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I. Introduction

Suppose we have r distinct objects, say wy,---,w,, and for i =
1,.--,r, we have n; copies of the i-th object w;. Let n = ny + -+ 4 n,.
We arrange all of the objects into n places numbered 1,2,-.-,n. Each
arrangement is in fact a function f from the set D = {1,2,---,n} onto
the set Q@ = {w1,---,w,} so that for each 1 < i < r, there are exactly n;
elements of D mapped into w;. Let F be the set of all such kind of functions
f from D onto Q.

Let S, be the symmetric group defined on D and let S be a sub-
group of S,. S acting on F is defined to be that for any f € F and for any
¥ € S, vf is an element of F so that for any 1 < j < n, j(of) = (G7)f
Thus, if jf = w;; for all 1 < j < n, then j(yf) = w;;, forall1<j< n
For any f € F, the set Sf = {yf|y € S} is called to be the orbit of f under
S. The function f is a representative of the orbit Sf. The set of all orbits
under S is denoted by F/S.
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Let  =(1,2,---,n) € S, be the permutation on D so that na = 1
and i« = i+ 1forall 1 <i < n. Let C, be the cyclic subgroup of S,
generated by a. Then |C,| = n. Each orbit in F/C, is called a circular
permutation and the number n is called the length of any such circular
permutation. For convenience, we may write and say a circular permutation
f instead of a circular permutation C,f. If f : D —  is a circular
permutation so that there is a positive integer d satisfying (j + d)f = jf
for all 1 < j < n (we take (j + d) modulo n instead of j + d whenever
Jj +d > n), the smallest such positive integer d is called the period of
this circular permutation f. Trivially, if d is the period of some circular
permutation then d divides the greatest common divisor of ny,---,n,. See
[4] for more details in this topic.

Let 3 = (1,n)(2,n —1).-- € S, be the permutation on D so that
ti@=n—i+1foralll<i<n. Let D, be the dihedral subgroup of order
2n of S, generated by « and 8. Each orbit Dy, f in F/D,, is called to be a
transposed circular permutation. We may also write and call a transposed
circular permutation f instead of a transposed circular permutation D, f.

The purpose of this note is to enumerate the number N of all
transposed circular permutations (the general problem and techniques have
been discussed intensively in any standard book of combinatorial theory;
e.g., (1], [2], and [4]). We will give an explicit formula to compute N in
the following theorem. In fact, the need for the results presented in this
note have arised in dealing with orthogonal polygons for computational
geometry (see [2]).

Theorem. Notations and terminologies are as stated above. Let

= (n/d)! )
Mlmayeeeom) =5 2 DG (o here #0) is Bulr

phi function and (ny,-- -, n,) is the greatest common divisor of the numbers
ny,-+,n.. Then

( iM(ny,-,n.)+ 1 Al i all n;’s are even,

(F)- ()
%M(nl,' ce,n) + -;- T (",.T-l)! - if exactly one, say n,,
(HF=FE) (3R
of n;’s is odd,
N=1{, 1 (252 .
2 te r 9 Th;— no— 2 n n tl y
sM(ny,--,n.) + 3 SRSy, if exactly two
say n; and ny,
of n;’s are odd,
( M(n,,---,n,) otherwise.

Remark. One can also make use of the greatest integer function
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[] to obtain a simple explicit formula for N:

iM(ny,---,n,) if more than two of the n; are odd,
N = lM(nl,---,n,-)+l-n-%.—, ifa=0,1 or 2 of the n;
2 2 TR [T
are odd.

I1. Proof of the Theorem

Let r,n;,n,D,Q,a,3,C, and D, have the same meanings as in
Section I. In order to prove the theorem, we need the following two well-
known results.

The first one is a formula for the number of circular permutations.
It is known (see pp. 12-13, [4]) that the number of circular permutations

. .1 (n/d)!
of length and period n is - dl(ng_n,)ﬂ(d)("l/d)!“’("'/d)!’ where u(-)
is the Mobius function and (ny,---,n,) is the greatest common divisor of
ny,---,ny. Since one of our circular permutations of length n and period
n/d arises from a concatenation of d circular permutations of length and
period n/d so that for each 1 < ¢ < r, there are exactly n;/d elements
J € {1,2,---,n/d} mapped into w;, the total number M(ny,---,n;) of
circular permutations is

o d (n/dt)!
M me) d.(ng,n,)n,.gnz,.... OG- (e

=1 (n/d)!
- n dl("gz,';,n,.) ¢(d) ('nl/d)l e (nr/d)' )
where ¢(-) is Euler phi function.

