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Abstract. Numbers similar to the van der Waerden numbers w(n) are studied, where

the class of arithmetic progressions is replaced by cenain larger classes. If A' is such a
larger class, we define w/(n) to be the least positive integer such that every 2-coloring
of {1,2,...,w'(n)} will contain a monochromatic member of A’. We consider se-
quences of positive integers {z1,...,2s} Which satisfy z; = a¢zi-1 + bizi2 for
i = 3,...,n, with various restrictions placed on the a; and b;. Upper bounds are
given for the corresponding functions w'(n). Further, it is shown that the existence
of somewhat stronger bounds on w/(n) would imply certain bounds for w(n).

Introduction

A well-known theorem of van der Waerden [7] states that for each positive integer
n, there exists a least positive integer w(n) such that no matter how {1, 2, ...,

w(n)} is partitioned into two sets, at least one of the two sets will contain an
n-term arithmetic progression. A long-standing problem in the arca of Ramsey
Theory has been to determine the rate of growth of the van der Waerden numbers
w(n). The most significant progress on this problem was made only recently
by Shelah [5] who showed that there exists a primitive recursive upper bound
on w(n). There is still a huge discrepancy, however, between the bound Shelah
obtains and the best known lower bound of w(p + l)- > p2P? for p a prime (see

[1]). For example, it is unknown whether w(n) < n* a tower of height n. The

only known nontrivial values of w(n) are w(3) = 9, w(4) = 35, and w(5) =
178 (see [2] and [6]). If A represents the class of arithmetic progressions, and if
A’ D A, then by van der Waerden’s theorem we may define w'(n) to be the least
positive integer such that if {1,2,...,w'(n)} is partitioned into two sets, then at
least one set will contain a member of A’. It is clear that w'(n) < w(n). The
motivating idea behind this article is to make A’ large enough so that a reasonable
upper bound for w'(n) can be found, but to have A’ close enough to A so that
information about w'(n) might lead to information about w(n). This idea was

used in [3] and [4) where A’ was taken to be a collection of sequences obtained by
iteration of certain polynomials (an arithmetic progression is obtained by iterating
f(z) = z+ d). In those articles, upper bounds were obtained for w'(n). Further,
it was shown that the existence of somewhat lower bounds on w'(7) wouldimply
the existence of similar bounds on w(n). -In this paper we consider a different
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type of generalization of the class of arithmetic progressions. Namely, we look
at an arithmetic progression as being the solution to the recurrence relation z; =
2z — xk-2,k > 3, 11,72 € Z*, 71 < 72, and then allow the coefficients of
i1 and z;_2 to be less restricted.

The following notation and terminology will be used throughout the paper. All
variables will represent integers. We denote {a,a + 1,...,b} and {a,a + 1,...}
by [a,b] and [a,00), respectively. A 2-coloring of [1,m] is a function x :
[1,m] — {0,1}. AsetS is monochromatic under a 2-coloring x if x is constant
onS.

An f-sequence is a sequence {zi,...,z,} satisfying z; > 0, z3 > z;, and
Tk = 0kTh-1+bizi—2 fork =3,...,n,wherear > 2,b; = 1 —ay. A g-sequence
is the same as an f-sequence except that b = —1 for each k. An h-sequence is
the same as an f-sequence except a; = 2 for each k, while by > —1. Itis
easy to see that every f-, g-, or h-sequence is strictly increasing. In order to get
more information about w(n), we define the following, more restrictive, types
of sequences. Let A : [3,00) — [2,00),and let u : [3,00) — [—1,00).
Then an f)-sequence is an f-sequence such that, for each k, either a; = 2 or
a; > M(k). A g)-sequence is a g-sequence such that either a; = 2 ora; > M(k).
An h-sequence is an h-sequence such that either by = —1 or by > u(k) for each
k.

