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Abstract. In a complete bipantite graph K, each ventex of
to each vertex of the second vertex set by exactly one edge

one vertex set is joined
An Eulerian orientation

of K, assigns directions to the edges in such a way that the resulting digraph has an
Eulerian dicircuit. Similarly, any Eulerian circuit of K, s ascribes directions to the edges
and results in an Eulerian orientation. This paper investigates Eulerian orientations and
circuits of K, ¢. Exact solutions are presented for s = 2 and & = 4. Computer searches
were used to obtain results for other small values of s and ¢. These results also lead to
two conjectures which deal with upper and lower bounds on the numbers of Eulerian

circuits.

1. Notation and preliminary concepts

Elements of the first vertex set will be denoted by H, | H,, Hs, ... and elements

of the second vertex set will be denoted by A, 4;, A3},

.... Since any connected

graph has an Eulerian circuit if and only if each vertex has even degree, the bipar-

tite graphs will generally be denoted by Kam 24.

We do not distinguish between two Eulerian circui
cyclic permutation of the other. However, if one circui
then the circuits are regarded as being different.

if one of them is just a
is the reverse of another,

The number of Eulerian circuits of a graph may be found by firstly finding all
Eulerian orientations and then adding the associated numbers of Eulerian dicir-
cuits, e.g. Fleischner (1983). It should be noted that different Eulerian orientations
may have different numbers of dicircuits. Good (1946) has effectively shown that
an orientation is an Eulerian orientation if and only if the indegree of any vertex

equals its outdegree. With this in mind, we define the
an oriented complete bipartite graph Kz, 2, to be the 2
with F;; = 1 if and only if there is an arc from H; to|

orientation matrix, F, of
m X 2 nzero-one matrix
A;. Obviously there is a

1-to-1 relationship between the orientations and the orientation matrices. We note
that F represents an Eulerian orientation if and only if each row sum is n and each

column sum is m.

Later on we shall also let I, denote the m x m identity matrix, Jp,, anm x n
matrix of ones, O, , an m x n matrix of zeros, and B, (s,t) an m X m matrix
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with diagonal elements all set to s, and all off-diagonal elements equal to t. We
shall make use of the well-known expansion

|Bm(8, )| = (s =)™ s+ (m — 11]

and the special case
|B2(s,t)| = (s+t)(s—1).

2. Orientations and circuits of K ¢
Lemma 1 K 2, has (3")different Eulerian orientations.

Proof: The n outgoing arcs from H, can be chosen in a") ways. The directions
of all other arcs are then fixed.

Lemma 2. K33, has2(2n— 1)! Eulerian circuils.

Proof: Every circuit must have either an arc from H, to A; or an arc from 4, to
H,. Initially consider all circuits with arcs from H to A; and let this be the first
arc of a circuit. The second arc must lead to H . There are now (22— 1) choices
for the third arc. The fourth arc must lead to H;. There are (2 n — 2) choices for
the fifth arc. The sixth arc must lead to H;, and the process continues. This leads
to (2n — 1)! distinct circuits. Since there must be an equal number of circuits
with arcs from A; to Hj, the result follows.

Similarly, the number of Eulerian trails in K3 2 n+1 which begin at H, and finish
at H, must be 2(2n)!.

3. Computer searches

Most of the theory for the case K4 21, and the conjectures, was inspired by close
examination of the output from the computer searches. It is therefore worthwhile
to summarize the results from these searches before proceeding with the theory.
This section also introduces the “mini-minor” which is merely a useful determi-
nant in calculating numbers of dicircuits.

3.1 Search methodology

The searches proceeded by initially finding all possible orientation matrices with
appropriate row and column sums, and then calculating corresponding numbers
of dicircuits. Without loss of generality we can relabel the vertices so that the
orientation matrices have the form in Table 1, where the z’s form a set of (n —
1) * (2m — 1) unknowns, the y’s form a different set of (n— 1) *(2m — 1)
unknowns, and the z’s form a set of (2m — 1) unknowns. Since row sums and
column sums are known, it is possible to search through whole rows or whole
columns at a time. Whenever m < n, calculation, and computer time trials, show
that it is more efficient to search for whole columns. Thus for each column of z’s



we try a column vector with (m — 1) 1's and m 0’s. Candidate y column vectors
have m 1’s. For given z’s and y’s, the last column vector (z’s) has either 0 or 1
solution and can be solved explicitly. The actual search space can now be truncated
by noting that interchanging two x vectors, or two y vectors, has the effect of
relabelling the A’s but not changing the number of circuits. A further saving is
gained by noting that if given z’s and y’s yield a solution, then interchanging all
0’s and 1’s in columns A; to Az, leads to an equivalent solution with the same
number of circuits.

