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Abstract. Let G be a simple connected graph on 2 n vertices with a perfect match-
ing. G is k-extendable if for any set M of k independent edges, there exists a perfect
matching in G containing all the edges of M. G is minimally k-extendable if G is
k-extendable but G — uv is not k-extendable for every pair of adjacent vertices u and
v of G. The problem that arises is that of characterizing k-extendable and minimally
k-extendable graphs. The first of these problems has been considered by several au-
thors whilst the latter has only been recently studied. In a recent paper, we established
several properties of minimally k-extendable graphs as well as a complete characteri-
zation of minimally (n— 1)-extendzble graphs on 2 n vertices. In this paper, we focus
on characterizing minimally (n — 2)-extendable graphs. A complete characterization
of (n — 2)-extendable and minimally (n — 2)-extendable graphs on 21 vertices is
established.

1. Introduction

All graphs considered in this paper are finite, connected, loopless and have no
multiple edges. For the most part our notation and terminology follows that of
Bondy and Murty [3]. Thus G is a graph with vertex set V(G), edge set E(G),
»(G) vertices, e(G) edges, minimum degree §(G) and maximum degree A (G).
For V! C V(G), G[V'] denotes the subgraph induced by V'. Similarly G[ E']
denotes the subgraph induced by the edge set E' of G. Ng(u) denotes the neigh-
bour set of u in G and Ng(u) the non-neighbours of u. Note that Ng(u) =
V(@) — Ng(u) — u. The join GV H of disjoint graphs G and H is the graph
obtained from G U H by joining each vertex of G to each vertex of H.

A matching M in G is a subset of E(G) in which no two edges have a vertex
in common. M is a maximum matching if | M| > |M’| for any other matching M’
of G. A vertex v is saturated by M if some edge of M is incident to v; otherwise,
v is said to be unsaturated. A matching M is perfect if it saturates every vertex
of the graph. For simplicity we let V(M) denote the vertex set of the subgraph
G[ M] induced by M.

Let G be a simple connected graph on 2 n vertices with a perfect matching. For

1 < k € n—1,G is k-extendable if for any matching M in G of size k, there
exists a perfect matching in G containing all the edges of M. We say that G is
minimally k-extendable or simply k-minimal if it is k-extendable but G — uv is
not k-extendable for any edge uv of G.
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Observe that a cycle C,,, of order 2n > 4 is 1-minimal. The complete graph
K3, of order 2n and the complete bipartite graph K, ., with bipartitioning sets
of order n are each k-extendable. However, they are k-minimal if and only if
k=mn-1 (see [2]).

A number of authors have studied k-extendable graphs; an excellent survey is
the paper of Plummer [5]. Minimally k-extendable graphs have been recently
studied by the authors. In [2] we established several properties of k-minimal
graphs and proved that a graph G on 2n vertices is (n — 1) -extendable if and
only if G & K,, or Ki,. It follows that G is (n — 1)-minimal if and only if
G ¥ K., or K»,. The problem of completely characterizing of k-extendable
and k-minimal graphs on 2 n vertices remains open for 1 < k < n— 2. In this
paper we focus on a characterization of (n— 2)-extendable and (n— 2)-minimal
graphs.

We establish that a graph G on 27 > 10 vertices with a perfect matching is
(n — 2)-extendable if and only if G:

(1) is Ky Or K34, 01

(2) is a bipartite graph with a minimum degree n— 1, or

(3) has minimum degree 27# — 3 and contains a maximum independent set of
order at most 2, or

(4) has minimum degree 2n— 2.

For (n—2)-minimal graphs on 2 n vertices, we prove that an (n—2)-extendable
graph G on 27 > 10 vertices is minimal if and only if G:

(1) is an (n— 1)-regular bipartite graph, or

(2) isa(2n— 3)-regular graph, or

(3) contains one vertex of degree 2n— 1 and 2n— 1 vertices of degree 2n—3,
or

(4) contains 2n — 2 vertices of degree 2n — 3 and two vertices, u and v say,
of degree 2n — 2 such that Ng(u) — v = Ng(v) — u.

