GRAPH PARTITIONS

T.D. PORTER¹ SOUTHERN ILLINOIS UNIVERSITY CARBONDALE, ILLINOIS 62901

ABSTRACT. For any graph G, and all $s=2^k$, we show there is a partition of the vertex set of G into s sets U_1, \ldots, U_s , so that both, $e(G[U_i]) \leq \frac{e(G)}{s^2} + \sqrt{\frac{e(G)}{s}}$, for $i=1,\ldots,s$ and $\sum_{i=1}^s e(G[U_i]) \leq \frac{e(G)}{s}.$

Introduction.

The graphs under consideration are without loops and multiple edges. For any undefined terms please consult [1]. Take a graph G, and a partition (U_1, \ldots, U_s) of V(G) into s classes with $\bigcup U_i = V(G)$, $U_i \cap U_j = \emptyset$ for $i \neq j$. We also refer to (U_1, \ldots, U_s) as a coloring of the vertex set using s colors where U_j denotes the set of vertices colored j. Let $\gamma_s(U_1, \ldots, U_s) = \max\{e(U_1), \ldots, e(U_s)\}$, where $e(U_i)$ denotes the number of edges in the induced subgraph $G[U_i]$, and $\gamma_s(G) = \min_{(U_1, \ldots, U_s)} \gamma_s(U_1, \ldots, U_s)$. Entringer [3], introduced the function $\gamma_2(G)$, and Paul Erdös [4] conjectured $\gamma_2(G)/e(G) \leq \frac{1}{4} + O(1/\sqrt{e(G)})$, e(G) denotes the number of edges in G. In [5], the present author verified Erdös' conjecture and showed it was best possible. In [2] and [7], Clark,

¹Research partially supported by NSA Grant MDA 904-92-H-3050.

Shahroki, and Székely, show the computation of $\gamma_2(G)$ is NP-hard, they relate it to the known complexity of the max cut problem. In [6], Porter and Székely, solve a matrix discrepancy problem that approximates $\gamma_2(G)$.

The present paper extends these results to s>2. Moreover, let $M_s(U_1,\ldots,U_s)=e(G)-\sum\limits_{i=1}^s e(U_i),$ and $M_s(G)=\max\limits_{(U_1,\ldots,U_s)}M_s(U_1,\ldots,U_s),$ note $M_2(G)$ is the well known max cut of G, and the usual chromatic number $\chi(G)$ can be defined as

$$\chi(G) = \min\{s | \gamma_s(G) = 0\} = \min\{s | M_s(G) = e(G)\}.$$

In this paper we are primarily concerned with fixing s, and finding partitions that give $\gamma_s(G)$ and $M_s(G)$. The main result is that for any G, and all $s = 2^k$, there exists a partition of the vertex set of G into s sets, U_1, \ldots, U_s , so that simultane-

ously
$$\gamma_s(U_1,\ldots,U_s) \leq \frac{e(G)}{s^2} + \sqrt{\frac{e(G)}{s}}$$
 and $M_s(U_1,\ldots,U_s) \geq \frac{s-1}{s}e(G)$. The lower bound for M_s holds for all s .

Lemma 1. If e(G) < s then $\gamma_s(G) = 0$.

Proof. First, if G is connected then with e(G) < s we have $|V(G)| \le s$, i.e., notice with e(G) fixed the largest |V(G)| is attained when G is a tree. So we may assign different colors to each $u \in V(G)$, hence $\gamma_s(G) = 0$. If G is disconnected, then write $G = G_1 \cup G_2 \cup \cdots \cup G_w$ as a union of its components, then $\gamma_s(G) = \max\{\gamma_s(G_1), \ldots, \gamma_s(G_w)\}$ and with $e(G_i) < s$ we have as above $|V(G_i)| \le s$ for each i, hence $\gamma_s(G_i) = 0$.

Theorem 1.

