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ABSTRACT. For any graph G, and all s = 2¥, we show there

is a partition of the vertex set of G into s sets Uy,...,Us, so
that both, e(G[U;]) < e(G) \/ “S) fori=1...sand
s?
G
$ eaio) < <9,
1=
Introduction.

The graphs under consideration are without loops and
multiple edges. For any undefined terms please consult [1].
Take a graph G, and a partition (Uy,...,U,) of V(G) into
s classes with |JU; = V(G), UinU; = @ for ¢ # j. We
also refer to (Uy,...,Us) as a coloring of the vertex set us-
ing s colors where U; denotes the set of vertices colored j.
Let vs(Un,...,Us) = max{e(U1),...,e(Us)}, where e(U;) de-
notes the number of edges in the induced subgraph G[U;],
and 7,(G) = (Umin )’ys(Ul,...,Us). Entringer (3], intro-

15---2Us

duced the function 42(G), and Paul Erdds [4] conjectured

72(G)/e(G) < 3 + O(1/1/e(G))), e(G) denotes the number
of edges in G. In [5], the present author verified Erdos’ con-
jecture and showed it was best possible. In [2] and [7], Clark,
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Shahroki, and Székely, show the computation of y2(G) is N P-
hard, they relate it to the known complexity of the max cut
problem. In [6], Porter and Székely, solve a matrix discrepancy
problem that approximates v2(G).

The present paper extends these results to s > 2. More-
8
over, let My (U,...,U;) = e(G) — . e(U;), and M,(G) =
=1
(Umaofj )M s(U1,...,Us), note M(G) is the well known max
1;--3Us

cut of G, and the usual chromatic number x(G) can be defined
as

x(G) = min{s|y,(G) = 0} = min{s|M,(G) = (G)}.
In this paper we are primarily concerned with fixing s, and
finding partitions that give v,(G) and M,(G). The main re-

sult is that for any G, and all s = 2*, there exists a partition of
the vertex set of G into s sets, Uy,...,Us, so that simultane-

e(G) \/W

OU.Sly 73(U11 US) < d M (Ul) Us) _>_

! e(G). The lower bound for M, holds for all s.

Lemma 1. If e(G) < s then v,(G) =0

Proof. First, if G is connected then with e(G) < s we have
[V(G)| < s, i.e., notice with e(G) fixed the largest |V(G)] is
attained when G is a tree. So we may assign different colors
to each u € V(G), hence v,(G) = 0. If G is disconnected, then
write G = G1|JG2J---|JGw as a union of its components,
then v,(G) = max{y,(G1),...,7s(Gw)} and with e(G;) < s we
have as above |V(G;)| < s for each ¢, hence 7v,(G;) = 0. a

Theorem 1.
For any graph G, there exists a bipartition (A, A) of the

72(A A) ( 2
vertex set V(G) so that < 14+ and
©) @ "(e)

M2(A’ A) Z f%
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Proof. See [5).

Theorem 2.

For any graph G, and all s = 2P, there exists a partition
(U1y...,Us) of V(G) so that

AR APS \/f‘—G—) (a)

M,(Uy, ..., Us ) >22q(0). (%)

Proof. The proof is by induction on p. The ground case p =1
is given by Theorem 1. Now take any p > 2. First, if ¢(G) < 27
then by Lemma 1, 42?(G) = 0, and we are done. So assume
e(G) > 27,

Let (Uy,...,Uszs-1) be a partition realizing the inductive
hypothesis, i.e.

e(G e(G
72P‘1(U1.7"'7U2"'1) = 22(p—)2 + %’
or-1 _q

and Map-1(Uy,...,Ugp-1) 2 = e(G), to each Uj, let
(A;, A;) be the bipartition of U; given by Theorem 1, i.e.,

(i, Ai) < 7 (e(vz)+ V2T )

and Ma(Ai, A;) > 2L We show (41, Ay, ..., Age-1, Ago-1)
satisfies the theorem.
We have,

72r(A1, 1‘_11, cyAgp-1, J‘Izn—l)

- 1<rr2a2)1E 1 (4 4))

< max - <e(U,)+\/?TeFJ_) (by Thm. 1)
(25 (52 4159)
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the last inequality by the inductive hypothesis, we show

oG)  [e(G) e(G) e(G) L e6) . [«6)
(2211 2 or—1 \/ 22;) 2 op— 1) - 92p + o9 °

to establish the inductive step.
Note sufficient to show,

e(G) e(G) _ (4=V2) [eG)
\/22_1’—7+ op-1 = ( 5 ) 2p=1" 1)

We have for all p > 2,

1 / (4 V2)? : P
= + 2p2p TS oprr and with ¢(G) > 2P, that

1 / (4 V2)?
22_"34. e(G)2P =T S o , hence

(G) , [4G)  (4=Vv2)? («(G)
T 4 (2»-1)

This establishes (1) and completes the proof of Theorem 2(a).