It is clear that every arithmetic progression is also an f)-, a g5-, and an hy-
sequence. Thus, if ) is a given function, if A’ represents the collection of f,\-
sequences of length n, and if A" represents the collection of f-sequences of length
n, then we have A C A’ C A”". Therefore the associated Ramsey functions satisfy
w(n) > w'(n) > w"(n) We will use f,(n) and f(n) to represent w'(n) and
w"(n), respectively. Likewise, we will use gx(n), g(n), h u(n), and h(n) to
represent the Ramsey functions corresponding to the collecnon of g»-sequences,

g-sequences, h,-sequences, and h-sequences; and again we have the relationships
w(n) > g;(n) 2 g(n) and w(n) > hu(n) > h(n). In §2, we obtain upper
bounds for fi(n), ga(n), and h,(n); more significantly, we show in §3 that if
these bounds could be improved, then we would have “nice” bounds on the van
der Waerden numbers themselves.

2. Upper Bounds
From now on, whenever the notation f(n) or gx(n) is used, it is understood
that ) is a function mapping (3, oo) into [2, 00). Also, when hy(n) is used, it is
understood that A maps [3, oo) into [—1, 00).
In this section we obtain upper bounds for f,(n), gx(n), and hy(n), fora given
function A. We first mention the basic relationships among these functions and
w(n). All of the inequalities in the next theorem are clear from the definitions.

Theorem 2.1. Let )y and ), be functions defined on {3,4, . .} with X (5) >
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A2(9) forall i. Then, forall n

@) win 2 fi(n) 2 H(n).
(i) w(n) > 9x,(n) > 9),(n).
(i) w(n) > hy(n) > hy(n).

_ The next theorem provides upper bounds for fy, gy, and hy.
Theorem 2.2. Let )\ be a given function. Then for n> 3

® A < AG) [[iaa(ME) +k-1) ¢))
@@ gx(m) < x(3) [Tima (M(R) + k- 1) @
(i) hra(n) < Br(3) [Tiua (A(K) + k—1) &)

Proof. (i) This is obvious if n = 3. Using induction on n, assume that n > 4

and that the result is true for n — 1. Let M(n) represent the right side of (1),
andletx : [1,M(n)] — {0, 1} be a 2-coloring. By the induction hypothesis
we know there exists a monochromatic f)-sequence of length n— 1 contained in
[1,M(n—1)]. Sayx = {z1,...,Zn-1} is such a sequence and that x(x) = 0.
Fori= \(n) — 1,...,2(n) + n— 2 define

Yi = To-1 +3(Tn1 —ZTn-2).

It is clear that {z;,73,...,%a-1,%} is a0 n-term f)-sequence for each i. Note
also that the largest of the y; is z,—1 +(A(M+1-2)(Tp-1 —Zn-2) < Tn-1 A(n+
n— 1) < M(n). Hence, in case any of the y; has color 0, {1, M(n)] will con-
tain a monochromatic n-term f)-sequence. Otherwise, x(y;) = 1 for each 1, so
that [1, M(n)] contains a monochromatic arithmetic progression, and hence, an
Jr-sequence.

(i) This is proved in the same way as (i), except we let y; = {Ty-1 — Tp-2 for
" i= Mn),..., \(n) + n— 1, and then note that the largest of the y; cannot exceed
the right side of (2).

(iii) Using the same idea as in (i) and (ii), we let M () denote the right side of
(3), and assume {z1, ..., T,-1 } has color 0 and is contained in [1, M(n— 1)].
Fori= A(m),...,\(n)+n—1llety; =2z, ) +izp 3 < Ty (M(W)+n+1) <
M (7). Then either {21, ..., Zn1,¥;} is colored O for some i, in which case we
have a monochromatic hj -sequence, or else {y;} forms an n-term monochromatic
arithmetic progression. [ |

By using \(n) = 2, A\(n) = 2, and \(n) = —1,in (1), (2) and (3), respec-
tively, we obtain the following upper bounds for f(n), g(n), and h(n). The con-
stant coefficients are obtained by noting that f(3) = 7,9(3) = 8,and h(3) =7
(see §4).