Section 2 contains some preliminary results that we make use of in establishing
our main results. The characterization of (n—2) -extendable and ( n— 2) -minimal
graphs on 2 i vertices is given in Section 3 and Section 4 respectively.

2. Preliminaries

In this section, we state a number of results on k-extendable and k-minimal graphs
which we make use of in establishing our main results. We begin with fundamental
results of k-extendable graphs proved by Plummer [4]:

Theorem 2.1. Let G be a k-extendable graph on 2 n vertices,1 < k< n—1.
Then

(@ G is (k — 1)-extendable.
(b) G is (k+ 1)-connected.
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Theorem 2.2, Let G beagraphon 2nverticesand 1 < k< n—1. If §(G) >
n+ k, then G is k-extendable.

Anunchuen and Caccetta [1] established the following two results for k-extendable
graphs.

Theorem 2.3. Let G be a k-extendable graph on 2 n vertices with §(G) = k+1,
1<t<k<n—1. If dg(u) = 6(G), then the subgraph G[ N¢(u)] has a
maximum matching of size at most t — 1.

Theorem 2.4. Let G be a bipartite graph on 2 n vertices with a perfect matching
and 6(G) > n— 1. Then G is k-extendablefor 1 < k<n—2.

For minimally k-extendable graphs, Anunchuen and Caccetta [2] proved the
following three results which are very useful in establishing a characterization of
minimally (n — 2)-extendable graphs on 2 n vertices.

Theorem 2.5. Let G be a k-extendable graph on 2n vertices,1 < k< n-1.
Then G is minimal if and only if for any edge e = uv of G there exists a matching
M ofsize k in G —e such that V(M) N{u, v} = ¢ and forevery perfect matching
F,in G, containing M,e € F.

Theorem 2.6. If G # K, is a k-minimal graph on 2 n vertices,1 < k < n—1,
then 6(G) < n+ k-1,

Theorem 2.7. (a) K3, is k-minimal,1 < k< n—1 ifandonlyif k=n-1.
(b) K, is k-minimal,1 < k <n—1 ifandonlyif k=n—1.
We conclude this section by stating Dirac’s Theorem (see [3], p. 54).
Theorem 2.8. If G is a simple graph with v(G) > 3 and §(G) > }v(G), then
G is hamiltonian.

3. A Characterization of (n — 2)-Extendable Graphs
Our first result provides the possible values of the minimum degree of an (n—2)-
extendable graph.

Theorem 3.1, If G is an (n — 2)-extendable graph on 2n > 6 vertices, then
6(G) < nor&(G) >2n-3.

Proof: The assertion is obvious for G = K2,. Assume G # K3, and suppose to
the contrary that n+ 1 < 6(G) < 2n— 4. So we need only consider n > 5.
Let u be a vertex of G with dg(u) = 6(G) = r and M a maximum matching in
G[N¢g(u)]. Now by Theorem 2.3

|M|S8(G)—(n—2)—l=r_n+ 1.
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Hence, r — 2|M| > 2n—r — 2 > 2. Consequently, there exist vertices, a and b

say, in Ng(u)\V (M) . The maximality of M implies that there are at most 2 | M|

edges between the vertices of V(M) and a, b. Consequently,

2r < dg(a) + dg(b) <2+ 2|M|+2(2n—7-1)

=4n—-2r+2|M|
<4n—-27+2(r—n+1)=2n+2.

Hence, r < n+ 1. So we have nothing to prove forn+2 < r < 2n—4. The only

case to consider is 7 = n+ 1. Now the above inequality implies that |M| = 2.

