Isomorphic factorization of trees of
maximum degree three

P. Horak! X. Zhut

ABSTRACT. We prove that for any tree T of maximum degree
three there is a subset S of E(T) with |S| = O(logn) and a
two colouring of the edges of the forest T'\ S such that the two
monochromatic forests are isomorphic, where n is the number
of vertices of T of degree three.

1 Ix_ltroduction

A graph G is called even or bisectable if its edges can be coloured by two
colours such that the two monochromatic subgraphs are isomorphic.

It is a difficult problem to decide whether or not a given graph is even.
The problem is probably N P-complete even for trees, [4]. In [6] Harary
and Robinson conjectured that this decision problem is “easy” for trees
with maximum degree three. Actually they conjectured that, except for
two small trees, all trees of maximum degree three are even. Heinrich and
Horak [5] disproved this conjecture by presenting an infinite class of trees
of maximum degree three which are not even.

Let B(G) be an even subgraph of G of maximum size. Erdés, Pach
and Pyber [3] and Alon and Krasikov [2] studied the function R(G) =
e(G) — e(B(G)). It was shown that any graph of size e contains an even
subgraph with at least Q(e'§) edges, and that there are graphs of size e
containing no even subgraphs of size bigger than O(egloge/log(loge)).

A better bound for trees was found by Alon, Caro and Krasikov [1]. They
showed that R(T) < O(g5;557y) for all trees T', where n = e(T). They also
presented a tree T of n edges such that R(T") > Q(logn).
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The main result of our paper is

Theorem 1. Let T be a tree with maximum degree three. Then R(T) <
O(logn), where n is the number of vertices of degree three.

Although it is known that there are infinite many trees T with maximum
degree three such that R(T) > 0, [5], we do not know any tree T' with
maximum degree three and R(T") > 2. It is likely that the method used
in this paper could be modified to prove that R(T") < c for all trees of
maximum degree three, where ¢ is a constant independent of T.

Our proof of Theorem 1 is constructive and gives a linear algorithm for
finding an even subtree of T of the stated size.

2 Preliminaries

Throughout the paper by a tree we mean a tree of maximum degree three.
A tree in which all vertices have degree one or three will be called a 3-tree.
If T' is a tree and T is obtained from 7" by subdividing its edges, then we
say that T is reducible to T’. It is obvious that any tree T reduces to a
unique 3-tree, and we denote this 3-tree by T*.

Suppose that T is a tree and e € E(T™*) is an edge in the reduced 3-tree
of T. We let Pr(e) denote the path in T which replaces the edge e, and let
|le||7 be the length of Pr(e). If there is no danger of misunderstanding the
subscript T' will be dropped. An edge e € E(T™) is called even (odd) if ||e||
is even (odd). A vertex v of T* is called a (3, i)-vertex if d(v) = 3 and v is
adjacent in T to i vertices of degree 3. An edge e of T is called a pending
edge if it is incident to a degree one vertex of T. If two pending edges e, e’
of T* are adjacent, then we call the union P(e) U P(¢’) an end of T.

Clearly it suffices to prove Theorem 1 for those trees T for which each

pending edge e of T* has length |le|| < 2, for if e has length greater than
two, we can remove an even subpath of Pr(e) and at the end we colour the
removed edges alternately by two colours.
Definition 2: Let Hj, Ha be subtrees of T* as depicted in Fig. 1(a)
and Fig. 1(b) respectively, where z,y, z1, ¥1, Z2, y2 are pending edges. Let
P(z) = vv1 -+ V)2 —1Y|)2))- If]|2}| > 1 then we split T (not T*) at the vertex
||z]]—1 into two trees, and call the one containing v a type I removable end
of T. The path vy, - - v, _; is called the neck of this removable end. Let
P(z') =wWwy W) |- If

o ||z1]] = ||z2]| =1, and
e at least one of xy,y, is even and at least one of z,, y; is even,

then we split the tree T" at the vertex wj|,«|—1 (w571 could be w) into two
trees and call the one containing w a type II removable end of T. Similarly
the path wu,. - -4, —1 is called the neck of the removable end.
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Figure 1

Note that we can assume that no vertex of T* is incident to three ends of
T. For otherwise the tree T contains at most four vertices of degree three,
and it is easy to see that such a tree T has R(T) < 5. Therefore each edge
of T is contained in at most one type II removable end.

Both type I and type II removable ends are called removable ends of T
If H is a removable end of T', then there is a unique edge of T\ H which is
incident to H. We denote this edge by epy.

We remove from T all its removable ends, obtaining a tree T;. Remove
all removable ends of T obtaining T3 and so on. At the end we obtain a
tree T which either has no removable ends or contains at most four vertices
of degree three.

Theorem 3. For any tree T we have R(T) < R(T) + c, where c is a
constant not depending on T.