Corollary 2.3, Forn > 3,
@) f(n) < gr(n+ 1!
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(i) g(n) < H(n+ 1!
@) h(n) < Int.

Remarks. (i) Itis easy to see that given m € Z*, the greater the magnitude of the
function ), the fewer the number of f)-, g»-, or hy-sequences there arein [1, m].
For example, letting A(i) = i, we have that, except for arithmetic progressions,
there are no f), -sequences of length 4 in [ 1, 34] (the non-arithmetic f;s-sequence
of length 4 with the least value of z4 is {1,2,3,66} with z3 = 2z; — z; and
T4 = 6423 — 6312). Thus f(4) = w(4) = 35, while /5(4) = f(4) = 13 (see
§4).

(i) Each of the upper bounds given by 'I'heoregp 2.2 actually holds for somewhat
smaller classes of sequences. Let us define an f)-sequence to be an f-sequence
{=:} such that z; = a;z;_1 — (a; — 1) 755 witha; € [A(§),M(d) +i—1]U {2}
for each 4. Likewise, define a g)-sequence to be a gx-sequence with the added
restriction that a; cannot exceed A\(1) + i — 1, and an h,-sequcence to be an h -
sequence such that b; cannot exceed A(s) + s — 1. Then the same proof that we
gave of Theorem 2.2 shows that the bounds we obtained for f3, g, and h) also are
bounds for fx, g, and B respectively. The less restricted types of sequences f,
g, and h,, are used here because they yield stronger results when finding sufficient
conditions for bounds on w(n) in §3.

3. Comparisons with w(n)

In this section we consider the magnitude of the terms of f3 -, ga -, and h -sequences
which do not contain any arithmetic progressions of a fixed length. We then show
that if certain upper bounds were to hold for the Ramsey functions associated with
these types of sequences, then this would imply the existence of similar upper
bounds for w(n). We will need the following lemmas.

Lemma3.l. If {z,,...,z,}isan f\-, gr- or hy-sequence,andif 1 < i< k <
n—1, then Ty — Tk > Tis1 — ;.

Proof. It is obvious from the definitions that the sequence of increments {z;,1 —
z; :i=1,...,n~1} inany f,-, gr-, or hy-sequence must be non-decreasing. il

Lemma3.2. Let \(r+8) > (r+ 1)\(8) forall r >0 and s > 3. Let k > 3,
:>l t22 andi+t < k. Then
[0) If {v1,...,wm} is an f\-sequence and {y;,...,yi++} is not an arithmetic
progression, then
@ Yist — Yirt—1 2 (yis1 — y) [N+ 2) — 1] and
®) yire 2 (¢ = D(yie1 —w) [N+ 2) —1].
(i) If {y1,...,u} is a gs-sequence and {y;,.. ., yi+} is not an arithmetic pro-
gression, then yiuy > (t — Dy (M1 +2) —2].
(i) If {y1,...,u} is a hy-sequence and {y;,...,yi++} is not an arithmetic
progression, then y;.¢ > (1 — Dyid(1+ 2).
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Proof. (i) (a) Obviously, for some j such thati < j < §+t — 2, {y7, yjs1, Ujs2}
must fail to be an arithmetic progression. By Lemma 3.1, i+t — Yivt—1 2 Yj+2 —
yie1 2 [ +2) — 11(gje1 = yp) 2 [ME+2) — 1(gin1 — ).

(b) Given y; and y;,; withi < j < i+t — 2, it is clear that y;, will
be minimized when {y;, ys+1,9j+2} is an arithmetic progression. Thus, since .
~ {#is -+, %ist} is not an arithmetic progression, we may assume that there is ex-

actlyone k,0 < k <t — 2, such that {i+&, Yi+k+1, Yisk+2 } is nOt an arithmetic
progression. Then

Yirks2 2 Virkr 1 NS+ E+2) — i (M(i+ k+2) — 1)
and
Yist = Yirke1 + (= k= D) (Yirke2 — Yirke1)-
Therefore,