For any graph G, there exists a bipartition (A, \bar{A}) of the vertex set V(G) so that $\frac{\gamma_2(A, \bar{A})}{e(G)} \leq \frac{1}{4} \left(1 + \sqrt{\frac{2}{e(G)}}\right)$ and $M_2(A, \bar{A}) \geq \frac{e(G)}{2}$.

Proof. See [5].

Theorem 2.

For any graph G, and all $s = 2^p$, there exists a partition (U_1, \ldots, U_s) of V(G) so that

$$\gamma_s(U_1,\ldots,U_s) \le \frac{e(G)}{s^2} + \sqrt{\frac{e(G)}{s}}$$
 (a)

$$M_s(U_1,\ldots,U_s) \ge \frac{s-1}{s}e(G). \tag{b}$$

Proof. The proof is by induction on p. The ground case p = 1 is given by Theorem 1. Now take any $p \ge 2$. First, if $e(G) < 2^p$ then by Lemma 1, $\gamma 2^p(G) = 0$, and we are done. So assume $e(G) > 2^p$.

Let $(U_1, \ldots, U_{2^{p-1}})$ be a partition realizing the inductive hypothesis, i.e.

$$\gamma_{2^{p-1}}(U_1,\ldots,U_{2^{p-1}}) \leq \frac{e(G)}{2^{2p-2}} + \sqrt{\frac{e(G)}{2^{p-1}}},$$

and $M_{2^{p-1}}(U_1,\ldots,U_{2^{p-1}}) \geq \frac{2^{p-1}-1}{2^{p-1}}e(G)$, to each U_i , let (A_i,\bar{A}_i) be the bipartition of U_i given by Theorem 1, i.e.,

$$\gamma_2(A_i, \bar{A}_i) \leq \frac{1}{4} \bigg(e(U_i) + \sqrt{2e(U_i)} \bigg)$$

and $M_2(A_i, \bar{A}_i) \geq \frac{e(U_i)}{2}$. We show $(A_1, \bar{A}_1, \dots, A_{2^{p-1}}, \bar{A}_{2^{p-1}})$ satisfies the theorem.

We have,

$$\begin{split} &\gamma_{2^{p}}(A_{1}, \bar{A}_{1}, \dots, A_{2^{p-1}}, \bar{A}_{2^{p-1}}) \\ &= \max_{1 \leq i \leq 2^{p-1}} \gamma_{2}(A_{i}, \bar{A}_{i}) \\ &\leq \max \frac{1}{4} \left(e(U_{i}) + \sqrt{2e(U_{i})} \right) \quad \text{(by Thm. 1)} \\ &\leq \frac{1}{4} \left(\frac{e(G)}{2^{2p-2}} + \sqrt{\frac{e(G)}{2^{p-1}}} + \sqrt{2\left(\frac{e(G)}{2^{2p-2}} + \sqrt{\frac{e(G)}{2^{p-1}}}\right)} \right) \end{split}$$

the last inequality by the inductive hypothesis, we show

$$\leq \frac{1}{4} \bigg(\frac{e(G)}{2^{2p-2}} + \sqrt{\frac{e(G)}{2^{p-1}}} + \sqrt{2 \bigg(\frac{e(G)}{2^{2p-2}} + \sqrt{\frac{e(G)}{2^{p-1}}} \bigg)} \leq \frac{e(G)}{2^{2p}} + \sqrt{\frac{e(G)}{2^{p}}},$$

to establish the inductive step.