Let M = {ujuz,v1v2}. The extendability of G implies the existence of a
perfect matching F in G containing M. Let uu’ € F and

F ={ww € F:we Neg(u)\V(M),w' € Ne(u)}.
Since M is a maximum matching in G[ Ng(u)] the vertices ot_'_!_Va( u)\V(M)
form an independent set. Consequently, | | = n—4. Now since |Ng(u)| = n—2
there exists an edge z, z, € F with z; and z; in Ng(u) . The situation is depicted
in Figure 3.1; the edges of F' are shown in solid lines.

n-2 Og / /

verticies K X NG("')

Figure 3.1

Suppose that there is a vertex wy € Ng(u) \V (M) that is joined to both ends
of an edge of M, say uju,. Consider any vertex wz € Ng(u)\V(M), w2 # w.
The maximality of M implies that w, is not joined to u; or uz. The independence
of the set Ng(u)\V (M) and the requirement that dg(w;) > n+ 1 implies that

Ng(wz) = {u,v1,2}UNg(u).
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Since w, # w) is any vertex of Ng(u) \V (M) and M is maximum, the only pos-
sibility is for [Ng(u)|=n+1=6 andhence,_l_Ng( u)| = 3. Further, every vertex
of Ng(u) must be joined to every vertex of Ng(u). Let 23 € Ng(u)\{z1,z2}.
Then

M' = {uv2, 2391, 7122}

is a matching in G[ Ng(w2 )] of size greater than two, contradicting Theorem 2.3,
Hence, each vertex of Ng(u)\V (M) is joined to at most one end of each edge
of M.

The choice of M and the requirement that §(G) = =+ 1 implies that each
vertex w € Ng(u)\V(M) is joined to exactly one end of each edge of M. In
fact,

Ng(w1) N Ng(u) = Ne(wz2) N Ng(u)

for any w; # w2 € Ng(u)\V(M). Without any loss of generality we assume
that uyw, vyw € E(G), for every w € Ng(u)\V(M). Consequently,

Ng(w) = {u,u1,v1} UNg(u)

for every w € Ng(u)\{u1n}. _
Now if u;z € E(G) for some z € Ng(u)\{z1, 22}, then

M" = {uv, 113, 7172}

is a matching in G such that Ng( u) \V (M") is an independent set of size n— 1.
But then since [V(G)\V(M")| = 2n— 6, M" does not extend to a perfect
matching in G, contradicting the extendability of G. Hence, u1z ¢ E(G) for any
z € Ng(u)\{z1,z2}. Similarly viz ¢ E(G) forany z € Ng(u)\{z1,22}.
Since Ng(u)\{u1, v} is an independent set of n— 1 vertices, vjv1 € E(G),
as otherwise, {u;jv1,z1z2} does not extend to a perfect matching. Let z3 €
Ne(u)\{z1,z2} and wz3 € F'. Note that w € Ng(u)\V(M). Then

F" = (F\{wz3}) U {u2z1,v272, uu'}

is a matching of size n— 5+ 3 = n— 2 in G. But F does not extend to a perfect
matching in G since G — V(F") = {u1,v1,w, 23} is a K, 3 with centre w. This
contradiction completes the proof of the theorem. [ |

In the next three lemmas we establish a characterization of (n — 2) -extendable
graphs on 2 n vertices with prescribed minimum degree.

Lemma 3.1. Let G be a graph on 2n > 8 vertices with a perfect matching and
8(G) =n~- 1, Then G is (n— 2) -extendable if and only if G is bipartite.

Proof: The sufficiency follows from Theorem 2.4. We need only prove the neces-
sity. So let G be an (n— 2)-extendable graph with §(G) = n— 1.

119



Let u be a vertex of degree n— 1. By Theorem 2.3, Ng(u) is an independent set
of vertices. The subgraph H = G[N¢g(u)] has at least one edge, since otherwise
N¢(u)U{u} is an independent set of n+ 1 vertices implying that G has no perfect
matching. If zy and z'y’ are independent edges of H, then the graph

C'd =G - {T,y, x’ly'}

has 2n — 4 vertices and contains Ng(u) as an independent set of n — 1 ver-
tices. Thus G’ cannot have a perfect matching, contradicting the fact that G is
k-extendable, k > 2. Hence, H contains only one independent edge, zy say.