Uirt 2 Yirket + (8 — k= 1) (Yirke1 — Yinr) [M(i+ £+ 2) — 1]
> (t—k— D (Yirks1 — yies) [(E+ 1A+ 2) — 1]

Also, k(t — k — 2) > 0, which implies (¢t — k — 1)(k+ 1) >t — 1. Hence,

girt 2 [ = DA+ 2) — (= D] (Yieks1 — Yisk)
2 (- D)(gis1 — ) M3+ 2) = 1].
(ii) As in the proof of (i) we may assume there is exactlyone k,0 < k < 1—2,
such that {Y;+ &, Yiek+1, Yisks2 } is ROt an arithmetic progression. Thus,
Yieks2 2 A8+ k + 2)Yirke1 — Yivk and

Yirt = Yirke1 + (8 — k — 1) (Fieke2 — Yiske1) . It fOllows that

girt 2 (t—k — Dyirkr1 M(i+ k+2) —2)
S~k =Dy [(k+ DA+ 2) -2]
2 girkar [(F—DA(E+2) -2 -k -1)]
2y (t—1)[A(E+2) -2].

(iii) Assuming that {y;+&, Yi+k+1, Yi+k+2 } iS nOt an arithmetic progression, we
have givike2 > 2¥ivke2 + YirkA(i + k+ 2) and

Yist = Yirke1 + (8 — kb — D(Yiske2 — Yirks1)
St —k—1)[Yiersr1 + Yirar (1 + k+ 2)]
2(t—k—=1[(k+ Dyer(i+ 2)]
>t —-Dyd(i+2).

]
In the next theorem we give lower bounds for terms of sequences which contain

no arithmetic progressions of length n.
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Theorem 3.3. Let k > n and assume that x = {z,,...,z}} contains no n-term
arithmetic progression. Let A\(r + 8) > (r+ 1)X\(8) farall r > 0 and s > 3.
Thenforj > 1,
(i) If x is an f\-sequence then
@ Tjn-1)s2 — Ti-nye1 >[I M3+ i(n—1) — 11, and
®) zjta1ye1 2 (n—2) LG M3 +i(n—1)) - 1.
(ii) If x is an g, -sequence then

j=1
Tiw-ae2 2 2An—2) J[[(M3+i(n-2)) -2].
i=0

(iii) If x is an hy -sequence then

j-1

zjt-ne1 > (n—2 [[AGB+i(n-1).
=0

Proof. (i) (a) We use induction on j. Applying Lemma 3.2({)(a) to {z1,...,Zp1 }
we have z,) — 2, > (22 — 21)(A(3) — 1) > A(3) — 1, so that the result
is true for j = 1. Now assume it holds for j, and apply Lemma 3.2(i)(a) to
{z;(,_l)“ 1ee s Tj(n-1)+n } This yields

Tj(n~1)+n — Tj(n-1)+n-1 2> (Ij(u—1)+2 - Ij(n-—l)-fl) (A(3+j(n-1) -1].
Thus, by the induction hypothesis,
J
Tj(a-D+n = Bjta-ten-1 2 J[[XNB+i(n—1) =11,
1=0

and the result follows by Lemma 3.1.
(b) By Lemma 3.2(i)(b), z, > (n— 2)()(3) — 1), so the theorem is true for

j = 1. Now consider {I(j_])(u_l)q yeo s Tj(n-1)+1 }. By Lemma 3.2(i)(b),

Tj(n-1)+1 >
(n—2) (Z(j-1y(n-1)+2 — T=1)(n-1)+1) [A B+ (G = D(n-1)) - 1],

and hence, by Theorem 3.3(i)(a),
j-1
i 2 (n—2) [[IAB+i(n—1)) —11 forj>2.