To show (b), we have by the inductive hypothesis, that for
(Ul ). U2P 1 )1

2P-1 p—l
e(G) — Z e(Ui) = Map-1(Uy, ..., Upp-1) 2 C(G),
=1
271 -
ie, Y eU;) < ;,(f) Also, by our choice of (4;, A;) we have
i=1
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for each i, e(4, 4;) > 5%]‘—), hence e(4;) + e(A4;) < "(2&, then

2r-!
My (A1, Ay, ... Age-1, Agp—1) = e(G) — Z(C(Ai) + e(4:))
2?1
>e(G) -3 Z e(U:)
2e@) -} 5
%1
=~ e(G).

This completes the inductive step and the proof of Theorem
2(b). O

We state the next lemmas to conclude with a lower bound
on the maximum s-cut of G. For u € V(G), H C V(G), define
dr(u) be the number of vertices in H adjacent to u.

Lemma 2. For a graph G, and a partition (Uy,...,U,) of
V(G) that gives the max s-cut, My(G), for any U;, U; €
{U1,...,U,} we have dy,(z) > dy,(z) for all z € U;.

Proof. Take a partition (Ui, ..., Us) that gives the max s-cut,
ie., My(G) = My(Uy,...,Us;). Take any two classes U;, U;
W.L.O.G say U; = Uy, U; = Us. We have dy,(z) 2 dy, (z) for
all z € U, since suppose the contrary, i.e., there exist some
z € Uy with dy,(z) < dy,(z), let € = dy,(z) — dy,(z) > 0.
Then, M,(U; — z,Uz + z,Us,...,Us) = M;(U1,Us,...Us) +
e > M,(Uy,...,Us) = M,(G), contradicting the definition of
M,(G). a

Corollary 1. For a graph G, and a partition (Ui, ...,U,)
of V(G) that gives the max s-cut, M,(G), for any
Ui, Ui € {U,...,Us}, © # j, we have Mp(U;,U;) 2
2max{e(U;), e(U;)}
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Proof. Take any (Ui,...,U,) with M,(Uy,...,Us)
M,(G), and U;, U; € {Ul, ,Usl, © # J. Let e(U)

vV I

max{e(U;),e(U;)}. We have, by Lemma 2, that dy,(z)
dy;(z) for all z € U;, hence,
My(Ui,Us) = ) dy;(2) 2 D dui(z) = 2¢(Us)
z€U; z€U;
= 2max{e(U:), e(U;)}. O

Theorem 3. For any graph G, and all s, M,(G) > *=Le(G).

Proof. Let (Uy,...,U,) be a partition that gives M,(G), i.e.,
My(Uy,...,Us) = M s(G). We have the following two cases on

> e(U;). First, if Z e(U;) < C(G) , then

M(6) = o(6) - Yo e 2 e(0) - L9 _ 2= L)

=1

Otherwise, E e(U;) > —1—2 note that

i=1

M(Uy,...,Us) = ZMQ(U,,V(G)\U)> 122(3 —1)e(Us),

i=1

the last inequality from Corollary 1. Hence

MU0 2 (5= ) (@) 2 (s - YL

i=1
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Conclusions.

We end with some open problems. Say a gra.ph Gisin a
‘state’ of maximum s-cut when we have a partition (Uy,...,Us)
of V(G) with My(Uy,...,Us) = M,(G). We have if Gisin a
state of maximum s- cut then clearly, > e(U;) is minimized,
ie., M,(G) = e(G)—_ mxnU > e(U;). We ask what can we say

l) ) a
about other norms? For example, is (3 e(U;)?)!/? minimized
for all p > 1 when G is in this state.

We have for the complete graph on sn + 1 vertices, i.e.,
K sn+l, that

- ) of [z

! e(Kent1) + O (\/M) )

hence, if bounds in Thm. 2, Thm. 3, can be improved, they
can only be modified in the error term. We would also like to
extend the bounds on v,(G) to all s.

and

S
Ma(Ksn+l) =
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