At Ay ... Ay Awr Am2 .. Ap Ase
H 1 1 ... 1 0 0 0 0
H, 1 T ... T y y y z
Hp, 1 z ... T y y y z
Hpsr O T ... T y y y z
Hpvza O z ... I y y y z
Hyyy O T ... T y y y z

Table 1. General structure of an orientation matrix prior to solution.

When an orientation matrix has been found, it is possible to count the cor-
responding number of Eulerian dicircuits by evaluating the BEST formula (van
Aardenne-Ehrenfest and de Bruijn 1951, Smith and Tutte 1941)

2m+2m

A T vy -

v=1

where A is the minor of the (incoming) degree matrix after eliminating the row
and column associated with one vertex, and d;(V,) is the indegree of vertex V.
For bipartite graphs, the minor has a very simple structure and evaluation of the
BEST formula is modified by substituting a 2 m x 2 m determinant for the (2 m +
2n—1) x (2m + 2n - 1) determinant, viz.

2m+2m

m* ViG] I (d(ve) - 1!

v=1

where G.'.' = nand G,')‘ = —pij / m with Dij being the number of directed paths of
length 2 from H; to Hj, such that the paths do not pass through A,,. We call |G|
the mini-minor of the degree matrix. To clarify, consider the orientation matrix in
Table 2. Its degree matrix is given in Table 3. The minor is obtained by deleting



the row and column corresponding to A¢. Now rows A; to As are each divided
by 2,ie. m. m__ssw::m the —1°s in columns A4, to As of rows H) to Hy, then
eliminating the —3’s in columns H; to Hys of rows A, 10 As yields a simple
matrix with G as Eo upper left 2m x 2 m square submatrix oo:.owuo:&:m to the
H vertices. See Table 4.

Al Ay Ay Ay As As
H 1 1 1 0 0 O
H 1 0 0 0 1 1
H 0 0 0 1 1 1
H 0 1 1 1 0 O

Table 2. An orientation matrix for K4 6.

Hy Hy Hs Hs A Ay Ay Ay As As
H 3 0 0 0 -1 -1 -1 0 O O
H 0 3 0 0 -1 0 0 0 -1 -1
H 0 0 3 0 0 0 0 -1 -1 -1
H 0 0 0 3 0 -1 -1-10 0
AA 0 0 -1 -1 2 0 0 0 0 O
A, 0 -1 -1 0 0 2 0 0 0 O
Ay 0 -1 -1 0 0 O 2 0 O O
Ay, -1 -1 0 0 0 O 0 2 0 O
As -1 0 0 -1 0 0 0 0 2 O
A¢ -1 0 0 -1 0 0 O O O 2

Table 3. The degree matrix for the orientation matrix displayed in Table 2.

Hy Hy Hs Hs A Ay A3 Ay As
H 3 -2 -3 -0 0 0 0 0
H -+ 3 - -20 0 0 0 0
H -% -} 3 - 0 0 0 0 0
H -+ -3 -%23 0 0 0 0 O
A 0 0 0 0 1 0 0 0 O
A 0 O 0 O 0 1 0 0 O
A, 0 0 0 O 0 O 1 0 O
A, O 0 0 O O O O 1 O
As 0 0 O O O O O 0 1
Table 4. A determinant, after manipulation, derived from the degree matrix dis-
played in Table 3.



The elements of G are easily calculated by noting that any column of the ori-
entation matrix provides a path of length 2 from H; to Hj if there is a one in row
H; and a zero inrow Hj.

3.2 Checks on results
The number of Eulerian orientations of K2 m 2 €quals the coefficientof 27 .. . z3,,

...y, in
2m 2a

H H( 1+ x,-y,-) .

i=1 j=1
McKay (1983) employed exact arithmetic and the method of Liskovec (1971)
to evaluate, inter alia, some of these coefficients for m = n. We implemented
Liskovec’s method using complex double precision arithmetic and were able to
confirm that the numbers of Eulerian orientations in Table 5 are correct to at least
seven significant digits.

Unfortunately no alternative procedure for counting Eulerian circuits seems to

be available. The following lemma provides some assistance.

