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Abstract. A union closed family A = {4;, A2,..., Ay} is a non-empty finite collec-

tion of distinct non-empty finite sets, closed under union. It has been conjectured that
for any such family, there is some element in at least half of its sets. But the problem
remains unsolved. This paper establishes several results pertaining to this conjecture
with the main emphasis on the study of a possible counterexample with minimal n.

1. Introduction

A union-closed set A is defined as a non-empty finite collection of distinct, non-

empty finite sets, closed under union (i.e.,if S€ AandT € Athen SUT € A).
The following conjecture is rephrased from [1].

Conjecture. Let A = {A1, Az,...,A,} beaunion-closed set. Then there exists
an element which belongs to at least half of its sets.

This conjecture has been proved for n < 28 ([4], Theorem 3).

In this paper we consider a possible counterexample with minimal » and prove
the conjecture for all families involving up to eight elements or having up to 36
sets extending the previously known results.

2, Preliminaries and notation
Let A = {A;,A3,...,A,} be a union closed set. Assume, for convenience, that
|Ai| = wisw1 Swa £+ Lwp=gand A, = [ ={1,2,...,q}.

The support size of A is defined to be the number ¢ = w,. Let A(n, g) be the
family of all union closed sets of = finite sets with support size q. Let F(n,g) C
A (n, g) be the family of all counterexamples to the conjecture. Put

np = min{n € N:F(n,q) # 0}

go = min{g € N:F(n,q) # 0}
If F(n,q) # 9 for some n, then g is odd ( cfr [6], Theorem 1) and go > 8 (cfr.
[4],Theorem 2).

Let A € A(n,q) and z € I,. Define A(z) to be the set of A; in A which
contains z and let |[A(X)| = da(z). LetC(z) = {A; € A:x & A}, C(x) =
U{4;: A; € C(z)} and A*(2) = {A; — {z}: A; € A}. Itis clear that A(2),
C(z) and A*(z) are union closed sets with support size respectively g, ¢ — 1 and
atmostg—1.

We now list below some results from [2,4,6] which we use in the next sections.
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Theorem 1 (Sarvate-Renaud [6]; Theorem 2). Let A € F(n,q), thenw; > 3.

Theorem 2 (Lo Faro [2]; Theorem 2,4 and Corollary 3). Let A € F(n,,q90),
z,y € I, and z # y then:
O [A*(D)] < Al
(i) A(z) # A(y);
(i) da(z) < duly) =y € C(z);
(iv) C(z) # C(y).

Theorem 3 (Lo Faro [2]; Theorem 6,8). Let A € F(ny,qo), there are at least
four distinct elements z1,z2,%3,%4 € Iy, such that C(z;) = I, — {zi}. i =
1,2,3 and C(zs) D I, — {z3,74}.

Theorem 4 (Poonen [4]; Corollary 4). If A € A(=n,q) contains
H= {{Z] 1 T2, 273},{11,1'2, .'54}, {El,I3,$4}} then A ¢ F(n,q).
Theorem 5 (Poonen [4]; Theorem 2). go > 8.

3. On a smallest counterexample

THEOREMG. Let A = {A1,A2,...,A} € F(no,q0) and let x, y be distinct
elements of I,. If d(x) + 4 > d(y) then z € C(y), where d(i) = d4(3), for
each i € I,.

Proof: By (iii) of Theorem 2, we can consider d(z) + 1 < d(y) < d(z) + 4.
Suppose z ¢ C(y), then A(z) C A(y) and C(z) € (A(y) —A(z)) =B. It
is trivial to see that A — B is a union closed set and there exists z € I, — {z, y}
such that d*(z) = |{A; € A — Band z € A;}| > =(dy=d=)

Case 1. 1 < d(y) — d(z) < 2. Thend*(z) > %52 and being np 0dd, d*(z) >
b Tl B
7.

Obviously if d(z) < d(z), then z € C(z) and so d(z) > 5, contradicting
the fact that A € F(no,q0)-

Case2. d(y) —d(z) = 3. LetB= {4, B,C(z)},thend*(z) > ®72. Obviously
z € C(z) and so, if AU B = C(z) thend(z) > %31, as above we obtain a
contradiction.

Let AUB = B,then A C B C C(z).

IfB D {we€ I, — {z,y}: d(w) = 7L}, with a similar argument used in the
previous case,we obtain a contradiction.