Now since G is (n— 1)-connected (Theorem 2.1 (b)) and lN c(u)|l=n>4at
leastone of z or y is adjacent toa vertex of Ng(u). Suppose that zz € E(G) with
z € Ng(u). If yw € B(G),w # z € Ng(u), then the graph G — {z,y, z,w}
contains two disjoint independent sets {u}U(N g( ) \{z,y}) and No(u)\{z, w}
of order n— 1 and n—3, respectively, and so cannot have a perfect matching. This
contradicts the fact that G is k-extendable, k£ > 2. Hence, |[Ng(y) N Ng(u)| < 1.

Suppose that Ng(y) N Ng(u) # ¢. Then yz € E(G). The above argument
implies that Ng(z) N Ng(u) = {z}. Now, by Theorem 2.3, each of z, y and 2
has degree at least n in G. Consequently, z and y are joined to every vertex of
N¢(u). But then since n > 4, H contains at least two independent edges. This
contradiction establishes that No(y) N\Ng(u) = ¢. Hence, dg(y) = n—1 and the
set of vertices Ng(y) = Ng(u)\{y} must be (by Theorem 2.3) an independent
set. Consequently, Ng(u) U {y} and {u} U (Ng(u)\{y)) are independent sets
of n vertices in G, proving that G is bipartite. |
Remark: Lemma 3.1 is best possible in the sense that there exists an (n — 2)-
extendable graph on 2n = 6 vertices that is not bipartite. Figure 3.2 displays
such a graph.

Figure 3.2

Lemma 3.2. Let G be a graph on 2n > 10 vertices with a perfect matching and
8(G) = n. Then G is (n— 2)-extendable ifand only if G = Kyy.

Proof: The sufficiency is obvious as K, is k-extendable for1 < k < n— l So
we need to prove only the necessity. We do this by following a slmilar strategy to
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that used in the proof of the previous lemma. So let G be an (n — 2) -extendable
graph with 8(G) = n.

If G contains an independent set X of n vertices, then V(G)\X is also an
independent set, since otherwise G cannot be k-extendable, & > 3. But then,
since §(G) = n, G ¥ K,,. Hence, we may suppose that G contains at most
n — 1 independent vertices.

Let do(u) = n. Theorem 2.3 together with the above assumption implies
that the subgraph G{ N¢(u)] contains only one independent edge, vw say. Now
for the edge vw to be extendable to a perfect matching in G, the subgraph H =
G[Ng(u)] must have edges. If H contains two independent edges zy and z'y’,
then the graph G’ = G — {=z,y,2',y’, v, w} has 2n — 6 vertices and contains an
independent set of order n— 2 and hence, cannot contain a perfect matching. This
contradicts the fact that G is k-extendable, & > 3. Hence, H contains only one
independent edge, say zy. Consequently, either dg(z) = dy(y) = 2 or at least
one of z or y, say z, has degree 1in H. So z must be joined toatleastn—2 >3
vertices of Ng(u). Hence, zz € E(G) for some z € Ng(u)\{v, w}. Further,
since n > 5, y must be joined to a vertex 2’ € V(G)\{z, v, w, z}.

If 2 ¢ Ng(u), then G — {v,w,1,y,2,2'} is a bipartite graph with biparti-
tioning sets Ng(u)\{v, w, z, 2'} and {u} U (Ng(u)\{z, y}) of order n— 4 and
n — 2, respectively. Hence, the edges {vw, zz,y2'} do not extend to a perfect
matching, a contradiction. Therefore, 2/ € Ng(u) and hence, since dg(y) > n,
t = |Ng(y) N Ng(u)] is 2 or 3. We claim that Ng(u) — y C Ne(y). This is
clearly so whent = 2. If t = 3, then vw and =z are independent edges in Ng(y)
and hence, by Theorem 2.3, dg(y) = n+ 1 and so Ng(u) — y C Ne(y). Now
since n > 5, {u} U (Ng(u)\{y}) is an independent set of n — 1 vertices in
G — {v,w,y, z}. Hence, yz ¢ E(G). Consequently,

Ng(y) = {v,w}U(Ne(u)\{y}).