Lemma 3. The total number of Eulerian circuits of Kam 2, must be divisible by
2(2m - 11(2n- 1)1

Proof: Half of the circuits must contain the sequence ... Hy A; .... With regard
to these circuits, the remaining arcs involving H, can occur in (2n — 1)! ways.
Independently of these, the remaining arcs involving A; can occurin (2m — 1)!
ways. Thus half the number of circuits is divisible by (2m — 1)!(2n—1)!. The
other half of the circuits must contain the sequence ... A; H; ..., and this leads to
the required result.

Lemma 3 provides a simple divisibility criterion as a partial check on the com-
puted number of Eulerian circuits. However the method of searching guarantees
that the obtained number of circuits is divisible by

2[(m - D*"[(n— 1)!]zm(2mm— 1) (Zn— 1)

n

and this expression is in fact divisible by 2(2m — 1)!(2n — 1)! for K¢ s and
K3 5. Even though the divisibility criterion cannot usefully be applied in these
cases, it was successfully applied in all other cases.

3.3 Results

The results of the computer searches are summarized in Table 5. The numbers
of Eulerian circuits may seem large, but are not inconsistent with the numbers of
circuits around complete graphs K, as determined by McKay (1983).

Two Eulerian orientations must be equivalent, i.e. have the same minor and
the same number of Eulerian dicircuits, if one can be obtained from the other by



relabelling H’s or A’s or by reversing the directions of all arcs. We do not know
if other criteria also lead to equivalence. In any case, the numbers of different
minors in Table 5 represents numbers of different equivalence classes of Eulerian
orientations. Appendices 1 and 2 present some more information on these classes
for small m, n. The relative sizes of the classes in Appendix 1 have been obtained
by fixing the directions of all edges incident with H; and A4,.

#of

Size Number of Number of Eulerian circuits differem‘]
Eulerian orientations minors
4x4 90 6336 2
4x6 1860 292 14720 3
4x8 44 730 54 67933 90080 4
4x10 1172 556 28 86587 52012 28800 5
6x6 297 200 8469 00707 32800 6
6x8 60 871 300 19 48197 70542 91820 54400 16
6x10 14 367 744 720 20871 27887 97176 47095 18999 55200 35
8x8 116 963 796 250 107 81029 55089 45463 93993 19896 06400 80
8x10 | 273 957 842 462 220 4589 66046 86554 48806 47168 96257 52190 32064 00000| 1147

Table 5. Numbers of Eulerian orientations and circuits of complete bipartite
graphs.

4. Orientations and circuits of K4 2,

The case K4 2, is easily dealt with once we realize that for any Eulerian ori-
entation matrix, each column sum is 2. This leads to the apparently trivial, but
important, observation that if an arbitrary column has a 1 in its first row then there
is exactly one other row with a 1 in the same column, and a similar result holds
for a zero in the first row. We have

Lemma 4. Each Eulerian orientation of K, 2, generates a 3 -partition of n, with
zeros permitted.

Proof: Consider only those columns of the orientation matrix which have a one in
the first row. Suppose row 2 has oy ones in these columns. Similarly suppose rows
3,4 have a3 , a3 ones respectively in these same columns. Since each column total
is exactly two, we musthave a; + a2 + a3 = n.

For example, in Table 2 we haven=3 anda; = 1,a2 =0, a3 = 2.
Lemma 5. The 3 -partition of n, with zeros permitted, generated by considering

columns with a zero in the first row, is identical to the 3 -partition obtained by
considering ones in the first row.

Proof: Consider any row except the first. If it has o ones in common with the first
row, then it has n — « zeros in the columns where the first row has a one. Since



the total number of zeros in any row must be n, it has & zeros in columns common
with zeros of the first row.

Lemmas 4 and S show that each Eulerian orientation of K4 3, leads to two
identical partitions of n. We can use this information to count the total number of
Eulerian orientations.

Lemma 6. The number of Eulerian orientations of Ka 2, is
2n)!
E —(—-)——P{m,az,ag}

2
ay+aztaz=n (al !az !(23 !)

where the sum is over all possible partitions {a, , az , a3 } of m, with zeros permit-

ted, and P{ay, 2,3} is the number of distinct permutations of {ax, a2, a3 }.