(1) =

The second one is Burnside’s Lemma (see Sec. 3, Chap. 8, [2]),
namely, if the group G acts on a set X, then the number N of orbits of G
acting on X is given by
(2) N =g Z(# of elements fixed by o).

oc€G

For each o € Dy, let F(o) = {f|f : D — Q,0f = f}, i.e., F(0)

be the set of elements of F fixed by o. By Burnside’s Lemma, we have
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(3) = Dn gg‘n |F (o)
(Z IF(@)+ Y 1F(o))
0€C, aeﬂCn
= %(- 3 |F(a)|)+— > IF ()
aeC,. GGﬁCu
1
==-M(n,,-- ,nr)+_ IF(7)|
2 ( ' 2 UE;Cn

In the last equation, the number M(ny,---,n;) is known explicitly by the
formula (1). We just need to evaluate the term 5 Z {F(c)|. There

g€PC,
are now three cases to consider, but we first make a remark concerning the

elements of AC,.

Remark. Let1 <k <n. Ifkisodd, then fo¥ = (&L —1, &4 4
1)(5L -2, 5149) .., where 5L + i represents 2L +i—n if Blyi>a,
and &L — i represents n + (—+— i) if 21 — i < 0. In this case, 2} is
fixed by Ba*, and —'L + is also fixed by Ba* whenever n is even. If k
is even, then fa* = (2, 3 + (& -1, £ +2).... In this case, either Sa*
fixes no elements if n is even, and Bo* ﬁxes only the element k $+28lifn
is odd.

Using this remark, we can evaluate the sum z |F(o)| in the
c€PC,
following three cases:

Case 1. n is odd. First consider k odd. Then ££! is fixed by Bo*,
and every element f € F(Ba*) is completely determmed by the images
ML (AL 4+ 1)f,--, (8L + 251)f. Therefore, |F(8at)| # 0 if and only
if there is only one odd number, say n,, among n;,---,n,. Moreover, if

k kY| — () ‘o
|F(Ba®)| # 0, then |F(BaF)| = REasT e This is also true for &

even and hence, 51,; Z |F(o)| = 0 if at least two of the n;’s are odd, and

7€BRCH
(251) 1 (=5
1 —_ . - - 2
w2 PO = g Gy " ey )

if only one, say n,, of the n;’s is odd. Substituting in (3), we have
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(23

1 .. L

M1, 0me) + 2 ey oy
N = of the n;’s is odd.

iM(ny, - ,n.) otherwise.

if exactly one, say n;,

Case 2. n is even and all n;’s are even. If k is odd, then both "—'Z,L’
and E‘-.f,’-‘- + 3 are fixed by Ba*. Every element f € F(Ba¥) is completely
determined by the images 532'—1-1’, (’—‘3{,i +1)f,-- ,("—"2'—1 + 3)f. Since all n;’s
are even, &+l f = (£l 4 2)f and this could be equal to any one of the
w;’s. Hence,

G (5 D ()
- (252)!

G e

_ @y
& %)
~ If k is even, then Ba* fixes no elements of D. Every element f of
F is completely determined by (% + 1)f,---,(% + %)f and so |F(8c*)| =
Combining all of these results together, we have 5 Z |F(o)| =
oc€PCn
3)

1 !
2 B0 ()
Case 3. n is even and at least one of the n;’s is odd. In fact, the
number of the n;’s which are odd is even. Without loss of generality, let
ny,ng, -, Nyt be odd.
Let k be odd. As in Case 2, f € F(Ba*) is completely determined

2o

, and then, N = $M(ny,---,n,) + 5 - G .

-

by
Eilg (B4 1)F, ... (41 4+ B)f, so that |F(Bak)| # 0 if and only if t = 1.
In the case t = 1,%1f # (&L + 2)f, and moreover, &1f = wy if
and only if (2! + 8)f = wp. Hence, if ¢ = 1, then |[F(Bo*)| = 2-
(232!
(%‘—‘)!(23;—‘2)!()%1)!---(%;)!‘
Let k be even. Then Ba* fixes no elements of D and f € F(Ba*)
is completely determined by (¥+1)f,---,(%+2)f. Since some n; are odd,
|[F(Ba*)| = 0.

Combining all of these results together, we have
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2-1 2-1
o 2 F@) = 5-(X IF(Ba®*)+ 3 1F(a™))

o€pCy i=0 i=0
- i(.’.l. 9. (nT-?)l + 0)
Tz (5
_L (=)
2 (BEREELIE - ()Y
Therefore, (52, .
LMy, ne) + 3 (ua__,)!(&::l’)!(é})rm(%r_)! if exactly two,
N = say n; and ng,
of the n;’s are odd,
$M(n,,---,n,) otherwise.

This concludes the proof.
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