far as the spanning trees are concerned. This
implies that the concepts of n2, P2(G) and () are only significant
when A(G) 2 4.

EXAMPLE 15

Py = 12022 + 82023 + 8102 + 24025 4 1026
P> = 10 + 24022 + 810z* + 820z° + 12028
g = 322 + 523 + 524 + 325 + 326
p? =3 + 322 + 524 + 526 + 328

Next, we will consider the size of the gaps in P5(G).

Definition 14| Let Py(G) = X% ckz*. If cx—1cke1 # 0 and ¢t = 0

then P;(G) has a k-gap or a gap of length 1.

Theorem 6 IfG is connected, Po(G) is gapless or has gaps of length
1. ‘
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Proof: By induction on the size of G. The assertion is true if G is
a tree or a unicyclic graph. Let G be a smallest counterexample of
order n and size m > n + 1. Let T} and T, be spanning trees of G
such that

na(T2) 2 n2(Th) +3=u+3, (15)

u<j< nz(Tz) => ¢ = 0. (16)

Lete e E(Ty)-E(Th), f € E(Th)— E(T;) such that T3 = T, —e+ f
is a spanning tree of G. If ny(T3) > n2(T2) then both T} and T3 are
in G — e. This is impossible since G is a smallest counterexample.
Thus, n2(T3) < n2(T2) — 1 so that no(T3) < u. Since an exchange
can increase the number of vertices of degree two by at most four we
conclude that u + 3 < no(T3) L u + 4.

Case 1 ny(T3) = u+4 and ny(T3) = u.

Let e = u;v; and f = ugv,. Adding e to T3 creates two vertices of
degree two and deleting f from T3 + e creates two vertices of degree
two. Thus, u; and v, are leaves of T3 while u; and v, are vertices
of degree 3. Let P = (z; = u2),%2,'**,Zn = u1 be the (ug,u;)-
path in T, and let g be the smallest integer such that d(z,;) = 3 and
d(z441) # 3. Since edge e is on P, ¢ must exist. If d(z¢4+1) = 2 then
no(Ts + e — 24%q41) = u + 2 and if d(2441) > 4 then ny(T5 + € -
TqZe41) = ¢ + 3. In either case we obtain a contradiction.

Case 2 no(T2) = u+ 3 and no(T3) = u— 1.

The argument of the previous case shows that there is a spanning
tree T such that no(T)=u+1oru+2.

Case 3 n3(T2) = u + 3 and ny(T3) = u.
In this case there are two ways to create three vertices of degree two.
Subcase 1 ny(T3+e)=u+1andny(Ts+e—- f)=u+3.

One vertex of degree two is added when e is added to T3. Therefore,
either u; or v; is a leaf of T5 but not both. Assume that in T35 we have
d(v1) 2 3 and d(uz) = d(v2) = 3. Let P = (21 = ug),-,2p = g
be the (ug, u1)-path in T3 and let g be the smallest integer such that
d(z,) = 3 and d(zg41) # 3. Therefore, no(T3+ € — zgzg41) = u +1
or u + 2 depending on whether d(zy41) = 2 or d(zg41) > 4.
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Subcase 2 ny(Tz3+e)=u+2and no(T3+e— f) =u+3.

Vertices u; and v; must be leaves of T3 and assume that d(uz) = 3

and d(v;) > 4. Since T, = T3 + e — f, f must be on the cycle of
T3 + e. Thus, there are two paths between u; and up in T3 + e. Let.
. P =(zy = up),--+,zn = uy be the path that does not contain v; and

let ¢ be the largest integer such that d(z,) = 3 and d(zg41) # 3. If
d(zg41) = 2 then ny(Ts+e—2z42441) = u+2. f d(2441) = 4 consider

the (2g41,u1)-section of P, P(Zg41,U1) = Tg41,Tq42,° ", Th = U

and let ¢ be the largest integer such that d(z;) > 4 and d(z41) = 2.

Notice that the definition of ¢ implies that no vertex on P(zg41,%1)

can have degree 3. Thus, we have no(T3 + e — z42¢41) = v + 1.

Therefore, the smallest counterexample G does not exist and the

theorem is established.

Now we will consider g¢-filters.