Proof: Let {a),as, a3} be any 3-partition of n with zeros permitted. Choose a
columns of row 2 and insert ones in this row and the first row. Choose a; different
columns of row 3 and insert ones in this row and the first row. Choose a3 different
columns of row 4 and insert ones in this row and the first row. Choose «; different
columns of row 2 and insert zeros in this row and the first row. Choose a; different
columns of row 3 and insert zeros in this row and the first row. For the remaining
a3 columns, insert zeros in row 4 and the first row. This can be done in
(2n)!

aplamlaslaglaxlas!
ways. Any remaining empty cell has either two ones or two zeros in the same
column and can be filled in with a zero or one respectively to complete an Eulerian
orientation matrix. Now rows 2, 3 and 4 can be permuted in P{ay, a2, a3} ways
to obtain all possible Eulerian orientations associated with the given partition, and
the result follows.

For example, to derive the number of Eulerian orientations of K4 ¢ we note that
{3,0,0},{2,1,0},{1, 1,1} are the only permissible partitions of 3, and that the
corresponding values of P{a, a2, a3 } are 3, 6, 1 respectively. Therefore the total
number of Eulerian orientations is

6! 6!
(3')23+ (2.)26+ 6! = 1860.

An alternative expression for the number of different Eulerian orientations of
K4 2, follows.

169Dl (e [N [ Ganty

This solution can be found by explicitly solving for the z’s, y’s and 2’s in Ta-
ble 1, one row at a time. Unfortunately it provides no insights into the numbers of
circuits, and so the proof is omitted.

In order to count the number of Eulerian circuits of K42, some additional re-
sults have to be established.




Lemma7. In an Eulerian orientation of K4 2., the number of paths of length 2
from H; to H; equals the number of paths of length 2 from Hj to H;.

Proof: Let p denote the number of paths from H; to H;. Then there are exactly
p columns of the orientation matrix which have a one in row 1 and a zero in row
7. Therefore there are n — p different columns which have a one in rows ¢ and j,
and a further n — p different columns which have a zero in rows 1 and j. Only p
columns remain and all of these must have a zero in row i and a one in row j.

Lemma 8. In an Eulerian orientation of K 2y, the number of paths of length 2
from H; to H; equals the number of paths of length 2 from H, to H, where H,,
H, are the other two vertices.

Proof: Let p denote the number of paths from H; to H;. Then there are exactly p
columns of the orientation matrix which have a one in row 1 and a zero in row ;.
From lemma 7, there are exactly p different columns which have a zero in row §
and a one in row j. Each of these 2 p columns must each have exactly one zero in
common with one of the remaining rows. Let H, be one of these two remaining
rows. One of the steps in the proof of lemma 7 established that there are n — p
different columns which have ones in rows H; and H;. Thus these columns must
have zeros in row 7. Similarly, there are another n — p columns which must have
ones in row r. Therefore exactly p of the 2p columns have a one in row r and a
Zero in row s. '

Lemma 9.
t b+c—t -b —-C
b+c—t t —c -5 |_
1-b 1-c¢ t b+c—t =8(t—-b)(t—c)(b+¢)

l1-c¢ 1-5 btc—t t

Proof: Denote the determinant by |G|. Since the upper and lower left 2 x 2

10



submatrices of G commute under multiplication,

2
o= (oot P (22 3 (20 0E)
=By(t*+ (b+c—1)2 +b(1 = b) + c(1 —¢),2¢(b+c—1)
+b(1—c)+¢(1-1))
=[2+(b+c—1)2+b(1=b) +c(1—c)+2t(b+c—1)
+b(l—=c)+c(1—-0))
x[2+B+c—)2+b(1—b)+c(l—c) —2t(b+c—t)
—b(1 —c)—c(1-10b)]
=[(t++c—1))2+(b+)(1 =D+ (b+)(1-0)]
X [(t—(b+c—1))2 — b + bc— c* + be)
=[(b+c)2 = (b+ )2 +2(b+ )] x [(2t = (b+ )% — (b—)?]
=2(b+c)[(2t—b—c+b—c)(2t —b—c—b+c))
=8(b+c)(t—b)(t—0)

Theorem 1. The total number of Eulerian circuits of K4 q is

Y Al Plan,on el DI (s en) (s 0g) ()
aptaptay=n

where the sum is over all possible partitions {a, , a2, a3 } of n with zeros permit-
ted, and P{a, 2, a3} is the number of distinct permutations of {a1,0z,a3}.