Further, dy(x) = 1 and so z must be joined to at least (n— 1) vertices of Ng(u).
Hence, zv or zw € E(G).

Without any loss of generality suppose that zv € E(QG). Then {uvw, zv} does
not extend to a perfect matching in G, since the subgraph G — {u, v, w, z} has
an independent set {y} U (Ng(u)\{v,w}) of order n— 1 and so cannot have a
perfect matching. This proves that Ng(u) is an independent set and completes
the proof of the lemma. 1
Remark: Lemma 3.2 is best possible in the sense that there are (n— 2) -extendable
graphson 6 < 2n < 8 vertices with §( G) = nwhich are not K, ,. Two of these
graphs are shown in Figure 3.3.

Our next lemma concems the case when 6(G) = 2n— 3.

Lemma 3.3. Let G be a graph on 2 > 8 vertices with a perfect matching and
8(@) = 2n— 3. Then G is (n— 2)-extendable if and only if G contains a
maximum independent set of order at most 2
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(a) (b)
Figure 3.3

Proof: First we prove the suffiCiency. Let M be a matching of sizen— 2 in G.
Consider the subgraph G' = G — V(M). Clearly »(G') = 4 and §(G") > 1
since §(G) = 2n— 3. If G’ has no perfect matching, then G’ & K, ;. But then
G contains an independent set of size 3, a contradiction. Hence, G’ has a perfect
matching. This implies that G is (n — 2)-extendable.

Now we prove the necessity. Suppose G is an (n — 2) -extendable graph with
8(G) = 2n—13 having an independent set S = {u,v,w}. Thendg(u) =2n-3
and Ng(u) = {v,w}. Let u' € Ng(u) and F a perfect matching containing
the edge uu’. Then there exist vertices v' and w' of Ng(u) such that vv', ww' €
F. Further, G{ Ng(u)\{v',v',w'}] contains a subset F' of F of size n— 3. If
G[{v',v',w'}] contains an edge e, then {e} U F' is a matching of size n — 2
that does not extend to a perfect matching in G since G — V({e} U F') & K 3,
contradicting the extendability of G. Hence, {u’,v',w'} is an independent set.
Since 6(G) = 27 — 3, each vertex of {u',v', w'} is adjacent to every vertex of
F'. Letab € F'. Now F" = (F'\{ab}) U {v'a, w'b} does not extend to a perfect
matching in G, since G — V(F") ¥ K, 3, again contradicting the extendability
of G. This completes the proof of our lemma. |
Remark 1: Lemma 3.3 is best possible in the sense that K3 3 is a 1-extendable
graph on 6 vertices containing an independent set of order 3.

Remark 2: The necessity of Lemma 3.3 does not always hold for (n—3) -extendable
graphs. For example, the graph H = 3 K1 V K2,-3 is an (n— 3)-extendable graph
on 27 > 8 vertices that contains an independent set of order 3.

In view of theorems 2.1(b), 2.2 and 3.1 and lemmas 3.1, 3.2 and 3.3 we can now
state a characterization of (n — 2)-extendable graphs.

Theorem 3.2. Let G be a graph on 27 > 10 vertices with a perfect matching.
Then G is (n— 2)-extendable if and only if G:
(1) is Kn, or K34, 0r
(2) is a bipartite graph with minimum degree n— 1, or
(3) has minimum degree 2n — 3 and contains a maximum independent set of
order at most 2, or
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(4) has minimum degree 2n— 2.

Remark 1: There exist ( n— 2) -extendable graphs for each type specified in The-
orem 3.2. Clearly, K,,,\{ a perfect matching } satisfies type (2). 2Kz V Kan4
satisfies type (3) and K>, — e, for some edge e in K>, is in type (4).