Definition 15| Po(G) = % cxa*, wherer < s — 1 and let Q be a

g-filter of G. Then Q is sharp, denoted ¢#, if

d
P(G-Q)=) auz*

where c< ¢ < d.

The use of the underline and overline in u(?)(G) is the same as
before.

EXAMPLE 16

Py = 10 + 24022 + 810z* + 820z% + 12028
p?) = 3 + 322 4 52 + 526 + 328
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The concept of fast and slow graphs is more complicated for
u®)(G). 1t is clear that there exists integers L and H such that
¢ < L implies that all g¢-filters are low and ¢ > H implies that all
g-filters are high. However, the presence of sharp filters can cause
H — L to be greater than two! Consequently, graphs have more than
two “speeds” with respect to u(2).

Definition 16] x®(G) = ¥ Pk, L(® and H® are the integers
such that ¢ < L(2) implies that all g-filters are low and ¢ > H(?)
implies that all g-filters are high. The speed of G is 1/(H () -L(?),

EXAMPLE 17

2 3 4 11
6 1 \ 7 Gl
5 3 8 10

Py(Gy1) = 2+ 21z + 332% + 13823 4 662 + 16525 + 1525 + 4627 + z°
Py(Gy — {48}) = 2z + 4623 + 96x5 + 3827 + z°

= uP = D = P =1

pA(G) =142z + 22+ 323 + & + 325 + 26 + 227 + 29
speed(G1) =1+ (7-1)=1/6 = very slow

EXAMPLE 18

P(G) = 2+ 16z + 5222 4 9323 4 132z* + 10425 + 7225 + 4227
pP(G) = 1 + 2z + 222 4 323 + 3% + 225 + 226 + 27
speed(G) = 1/2 = fast
Notice that the speed of the Petersen graph is 1/4.
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4 Conclusion
4.1 Interpolation and digraphs ?
Given the results on interpolation in undirected graphs, interpolation

in digraphs is the next logical step. The question is which general--
. ization should be used for digraphs ?

e count in-leaves or out-leaves in each spanning tree of the di-
graph D.

e count vertices of in-degree 1 or out-degree 1 in each spanning
tree.

e count in-leaves and out-leaves in each spanning tree.

e count vertices of in-degree 1 and vertices of out-degree 1 in each
spanning tree.

In the following example Pl(l) counts the number of vertices of in-
degree 1 in each spanning tree, Pl(z) counts the number of in-leaves

in each spanning tree and the (k + 1,5 + 1)-entry of M is the the
number of spanning trees with k£ in-leaves and j out-leaves.

EXAMPLE 19

P = 13 + 162 + 7222 + 2424
P =26 + 51z + 3622 + 1123 + z*
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0 0 15 10 1
0 30 20 1 0
"M=415 20 1 0 0
10 1 0 0 O
1 0 0 0 O

Notice that Pl(l) has a 3-gap. In any case there will be the ac-
companying filter theory and P;-morphology to study.

4.2 P,-morphology and gaps

In the graph shown below p = 3 and the coefficient of z4 is 5. This
implies that when P,(G) = Y2 cxz* then for r < k < s, ¢ can be
}ess that 2p. What is a lower bound for ¢, in this case?

Py = 623 + 524 + 2325 + 4128 + 2627 + 2028 + 1622 + 21!

Another question concerns the gaps in P,.

Conjecture: In P,(G) all of the coefficients are nonzero or P, has
one gap or P is odd or P, is even.

Problem: Suppose that P;(G) has a k-gap. Find a minimal span-
ning subgraph gap(k, G) such that Py(gap(k,G)) has a k-gap, where

Py(gap(k,G)) = 3_ djz’
J

Studying the gap-subgraphs would be interesting because gaps occur
in P, for different reasons:

o A(G)<L3.

e (G is Hamiltonian.
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o G has a specific configuration like the graph shown in the next
example.

EXAMPLE 20

A nonhamiltonian graph with A(G) > 3 and a 2-gap in P,.

P,=1+2z 422+ 24

Appendix

A. Maximum intersecting spanning trees

The maximum intersecting spanning tree is an important tool in the
proof that n, interpolates on Q4(G).

Let g be a connected subgraph of the connected graph

G. A maximum intersecting spanning tree with respect to g, denoted
M(g; G) or M(g), is a spanning tree T such that

|E(T)n E(g)l = [V(9)l - 1.