Proof: Let {a), &z, a3} be an arbitrary partition of » with zeros permitted. Con-
sider any Eulerian orientation matrix which generates the partition. (The proof of
lemma 6 shows how to construct such a matrix). If necessary, permute the rows
of the orientation matrix to ensure that the last column has zeros in the first two
rows. Permuting the rows of the orientation matrix has the effect of carrying out
identical permutations on the rows and columns of the degree matrix and so will
not affect the number of circuits for the given orientation. By applying lemmas 7
and 8 we find that the mini-minor has the following form, where (o}, a5, a3) is
a permutation of {a, a2, a3 }.

—(n—a}) —An-a) —(n—a})

n p) ) )
—(n—d)) =(n-o}) —(n—a})

lG n 2 2
1—(n—a}) 1—(n—aj) n =(n—a))

2 2
1-(n—dj) 1-=(n—af) —(r-a)) n
) 2 p)

11



From lemma 9,

|Gl=27*8[2n— (n—a})1[2n— (n—0a})][n— ah + n— a})]
=27 [n+ a))l[n+ ds1ln+ o]
=2"[n+ ayl{n+ a2)[n+ as)

Therefore, the minor of the degree matrix corresponding to the particular Eulerian
orientation is :
222 (n+ 1) (n+ a3)(n+ a3) 6))

and the number of circuits for the particular orientation is
[(n— 1)11*22% 2 (n+ 1) (n+ a2) (n+ as).

Now summing over all possible orientations associated with all possible partitions
gives the required result.

5. Minors of the degree matrices

McKay (1983) discusses asymptotic numbers of Eulerian orientations of bipartite
graphs. Schrijver (1983) and Las Vergnas (1990) impose bounds on numbers of
Eulerian orientations of regular graphs. Our purpose here is to discuss bounds on
the number of Eulerian circuits associated with an arbitrary Eulerian orientation.
These bounds can be combined with the work of other authors in order to obtain
estimates of the number of circuits of an arbitrary bipartite graph.

Equation (1) above generates all possible minors of K4 »,,. Bearing in mind that
{a1, a2, a3} is a partition of n, it is easy to show that (n+ o) (n+ a2) (n+ a3)
is aminimum when o; = m, a2 = 0, a3 = 0, and is amaximum when o) = ap =
a3 = n/3. The minimum is always achievable, and the maximum is achievable
whenever 3 | n. We therefore have 22! * as the minimum possible minor
of any Eulerian orientation of K 2,,, and 22™*n? /33 as an upper bound on the
maximum possible minor. Observe that the orientation matrix associated with
the minimum has a very simple structure, viz. two submatrices of zeros and two
submatrices of ones. When the upper bound is achieved, any pair of rows have
ones in a common number of columns. For example, the following orientation
matrix for K, ¢ has maximum minor and each pair of rows have ones in exactly
one common column.

1110 00
100110
0101 0 1
0 01 0 11

We further note that the above orientation matrix is also the incidence matrix
of a(4,6,3,2,1) BIBD. We initially make use of these observations to obtain
some minors for any bipartite graph.

12



Theorem 2. K32, has an Eulerian orientation with degree matrix minor equal
to m2n-—l ,nz'm—l ,

Proof: Obviously Table 6 represents a valid Eulerian orientation.

A] A2 coo An AMI Aﬂ+2 eee AZn
Hy 1 1 ... 1 0 0 .. O
H, 1 1 ... 1 0 0 .. O
Hy, 1 | 0 0 .. 0
Hpn O o .. O 1 1 e 1
Hpeao O 0 0 1 1 1
Hym O o ... O 1 1 . 1

Table 6. An orientation matrix with simple structure.

If we obtain the minor of the degree matrix by deleting the row and column
associated with A, ,, we find that the minor has value m(2*1 |G|, where G is the
following 2m x 2 m determinant.

'"Im - ',% Jm,m

=D gem  nln

By adding appropriate columns on the left-hand side of G to columns on the
right-hand side, we eliminate the upper right matrix and obtain

nIm Om.m
:(:_lljm.m nIm - IMT])‘Jm.m

Therefore

minor = m?» |G|
-1
= m(zn—l) InIm (ﬂIm _ (nm ) Jm,m) |

= m2+D | (n(n_ (ﬂ—l)) —ﬂ('n—l)>|
" m ! m

_ _ (m-1)
B (M oLINCEL)
m m

(- B0 _ (D)
m m

= p(2n=D) gm (m—1) (n— m(ﬂ— 1) )
m

= m(2n=D f(2m-1)

13



Lemma 10.