Note sufficient to show,

$$\sqrt{\frac{e(G)}{2^{2p-2}} + \sqrt{\frac{e(G)}{2^{p-1}}}} \le \left(\frac{4 - \sqrt{2}}{2}\right) \sqrt{\frac{e(G)}{2^{p-1}}}.$$
 (1)

We have for all $p \geq 2$,

$$\frac{1}{2^{2p-2}} + \sqrt{\frac{1}{2^p 2^{p-1}}} \le \frac{(4-\sqrt{2})^2}{2^{p+1}}$$
, and with $e(G) \ge 2^p$, that

$$\frac{1}{2^{2p-2}} + \sqrt{\frac{1}{e(G)2^{p-1}}} \le \frac{(4-\sqrt{2})^2}{2^{p+1}}, \text{ hence}$$

$$\frac{e(G)}{2^{2p-2}} + \sqrt{\frac{e(G)}{2^{p-1}}} \leq \frac{(4-\sqrt{2})^2}{4} \bigg(\frac{e(G)}{2^{p-1}}\bigg).$$

This establishes (1) and completes the proof of Theorem 2(a). To show (b), we have by the inductive hypothesis, that for $(U_1, \ldots, U_{2^{p-1}})$,

$$e(G) - \sum_{i=1}^{2^{p-1}} e(U_i) = M_{2^{p-1}}(U_1, \dots, U_{2^{p-1}}) \ge \frac{2^{p-1} - 1}{2^{p-1}} e(G),$$

i.e., $\sum_{i=1}^{2^{p-1}} e(U_i) \leq \frac{e(G)}{2^{p-1}}$. Also, by our choice of (A_i, \bar{A}_i) we have

for each i, $e(A, \bar{A}_i) \geq \frac{e(U_i)}{2}$, hence $e(A_i) + e(\bar{A}_i) \leq \frac{e(U_i)}{2}$, then

$$M_{2^{p}}(A_{1}, \bar{A}_{1}, \dots, A_{2^{p-1}}, \bar{A}_{2^{p-1}}) = e(G) - \sum_{i=1}^{2^{p-1}} (e(A_{i}) + e(\bar{A}_{i}))$$

$$\geq e(G) - \frac{1}{2} \sum_{i=1}^{2^{p-1}} e(U_{i})$$

$$\geq e(G) - \frac{1}{2} \cdot \frac{e(G)}{2^{p-1}}$$

$$= \frac{2^{p} - 1}{2^{p}} e(G).$$

This completes the inductive step and the proof of Theorem 2(b).

We state the next lemmas to conclude with a lower bound on the maximum s-cut of G. For $u \in V(G)$, $H \subset V(G)$, define $d_H(u)$ be the number of vertices in H adjacent to u.

Lemma 2. For a graph G, and a partition (U_1, \ldots, U_s) of V(G) that gives the max s-cut, $M_s(G)$, for any U_i , $U_j \in \{U_1, \ldots, U_s\}$ we have $d_{U_i}(x) \geq d_{U_i}(x)$ for all $x \in U_i$.

Proof. Take a partition (U_1, \ldots, U_s) that gives the max s-cut, i.e., $M_s(G) = M_s(U_1, \ldots, U_s)$. Take any two classes $U_i, U_j, W.L.O.G$ say $U_i = U_1, U_j = U_2$. We have $d_{U_2}(x) \ge d_{U_1}(x)$ for all $x \in U_1$, since suppose the contrary, i.e., there exist some $x \in U_1$ with $d_{U_2}(x) < d_{U_1}(x)$, let $\varepsilon = d_{U_1}(x) - d_{U_2}(x) > 0$. Then, $M_s(U_1 - x, U_2 + x, U_3, \ldots, U_s) = M_s(U_1, U_2, \ldots U_s) + \varepsilon > M_s(U_1, \ldots, U_s) = M_s(G)$, contradicting the definition of $M_s(G)$.