Suppose that there exists w € I, — {z,y} such that d(w) = %' andw ¢ B.
Since w € C(z) N C(y), we can find a set M, such thatw € M,, € C(y) and
|My| = min |A; € C(y): w € A4
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It is not hard to see that A — {A, B, C(z), M,,} is a union closed set in which
wecanfindt € I,, — {z,y} such that d* (t) = |4; € (A — {4, B,C(2),My}):
t € Al > 252, Since BUM, = C(z) andt € C(z), it follows that
d(t) > 252 + 2 = =L 3 contradiction.

Case 3. d(y) — d(z) = 4.

Let B= {B,B,, Bs,C(z)} with B; C C(x), foreachi = 1,2, 3.
IfBiUB,UB; = C(z)orif BiUB, UB3 = B3 D {wqu,, —{a:,y}:
d(w) = 251}, we can derive a contradiction by a similar argument used in the

previous cases.

Suppose that there exists w € I, — {z,y} such that d(w) = 27L and w ¢
Bs. Since w € C(z) N C(y), we can find two sets M. and M2 such that
w € M;, € C(y), foreach i = 1,2 and sup {|M}],IM2|} < min|4; €
C(y) — {ML, M2}:we A

It is not hard to see that A — {B,, B3, B3, C(z), M, M2} is a union closed
set in which we can find t € I, — {z, y} such that:

np—5
7
By Case 1, since d(t) + 2 > d(z) it follows thatt € C(z). Since B; U M =
C(z), foreachi = 1,2; j = 1,2, it follows that d(t) > %55 + 3 = &=tL 5
contradiction. | |

d*(t) = |Ai € A— {B,B,,B;,C(z), M}, , M2} :t € Ayl >

For each A € F(m, qo), put:
dg =min {dy(z):z € I };
do = max {ds: A € F(m,q0)};
F%(no,g0) = {A € F(mo,q0):ds = do};
Fo(m,9) = {A € F%(m,q0): |z € Iy:da(z) = do| = 7} ;
ro = min {r e N:3A € F®(n,90) } ;
F =F:,°("0,90)-

Trivially F(n,q) # @ifandonlyif F # 0.

Let = be the equivalance relation on the set F such that A ~ A’ if and only if
d(z) = da/(z), foreach z € I,,. Let [A] be the equivalence class of A and
denote by F / = the set of all equivalence classes.

Assume, for convenience, d(1) < d(2) < --- < d(qo) foreach A € F.

We can now define a total ordering < on F/ = by [ A] < [A'] if and only
if dg(1) = da(1); dq(2) = dgr(2);...; da(3) = dg(d) and dy(i + 1) <
dAl(f + 1),

Assume [A] = F the maximum in (F/ &, ).

Let A € F and let z, y be distinct elements of I,,. We have the following:
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Theorem 7. If z ¢ C(y) then A; U {z} € A(z), foreach A; € A(y).

Proof: LetB, = {A; € A(y): A;U{z} ¢ A(z)}and A’ = (A-B,)U{A; U {z}:
A; € B}. Itis not hard to see that A’ is a union closed set, d4(2) = da(z), for
each z € Iy, — {z} and d4(z) < da(z) < da(y).

We shall show that the assumption d4(z) < da(z) (i.e. By, # @) leads to a
contradiction and hence B, = @.
Case 1. dy(z) =du(1) =dp

Ifro = 1thenz = 1 and s0 do < d4 contradicting the maximality of dp.
Ifro > 1 then A' € F(m,qo) with r < ro, contradicting the minimality of
To.

Case 2. dg < da(x)

Obviously A’ € F. Reordering if necessary, assume d4(1) < dar(2) < --- <
da(go). Notice thatd4(z) < dya(z) and d4(i) = da(i), foreachi € I, —{z}.
Thus[.A] < [A'], contradicting the maximality of [ A]. This completes the proof.

|

Corollary 1. If z ¢ C(y) then d4(y) < 2d4(z).

Proof: By Theorem 7, B, = @. Let A; € A(y) — A(z) then A; U {z} € A(z2)
and so da(y) — da(z) < da(z) gives the desidered result. [ |

Corollary 2. 1 < [C(4):z € C(4);i € Ip,| £ 2, foreach z € I,,.

Proof: Since z ¢ C(z),|C(3):z & C(4);1 € I,| > 1 is trivial.