(n+ 72y ) In — oy T — g2y Jmm
(L ~ @D ) Jmm ("+ ﬁﬁ) In = gy Jmim

4(m-1) m(Zm-l) n(Zm—l)
ST @m-DneEmD

Proof: Denote the determinant by G. (The connection with the mini-minors will
be discussed below). Since the upper and lower left m x m submatrices of G
commute under multiplication,

2
n
(("*(2m—n) In=2m )J’""')
- 1 n
- ((2m—l) J"‘"") ((H"(zm-l)) J"‘"")

2 w?
B ("2"‘("‘—1)'2_:.-1)!""'((2m-1)"m(z’:n-1) ’ )i
m

217 L —n
Gmn H (M= gz —m ((2m-1) mor=y

-l (nz— n? o n—27% : 2r
I @2m-1)2 (2m-1)'(2m-1) (2m-1)2)
(z ®_ o (n2e) 2 )"’""
T 2m_D2 @m=1) (2m-1) (2m-1)2

w n n—2n? 272
% ("2'(2m—1)2+ (2m—1)+("‘_1) ((2m—1) "(2m-1)2))

IGl=

and the result follows.

Theorem 3. Ifthereexistsa(2m,2k(2m-1),k(2m~-1),m,k(m—1)) BIBD
for m > 2 and k > 1, then there is an Eulerian orientation of K3 m 2 k(2m-1y With
minor equa] to 4™1 m2m+2k(2m—1)-2 kZm-l )

Proof: If such a BIBD exists, then its incidence matrix is the orientation matrix
for an Eulerian orientation of K2 m 24(2m-1). Furthermore, any two rows will have
exactly k(m — 1) columns with ones in common. Therefore the number of paths
of length 2 from any H; to any H; will be

k(2m—1) —k(m — 1) = mk.

Therefore the mini-minor takes the form of the determinant in Lemma 10, so that
the full minor is
m(Zn—l) 4 (m-1) m(Zm—l) ,n(2m—l) _ 4 (m-=1) m(2m+2u—2) ,n(Zm—l) (2)
(2m —1)@m-D - (2m - 1)@m-D

14



Butn= k(2m — 1) and so n?™-D = k2m=1 (2, — 1)2m-1_ Substituting in
the right-hand side of the above equality gives the result.

Many BIBD’s with the properties expressed in theorem 3 are known. Any such
BIBD for 2 m treatments will exist whenever there is a Hadamard matrix of order
4m.

5.1 Conjectures

For all bipartite graphs examined in Table 5, the formula in theorem 2 generates
the smallest minor. Also, BIBD’s as in theorem 3 exist for the 4 x 6 and 6 x 10
graphs. In these two cases, the formula in theorem 3 generates the largest minor.
In all other cases, the associated formula in equation 2 slightly overestimates the
largest minor. We are obviously led to the following conjectures.

Conjecture 1. For arbitrary Ky, 2y, the minimum minor over all possible Eu-
lerian orientations is m*™! ™1,

Conjecture 2. For arbitrary K m2y, the maximum minor over all possible Eu-
lerian orientations of K32, is bounded by

4 (m—l)m(2m+2n-2) n(2m-1)
(zm — 1)(2m-1)

and equality occurs whenever 2m — 1 divides n.

The bases of these conjectures have some intuitive appeal, and it is not difficult
to generalize the concepts to non-bipartite graphs, e.g. a maximum minor may
exist for an orientation which tends to make all off-diagonal elements of the degree
matrix “as equal as possible”.
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Appendix 1
Equivalence classes of some complete bipartite graphs.

[ Size Value of minor (A) | Relative frequency
4 x4 64 1
72 3

4x6 864 1
560 18

1024 12

4x8 8192 1
8960 32

9216 36

9600 144

4 x 10 64 000 1
69 120 50

71 680 200

73 728 400

75 264 900
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Size Value of minor (A) | Relative frequency
6 x6 59 049 1
64 881 81
68 445 216
68 607 432
~ 70785 648
72000 108
6 x8 2239488 1
2426112 144
2488320 162
2540160 576
2571264 2592
2576448 2592
2612736 2592
2624832 2592 |
2654208 972
2661 120 10 368
2664144 20736
2667 168 864
2692170 5184
2709 504 6 480
2713284 20736
2737 800 10368
Appendix 2.

Minimum and maximum minors for some complete bipartite graphs.
Size Minimum minor (A ) Maximum minor (A )
6 x 10 61509 375 76 527 504

8 x8 268 435 456 335936 160 |
8 x 10 20 480 000 000 25 906 839 552

17