=0
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(i) Applying Lemma 3.2(ii) to {z1, ..., Za }, We have z, > (n—2)z2(1(3) —
2) > 2(n—2)(\(3) — 2), so the theorem holds if j = 1. Assume the inequal-
ity is true for j. Applying Lemma 3.2(ii) to {Zj(n-2)+1, .+ ., Tj(n~2)+x }» W€ have
Tijn-2+n 2 (=2 Tjn2)+2 M3+ j(n— 2)) — 2], and, by the assumption,

J
Tiw-nen 2 2An— 2 TN (B +i(n-2)) —2]
i=0
so that the theorem is true by induction.
(iii) Again using induction, by Lemma 3.2(iii), z, > (n — 2)A(3), and if the
theorem is true for j, then

Tj(n-1)+n 2 (= D Tj(a-1+1 M3+ j(n—1))

j
> (n—2)* T M3+ j(n-1)).
=0
[ |

As a result of Theorem 3.3, we are able to find sufficient conditions, in terms of
bounds on fi(n), gr(n),and hy(n), for the existence of a reasonable upper bound
on w(n). These are summarized in the following corollary, where | | represents
the greatest integer function.

Corollary3.4. Let \(r+38) > (r+1)X(8) forallr >0ands > 3. Letn> 4
and u > n.
() Letv= -::—{J. If fi(u) < (n—12) ]’[:.';o' (M3+i(n—-1)) -1) = q,
thenw(n) < a.
(ii) Letv= ["n_—‘%J If gy(u) < 2(n— 2)"1'[:-’,:0I (M3+i(n-2))-2) =4,
thenw(n) < B.
(i) Letv = |2=L]. If hy(v) < (n—2)°Ii M3+ i(n— 1)) = 4, then
w(n) < 1.
Proof. (i) Since (n—1)v+1 < u, wehave fy((n—1)v+1) < a. Thus,if[1,a]
is 2-colored there exists a monochromatic ((n— 1) v+ 1)-term f, -sequence. Then
by Theorem 3.3(i)(b), there must be an n-term arithmetic progression of length n
within this f-sequence. Hence, w(n) < a.
(ii) By hypothesis g\((n — 2)v + 2) < B, but then by Theorem 3.3(ii) any 2-
coloring of [ 1, 8] must contain an n-term monochromatic arithmetic progression.
(iii) We have hy ((n—1)v+ 1) < 4. Hence, by Theorem 3.3(iii) any 2-coloring
of [ 1,~] must contain an n-term monochromatic arithmetic progression. [ |
We now mention a few examples to illustrate how narrow the gaps are between
the known upper bounds for f,(n), gx(n), hx(n) given in §2, and the “desired”
bounds of Corollary 3.4.

1. Letting A(s) = i!, Theorem 2.2 tells us that f,(r?) < 9 [[%4(i! +i—1).
On the other hand, by Corollary 34, if u = 2, then v = n+ 1, so that if
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A < (n—2) []5o(3 + i(n— 1))!, then this would also serve as an
upper bound for w(n).

2. By Theorem 2.2, if \(s) = 2¢, then gy(#?) < 2%/2(1+ o(1)). Applying
Corollary 3.4 with u = #2 — 2 (s0 that v = n+ 2), we see that if this bound
could be improved to n™22%/2(1 + o(1)), then this would also bound
w(mn).

3. Let A() = 2%. By Theorem 2.2,

7
h(?) <3 J[2¥+k+ 1)
k=4

W w2 +1
<m@J[28 <22 T=29 (14 o(1)).
k=4

By Corollary 3.4, if

hy(#) < (n—2)™! H23+i(n-l)

i=0
= (n—2)™123mD 4 %(n3 —n)

=n™127%/2(1+ o(1)),
then this would also be a bound for w(n).

4. Exact Values

In the table below we give the values of w(n), f(n), g(n), h(n), and
A(n), g(n), hy(n), for n= 3 and 4, for selected functions ).

N f foufag g2ga h hy hyg w
3 79 989 9 79 9 9
4 1328 34 21 35 35 17 35 35 35

Known values of w(n) can be found in [2] and [6]). The fact thatg,:(4) =
gi1(4) = hyi(4) = hy(4) = w(4) follows from the same argument given
in Remark (i) of §2 for f;»(4). All other values in the table were found on
an IBM-PC using the algorithm of [6].
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