Suppose that there are distinct elements y and z belonging to I, — {z} such
thatz ¢ C(y) andz ¢ C(z). Let A; € A(y). By Theorem 7, A;U{z} € A(z).
Since x ¢ C(2), it follows that A(z) C A(z) and so A; U {z} € A(2). Hence
A; € A(2). This shows that A(y) C A(2).

Interchanging y and 2z we obtain A(y) = .A(z), contradicting (ii) of
Theorem 2, |

Corollary 3. d4(1) =do > 2g0 — 5.

Proof: We can find z € I, — {1} such that |4; € C(1): z € A;| > 2=

By Corollary 2, it follows that |C(4): {1, 2} C C(3),1 € I,,—{1,2}| > go—4.
Since I, = A, D {1, 2}, we have 2= 4 gy — 3 < 2=L and 5o the desired
result. |

Theorem 8.

(a) If C(z) = I, — {z}, foreach = € Iy, thenmp > 4¢qo — 1;
(b) Ifthereexist y € Iy, such that C(y) # I, — {y} thenmg >4 g0 + 1.
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Proof:
(a) The same argument used in Corollary 3 works here to show that d4(1) >
2go — 1andso 271 > 2g9 — 1. Thus ng > 4go — 1.
(b) By Corollary 3,d4(1) > 2go — 5, Letz € Ip, — {y} suchthatz & C(y).
By Theorem 6, da(z) + 5 < da(y). Thus B > dy(y) > da(z) +5 >
da(1) +5 >2go andsong > 4qo + 1.

4. Restrictions on g9 and ng

Let A€ A(n,q),thendg(1) +da(2) + ---+da(g) =wi +war +---+wy. Let
n; be the number of sets of A of cardinality 7, it results:

q9 q
W twpttwy =Y (e 15)-2( —%)-n;+

j=1 ja1
q9 q

e - 9) e
=1 j=1
g-1

LA
=
-1

IfA e€F(n,q)thenn =m =0 andng, = l,soZ(j—%’-) ‘ni+q <0
(Compare [4]).

Theorem 9. go > 9.

Proof: By Theorem 5, go > 8. Suppose go = 8.
We shall show that this assumption leads to a contradiction. If A € F(n, 8),
then
ns+2n+3m+8<m ©)

By Theorem 3,7 > 3 and if n; = 3 thenmg > 1. Thus ma > 19.

Let s; be the number of 4-set of Ig containingexactly j 3-setsof A. If s; # 0 for
J > 3 thenH C A (where X is the set defined in Theorem 4) and by Theorem 4,
A &€ F(no,8),50 wecan suppose j =0,1,2,

Notice that s, < ns < (§) = 70. Appling the counting principle we have:

{31+2-sz=5-m {82=5'ﬂ3—70+80
and so
so+s81+32=70 s1=140—-5.m —259
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Thus g > 83 > 5n3 — 70.

Ifn > 29, then ny > 75, acontradiction . So we may assume 19 < n3 <
28. If n3 € {23,24,25,26,27,28} then n4 > 45 and so there exist a 3-set
{z1, 22,73} of Iy contained at least in four 4-sets of A. Thusns > 6 andng > 4,
contrary to the (). If ns € {19,20,21,22} then there exists z; € I3 which
appears at least in eight 3-sets of A.

Letx; € G}, |G,'| =3,i=1,2,...,8andletG = {Gl,Gz,...,Gs} C A
Note thatevery y € |}, Gi—{z1} appears at most in three 3-sets of G, otherwise
ns > 4, contradicting (*) and then there exists z; € Is — {z;} exactly in three
3-setsof G. Let Gy = {z1,%2,23 }; G2 = {21,22,74 }; G3 = {z1,22,25 }. Itis
easy to see that we can suppose G4 = {x1,z¢,y} Withz¢ & {z1, 12,23, 24,75}.

Ify # z;,foreachi = 1,2,...,6 thenns > 4 and ng > 3, contradicting
(%). Ify € {z3,7z4,75} then we can assume Gs = {z1,z7,2} withz7 # =,
i=1,2,...6 andsons > 4, contradicting (*). [ ]

Theorem 10. ny > 37.

Proof: Combining together Theorems 8, 9 we have ng > 35.
Suppose np = 35. By Theorem 8, go = 9 and C(z) = Iy — {z} for each
z € Iy. This implies that:

(8:9+9+3-(35-9-1D)<wit+wa+---+wss < 5=

7 °

and so 156 < 153, which is a contradiction.
Since ng is odd, the theorem holds. 1
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