Remark 2: An (n— 2)-extendable graph has order at least 6. Theorem 3.2 pro-
vides a characterization for 2n > 10. The graphs displayed in Figures 3.2 and
3.3(b) indicate that this bound is best possible.

4. A Characterization of (n — 2)-Minimal Graphs

From theorems 2.1(b), 2.6, 2.7 and 3.1, we conclude that an (n — 2)-minimal
graph G has §(G) = n— 1, nor2n— 3 for 2n > 6. Further, from Lemma 3.2,
8(G) # nfor2n > 10. We thus have :

Lemmad.1l. If G isan (n—2)-minimal graphon2n > 6 vertices, then §( G) =
n—1,nor 2n~— 3. Furthermore, for 2n > 10, 6(G) # n

We establish our characterizations of (n — 2)-minimal graphs by considering
two cases according to the values of the minimum degree.

Theorem 4.1. G is an (n— 2) -minimal graph on 2 > 8 vertices with 6(G) =
n— 1 ifand only if G is an (n — 1) -regular bipartite graph.

Proof: It follows from Lemma 3.1 and Theorem 2.1(b) that an (n — 1)-regular
bipartite graph G on 25 > 8 vertices is (n — 2)-minimal and so the sufficiency
is immediate. We need to consider the necessity part.

Let G be an (n—2) -minimal graph with §(G) = n—1. Then,by Lemma3.1,G
is bipartite with bipartitioning sets, A and B say, of order n. We need to establish
that G is (n — 1)-regular. Suppose that this is not the case. Then, since §(G) =
n— 1 and |A| = | B| = n, G contains vertices € A and y € B that have degree
n. So zy € E(G). Butthen G — zy is a bipartite graph with §(G) = n— 1 and
hence, by Theorem 2.4, is (n— 2)-extendable. This contradicts the minimality of
G and completes the proof of our theorem. [ |
Remark: The bound on # in Theorem 4.1 is best possible as an (n — 2)-minimal
graph G on 6 vertices exists which is neither bipartite nor regular; for example,
the graph of Figure 3.2.

Characterizing the (n— 2)-minimal graphs having minimum degree 2n— 3 is
amore complicated exercise. We begin by establishing some sufficient conditions
for (n — 2)-extendable graphs to be minimal.

Lemma 4.2, If G is a (2n— 3) -regular (n— 2) -extendable graph on 2n > 8
vertices, then G is minimal.

Proof: Lete = uv € E(G) and consider G’ = G[ Ng(u) — v]. Clearly »(G') =
2n—4 and §(G') > 2n— 7. We claim that G’ has a perfect matching M. For
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2n > 10 this follows from Theorem 2.8 as §(G') > 2n—7 > %—u(G’). For
2n = 8,8(G") > 1 and so either G’ has a perfect matching or an independent
set of size 3. Now, by Lemma 3.3, G’ must have a perfect matching as required.
Now M is a matching of size n — 2 which clearly does not extend to a perfect
matching in G — uv. This completes the proof of the lemma. |

Remark: Lemma 4.2 is best possible in the sense that K3 3 is 3-regular 1-extendable
on 6 vertices but is not minimal, by Theorem 2.7.

Lemma 4.3. Let G be an (n— 2)-extendable graph on 2n > 8 vertices. If G
has only one vertex of degree 2n— 1 and 2n— 1 vertices of degree 2n— 3, then
G is minimal,

Proof: Follows from the proof of Lemma 4.2, since every edge of G is incident
to at least one vertex of degree 2n — 3. [ ]

Remark: Lemma 4.3 is best possible in the sense that the wheel Wg (drawn in
Figure 4.1) on 6 vertices satisfies our hypothesis but is not minimal since We — e
is still 1-extendable.

Figure 4.1

Lemma 4.4. Let G be an (n— 2) -extendable graph on 2 > 8 vertices. If G
has 2n — 2 vertices of degree 2n — 3 and 2 vertices, u and v say, of degree
29— 2, such that No(u) — v = Ng(v) — u, then G is minimal.