Proof: Suppose that we have coloured e(T) — R(T) edges of T by two
colours such that monochromatic subgraphs are isomorphic. We extend
this colouring to edges removed from T, i.e., the edges of the removable
ends of T,Ty,-- -, leaving at most ¢ more edges uncoloured, so that the
monochromatic subgraphs are still isomorphic.

As noted before, we can assume that each pending edge e of T* has
lle]l € 2. It is easy to see that under this assumption each pending edge e
of T} also has ||e|| < 2. For a similar reason we can also assume the neck of
each type I removable end has length one or two and the neck of each type
II removable end has length zero or one. For if the neck of a removable end
is too long we simply colour an even subpath of the neck alternately by two
colours.

Depending on the length of the neck, and the parity of the two pending
edges of a removable end, there are 6 different type I removable ends and
6 different type II removable ends. In Fig. 2 and Fig. 3 we list these 12
different removable ends Hy, Hs,- - , H1, where the thick edge is ey.

We will colour the edges (except at most a constant number of them) of
all the ends so that the union of the ends induces two isomorphic monochro-
matic subgraphs. Furthermore the monochromatic graphs induced by these
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ends will not interfere with the monochromatic subgraphs induced by the
edges of T. This will be achieved by colouring the edges incident to ey by
the opposite colour of ejr. Therefore how we colour the edges of an end H
depends on the colour of ey. (Of course if ey is an uncoloured edge of T,
we need not worry about the interference). By taking into consideration
of the colour of ey, we then have 24 different kinds of removable ends,
Hla H2a' * 1H24°

We will use Figures 2 and 3 to colour all the removable ends. There are
only 12 different removable ends H,, Hs, -- - , H2 in these two figures. The
other 12 removable ends are actually the same removable ends, only ey are
coloured in the opposite colour. Thus by interchanging the two colours, we
obtain the solution table for the other 12 removable ends.

For each uncoloured removable end H; listed on the left side of the figures,
there are b; coloured copies of the removable end on the right side, where
b; varies between 1 and 4. We refer to these copies as Aj;, Aig,--- , Au,-
It is easy to verify that if we colour b; copies of the removable end H; as
A;1, Aig, - -+, Aup, then the monochromatic subgraphs of A;jUA;U---U A,
are isomorphic.

We must know the colour of ey before we colour the end H. If ey is
an edge of T, then we can assume the colour of ey is known. However ey
could be an edge of some other end, say H’. Thus we should colour H’
before we colour H. Therefore we may not be able to choose b; copies of a
removable end H; and colour them simultaneously (although there may be
eventually a lot of them). So we colour the removable ends subsequently,
as explained below.

Suppose that H is a copy of H; which has not yet been coloured and for
which e has already been coloured. Suppose that we have already coloured
q copies of H; before. Then we colour H as A;j, where j = q + 1(mod(b)).
At the very end, we check the number m; of coloured copies of H;. If the
number is not a multiple of b; then we remove the colours of p copies of
that kind of removable end, where m = k-b; +p and p < b;. Obviously the
total number of such uncoloured edges is less than a constant. This proves
Theorem 2.

Let T be a 3-tree of order n and e be a pending edge of T'. Then there is a
colouring of T'\ e by two colours such that each monochromatic component
is a P; (i.e., a path of length 2). In fact such a colouring is unique. Let v
be the vertex of degree three in T which is incident to e. We first colour
the other two edges incident to v by one colour, say red. Then proceed to
colour the rest of T'\ e as follows: Suppose that there are still uncoloured
edges, then there must be a vertex x of degree three such that one of the
three edges incident to z is coloured, say in the colour blue, and the other
two edges are uncoloured. Then we colour these two edges red. It is easy to
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see that after we coloured all the edges, each monochromatic component is
a P,. Denote P,.(T) the set of all monochromatic P»’s of such a colouring.
We note that if e, e’ are two adjacent pending edges of T*, then e and e’
form a monochromatic Py of P.(T"). Thus if P(e) and P(e’) form an end
of T then e and ¢’ form a monochromatic P;.

Lemma 4. Let T be a 3-tree of order n and e be a pending edge of T.
Assign to each path P, from P.(T) a weight w € {1, 3,1}. Then there is
a set S of paths of P.(T) with |S| = O(logn) such that the edges of T\ S
can be coloured by two colours red and blue where each monochromatic
component of T\ S is a P, € P(T) and the total weight of red P,’s equals
the total weight of blue P;s.

Proof: Let Q be a subset of P.(T') and Tg be a forest consisting of edges
of Q. Denote by 7o and bg the total weight of red and blue paths P; in
Q respectively, set d(Tq) = d(Q) = rq — bg. Put T —e = T". Suppose
d(T’) > 0. If d(T") < 4, it can be easily seen that the removal of at most
six Py’s in P.(T) leads to the statement of this lemma. Therefore suppose
that d(T”) > 4. Let P = ujugus be a red path of P.(T). Removing edges
of P from T’ we get three subtrees, T}, T2 and T3 of T”, where u; € T;.