Theorem 4 Let G be a connected graph and g a connected subgraph.
Then n, interpolates on M(g).

Proof: By induction on the size of G. The assertion is clear if G
is unicyclic. Hence, G will be a smallest counterexample of order »
and size m > n, where n > 4. Let M(g) = {T1,T3,---,T)\}, where

n1(T;) € n1(Tjna), (17)
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nl(T,) S nl(T,.H) - 2. (18)

Suppose that every edge of ¢ is in T;4;. This means that g is a con-
nected acyclic subgraph of G. Therefore every spanning tree of M(g)
contains g. If there is an edge e that is not in T, or T,4; then G —e
would contain 7, and T,4;. Since G is a smallest counterexample
this is impossible. Therefore E(G) = E(Ty41) U E(T}).

Let e = uyug € E(Ty41) — E(T,) and f = vyv; € E(T}) = E(Tr41)
such that J = T,41 — e + f is a spanning tree of G. Notice that J
contains g. If n1(J) > n1(T741) then J and T, are in M(g;G — e).
This is a contradiction. Therefore, n1(J) < n1(Tr41). Moreover,
n1(Tr41) — n1(J) < 2. Thus,

n](T,-.H) = nl(J)+2. (19)

Equation (19) implies that u; and u; have degree at least 3 in Ty4q
while v, and v, are leaves of T5.4;. Thus, u; # v; and v; and v; have
degree 2 in T;4; + f. Let Tp be the component of T;4; — e that does
not contain g and let Cy = wy, -+, We, Wet1,*+, Wq be the cycle of
Tr41 + f, where vy and up are in Ty, w; = vp, W, = Uz, Wep1 = U
and wy = v;. Let h be the smallest integer such that d(wy) > 3
and d(wp—1) = 2, where h < ¢. Let H = Tp41 + f — wpwp—1. Since
edge wpwp—, is in Ty we conclude that H contains g. Furthermore,
n1(H) = n1(Tr41)—1. Since this is a contradiction E(g)—E(T,41) #
0.

Let f = vyvp € E(g) — E(T;41). Consequently, Ty4; + f contains
a unique cycle Cy. Edge f must be in E(T}), otherwise both T,
and T4, are in M(g — f;G — f). Thus, some edge e = ujup of Cy
is not in T,. This means that # = T,4; — e+ f ¢ M(g) because
|E(H)N E(g)l 2 |E(Tr41) N E(g)|. Also, |n1(Tr41) — ma(H)| < 2.
Now, if nq(H) > n1(Tr41) then T, and H would be in M(g—¢;G —
e). Therefore, n1(H) < n1(Tr41) which implies that ny(H) + 2 =
n1(Tr41). Thus, d(uq) > 2 and d(uz) > 2 in T4, while v; and v,
are leaves of T,4;.

Let Cy = v1,v9,-+-,v5, where f = v1v2. Let ¢ be the smallest
integer such that d(v,—1) = 2 and d(v,) > 3. Since u; and u; are
on Cy, q does exist. Let J = Tryy + f — v5-194. Since |E(g) N
E(J)| 2 |E(g) N E(Tr41)|, we conclude that J € M(g). Moreover,
n1(J) = n1(Tr41) — 1. Since this contradicts equations (17-18) we
conclude that the counterexample G does not exist.
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If g is a forest then n, may not interpolate on M(g). Consider
the graph shown below and notice that if g consists of edges a and b
then Pj(M(g)) has a 3-gap.

EXAMPLE 21
An example in which P;(M(g)) has a 3-gap, where g = {a, b}.

Pi(M(g)) = 2% + 22

B. Spanning tree enumeration

Enumeration of spanning trees is an important part of filter theory
and P;-morphology. There are hundreds of papers written on this
topic and just as many algorithms! As demonstrated in the intro-
duction, P; can be calculated by hand if the graph is fairly small and
of low connectivity. For large graphs a simple recursive procedure
can be used or even a backtracking method (See [9]).

As far as finding an approximate pendant polynomial, two meth-
ods were used:

1. A “random” version of Kruskal’s algorithm.

2. Applying random elementary exchanges to a series of spanning
trees to take a “random walk” through the tree graph.

No attempt was made to apply statistical methods to pendant poly-
nomial approximation but this may be an interesting area of future
research.
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