Corollary 1. For a graph G, and a partition (U_1, \ldots, U_s) of V(G) that gives the max s-cut, $M_s(G)$, for any $U_i, U_j \in \{U_1, \ldots, U_s\}, i \neq j$, we have $M_2(U_i, U_j) \geq 2 \max\{e(U_i), e(U_j)\}.$

Proof. Take any (U_1, \ldots, U_s) with $M_s(U_1, \ldots, U_s) = M_s(G)$, and $U_i, U_j \in \{U_1, \ldots, U_s\}, i \neq j$. Let $e(U_i) = \max\{e(U_i), e(U_j)\}$. We have, by Lemma 2, that $d_{U_j}(x) \geq d_{U_i}(x)$ for all $x \in U_i$, hence,

$$M_2(U_i, U_j) = \sum_{x \in U_i} d_{U_j}(x) \ge \sum_{x \in U_i} d_{U_i}(x) = 2e(U_i)$$

$$= 2 \max\{e(U_i), e(U_j)\}.$$

Theorem 3. For any graph G, and all s, $M_s(G) \geq \frac{s-1}{s}e(G)$.

Proof. Let (U_1, \ldots, U_s) be a partition that gives $M_s(G)$, i.e., $M_s(U_1, \ldots, U_s) = M_s(G)$. We have the following two cases on $\sum e(U_i)$. First, if $\sum_{i=1}^s e(U_i) \leq \frac{e(G)}{s}$, then

$$M_s(G) = e(G) - \sum_{i=1}^s e(U_i) \ge e(G) - \frac{e(G)}{s} = \frac{s-1}{s}e(G).$$

Otherwise, $\sum_{i=1}^{s} e(U_i) \geq \frac{e(G)}{s}$, note that

$$M_s(U_1,\ldots,U_s) = \frac{1}{2}\sum_{i=1}^s M_2(U_i,V(G)\setminus U_i) \geq \frac{1}{2}\sum_{i=1}^s 2(s-1)e(U_i),$$

the last inequality from Corollary 1. Hence

$$M_s(U_1,\ldots,U_s) \ge (s-1)\sum_{i=1}^s e(U_i) \ge (s-1)\frac{e(G)}{s}.$$

Conclusions.

We end with some open problems. Say a graph G is in a 'state' of maximum s-cut when we have a partition (U_1, \ldots, U_s) of V(G) with $M_s(U_1, \ldots, U_s) = M_s(G)$. We have if G is in a state of maximum s-cut, then clearly, $\sum e(U_i)$ is minimized, i.e., $M_s(G) = e(G) - \min_{(U_1, \ldots, U_s)} \sum e(U_i)$. We ask what can we say

about other norms? For example, is $(\sum e(U_i)^p)^{1/p}$ minimized for all $p \geq 1$ when G is in this state.

We have for the complete graph on sn + 1 vertices, i.e., K_{sn+1} , that

$$\gamma_s(K_{sn+1}) = \frac{e(K_{sn+1})}{s^2} + O\left(\sqrt{\frac{e(K_{sn+1})}{s^2}}\right),$$

and

$$M_s(K_{sn+1}) = \frac{s-1}{s}e(K_{sn+1}) + O\left(\sqrt{e(K_{sn+1})}\right),$$

hence, if bounds in Thm. 2, Thm. 3, can be improved, they can only be modified in the error term. We would also like to extend the bounds on $\gamma_s(G)$ to all s.

References.

- [1] J.A. Bondy & U.S.R. Murty, Graph Theory with Applications, North-Holland, 1976.
- [2] L. Clark, F. Shahrokhi, and L.A. Székely, A Lineartime Algorithm for Graph Partitions, Inform. Proc. Letters, 42(1992), 19-24.
- [3] R.C. Entringer, Personal communication.
- [4] P. Erdös, Sixth international conference on the theory and applications of graphs, 1988 (Kalamazoo, Mich.).
- [5] T.D. Porter, On a Bottleneck Bipartition Conjecture of Erdős, Combinatorica, 12(3)(1992), pp. 317-321.
- [6] T.D. Porter and L.A. Székely, On a Matrix Discrepancy Problem, Congressus Numerantium, 73(1990), pp. 239-248.
- [7] F. Shahrokhi, L.A. Szekely, The complexity of the bottleneck graph bipartition problem, to appear in J. Comb. Math. Comb. Comput.