Proof: Let e = zy be an edge of G. If dg(z) = 2n — 3, then the proof of
Lemma 4.2 is valid and establishes that G is minimal. So the only case we need
to consider is dg(z) = dg(y) = 2n—2. Thatisz = vandy = v. Now
since Ng(u) — v = Ng(v) — u, G contains a vertex w that is not joined to u or v.
Clearly, Ng(w) = Ng(u)—v. Considera vertex z € Ng(u)—v and the subgraph
G' = G[Ng(u) — v — z}. Observe that »(G') = 2n—4 and §(G') > 2n—-7

and so, as in the proof of Lemma 4.2, G’ contains a perfect matching M. Now M
does not extend to a perfect matching in G — uv since the induced subgraph of
{u,v,2,w} in G — uv is K; 3. This completes the proof of the lemma. ]
Remark: The condition Ng(u) —v = Ng(v) —u in Lemma4.4 is essential, since
there exists an (n — 2) -extendable graph which violates this condition and is not
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minimal. Let P, be a path on 4 vertices and H = P4 V Ka,4 \{ a hamiltonian
cycle },n > 4. It is easy to show that H is an (n — 2)-extendable graph with 2
vertices, u and v say, of degree 2n— 2 and 2n— 2 vertices of degree 27— 3.
Clearly, u and v are internal vertices of P4. Further, Ng(u) — v # Ng(v) — u.
It is not difficult to show that H — uv is (n — 2)-extendable. Hence, H is not
minimal.

Now we can establish a characterization of (n — 2)-minimal graphs on 2n
vertices with minimum degree 2n — 3. We begin with the following lemma.

Lemma 4.5. Let G be a k-minimal graph on 2n vertices, 1 < k < n—2
with A(G) =2n—1. If dg(u) = 2n— 1, then dg(v) £ 2k + 1 for every
v € V(G)\u.

Proof: Suppose to the contrary that there exists a vertex v # uof G with dg(v) >
2k + 2. Since G is minimal and yv € E(G) there exists a matching M of size
k in G — uwy with V(M) N {u,v} = ¢. Let F be a perfect matching, in G
containing M. Thus uv € F' (Theorem 2.5). Since k < n—2, |[V(G)\(V(M) U
{v,v}| >2n—-2k -2 > 2. Because dg(v) > 2k + 2, there exists a vertex
z € V()\(V(M) U {u,v}) withvz € E(G). Letzy € F. Clearly, y ¢
V(M) U{u, v}. Further, uy € BE(G) since dg(u) = 2n— 1. Thus

Fo = (F\{uv, zy}) U {vz,uy}

is a perfect matching containing M and uv ¢ Fo. But this contradicts Theorem 2.5
and hence proves our lemma. [ |

Lemmas 4.3 and 4.5 together yield the following theorem.

Theorem 4.2. Let G be an (n— 2) -extendable graph on 2n > 8 vertices with
8(G) = 2n—3 and A(G) = 2n— 1. Then G is minimal if and only if G has
only one vertex of degree 2n— 1 and 2n— 1 vertices of degree 2n— 3.

Theorem 4.3. Let G be an (n— 2) -extendable graph on 2n > 8 vertices with
8(G) =2n~3 and A(G) = 2n— 2. Then G is minimal if and only if G has
2n— 2 vertices of degree 2n— 3 and 2 vertices, u and v say, of degree 2n— 2
such that Ng(u) — v = Ng(v) — u.

Proof: The sufficiency follows from Lemma 4.4. So we need only prove the ne-
cessity. Let G be an (n — 2)-minimal graph with §(G) = 21— 3 and A(G) =
2n— 2. Then the number of vertices of degree 2n — 3 must be even and hence,
the number of vertices of degree 2n — 2 is also even. Thus G contains at least
two vertices of degree 2n — 2. We need to prove that there are exactly 2 such
vertices in G. Suppose to the contrary that u, v and w are three vertices of degree
27— 2. We distinguish into two cases according to whether or not uv € E(G).
Case 1: uv ¢ E(G). Then Ng(u) = Ng(v) = V(G)\{u,v} and w € Ng(u).
Let M be any matching in G of size n — 2 with V(M) N {u,w} = ¢; such an
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M exists since @ is extendable. Consider the subgraph G' = G — V(M). Let
V(G") = {u,w, z,y}. Note that v could be z or y.

Ifv = z, then F = {zw, uy}UM is a perfect matching in G— uw, contradicting
the minimality of G (Theorem 2.5). Hence, v ¢ {z,y}. This implies that z,y €
Ng(u). Since dg(w) = 2n— 2, wy € E(G) or wzx € E(G). Without any
loss of generality, assume wy € E(G). Then F/ = {wy,uz} U M is a perfect
matching in G — uw, again contradicting the minimality of G (Theorem 2.5). This
proves Case 1. ,

Case 2: uv € E(G). Leta € Ng(u) and M a matching in G with V(M') N
{u,v} = ¢. If av € E(G), then an argument similar to that used in Case 1
establishes the existence of a perfect matching F/, in G — uv, containing M’
such that uv ¢ F". Hence, by Theorem 2.5, av ¢ E(G). This implies that
Ng(u) — v = Ng(v) — u. Since §(G) = 2n— 3, Ng(a) = Ng(u) — v and
w # a. Thusw € Ng(u) — v. Again a similar argument to that used in Case 1
establishes the existence of a perfect matching in G — uw containing a matching
M" of size n — 2 with V(M") N {u,w} = ¢. This contradicts the minimality
of G. Hence, u and v are only two vertices of degree 2n — 2 in G. Moreover,
Ng(u) — v = Ng(v) — u follows directly from the proof and completes the proof
of the theorem. 1

The following result which follows from Lemma 3.3 and theorems 4.2 and 4.3
gives us information on the induced subgraph of a neighbour set of a vertex having
maximum degree in (n — 2) -minimal graphs with §(G) = 2n— 3.

Lemma 4.6. Let G be a non-regular (n— 2) -minimal graph on 2n > 8 vertices
with §(G) = 2n— 3. If dg(u) = A(G) and H = G[Ng(u)), then H, the
complement of H, is a 2 -regular triangle-free graph or a 2 -regular triangle free
graph plus an isolated vertex.

Lemmas 4.1 and 4.2 and theorems 4.1, 4.2 and 4.3 together allow us to state the
following characterization of (n— 2)-minimal graphs on 2 » vertices.

Theorem 4.4. Let G be an (n — 2)-extendable graph on 2n > 10 vertices.
Then G is minimal if and only if G:
(1) isan (n— 1) -regular bipartite graph, or
(2) is a (2n— 3)-regular graph, or
(3) contains one vertex of degree 2n— 1 and 2n—1 vertices of degree 2n—3,
or
(4) contains 2n — 2 vertices of degree 2n — 3 and two vertices of degree
2n—2,u and v say, such that Ng(u) — v = Ng(v) — u.

Remark:; There exists (n— 2)-minimal graphs for each type specified in Theo-
rem 4.4, Examples are: K, ,\{a perfect matching}; K2,\{ a hamiltonian cycle};
K1V K3, \{ a hamiltonian cycle}; and K2 V K2y \{ a hamiltonian cycle },
respectively.
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Figure 4.2

Figure 4.3
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We have observed that an (n — 2)-extendable graph on 2 » vertices must have
27> 6. Theorem 4.4 characterizes (n — 2)-minimal graphs of order 2n> 10.
We have completely characterized all (n— 2) -minimal graphs on 6 and 8 vertices.
As the proofs are somewhat tedious we simply state the results.

Theorem 4.5. Let G be an (n— 2) -minimal graph on 2n vertices,n= 3 or 4.
Then

@ if n=3,G is one of the graphs displayed in Figure 4.2.

() if n=4, @ is one of the graphs displayed in Figure 4.3.
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