Claim: There is a red path P in P.(T) and 1 < < 3 such that
Lar) < d(m) < 34T, *)

Take an arbitrary red path P = ujugus. If one of the T;’s satisfies (*) we
are done. Otherwise there is one subtree, say Ty, satisfying d(T1) > 3d(T").
Let B be the blue P, containing u;. It is easy to verify that there is a red
path which has a common vertex with B, and whose removal leads to three
subtrees Q;, @2, @3 such that either -

e thereisa Q; D T, UT; and 1d(T") < d(Qi) < $d(T"), or
o thereis a Q; C T} and d(Q;) 2> %d(T’ ).

In the first case the claim is proved. Thus we assume the second case
occurs. If d(Q;) < 3d(T”) then the claim is also proved. If d(Q:) > 24(T")
then we apply the same procedure to Q;. Since |Q:i| < |Ti| and T is
finite, we will eventually find a red path satisfying the requirments of the
claim. Otherwise we would arrive at Q; with d(Q;) > 3/4d(T”") and |Q:| <
3/44(T").

Let P € P.(T) be a red path and T1,T3, T3 are the three subtrees of
T\ P satisfying the requirments of the claim. Then either 1d(T") > d(T}) >
14(T") or 1d(T") > d(T, U Ts) > 3d(T"). We interchange the colours of
the edges of T} or the colours of the edges of T U T3. Under this new
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colouring, we have that each monochromatic component is a P, of Pe(T)
and moreover

AT UTUTS) < %d(T’).

In general, for each subgraph F of T’ whose edges are coloured by two
colours such that each monochromatic component is a P, € P.(T) there
is a path P € P.(T) and a new colouring of the edges of F'\ P such that
|d(F\ P)| < 3d(F).

We continue this removing process until we obtain a subgraph F of T
such that d(F) < 4, and then we remove at most 6 more P2 € P.(T) so
that the total weight of red P’s is equal to the total weight of blue P’s.
Clearly the total number of removed P»’s is O(logn).

3 Proof of Theorem 1

According to Theorem 3 all which remains to be proved is the following
statement:

Theorem 5. ‘Let T be a tree not containing a removable end. Then
R(T) < O(logn), where n is the number of vertices of T of degree three.

Proof: The idea of the proof is simple, however the details are quite in-
volved. We first consider the 3-tree T* reduced from T'. We colour the edges
of T' = T* — e by two colours, say red and blue, so that each monochro-
matic component is a P,. Then we assign weights to these P2’s according
to their “local enviroment”, which we will explain below, and apply Lemma
4 to remove the colour of at most O(logn) edges so that for the remaining
coloured edges, the total weight of red P»’s is equal to the total weight of
blue Py’s. We then transform this colouring into a partial colouring of the
edges of T, so that each monochromatic component is still a path of length
two. The final step is to extend this partial colouring to almost all edges of
T, except for at most O(logn) edges of T which will remain permanently
uncoloured. It is easy to extend the partial colouring to colour all the edges
of P(e) if e is an odd edge of T*. We simply colour the uncoloured edges
of that P(e) alternately by two colours. If e is an even edge of T* then we
need to treat several such edges together.

We start our detailed proof by partitioning even edges of T’ into classes.

We consider T” as a rooted tree with the only degree two vertex v as its
root. For a vertex u of T”, define the level £(u) of u to be the distance
between u and v. Let e = uw be an edge of T” then the difference between
the levels of u and w is one. Suppose £(u) = £(w) — 1. Then we define the
level £(e) of the edge e to be £(u). In this case we say that e is an edge of u.
Therefore e is an edge of u if and only if e is incident to » and e and u have
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the same level. We will use the terms of father, son, predecessor, successor
of a vertex of T in the usual way. In addition, we say that an edge e is the
father of another edge ¢’ if they share a vertex and £(e) = 4(¢/) — 1. We
then use the term “predecessor, successor” of an edge in the natural way.

Now we partition even edges of T” into classes. We form the classes one
by one, and follow the four procedures stated below in the given order.
Once an even edge has been put into one class, it will stay in that class
and will not be considered for the rest of the partition process. Each of the
four procedures will be repeated as long as there exit unused even edges
satisfying the conditions of that procedure. In case no such edges can be
found, we proceed to the next procedure.

There is a general rule we will follow in the partition: If u is a (3, 1)-vertex
of T and both edges of u are even, then these two edges will always belong
to the same class. We will not refer to this rule explicitly in the procedure.
It should be understood that once one of the even edge of u is put into one
class, the other even edge of u goes to the same class automatically.

Procedure 1: Take an even edge z of the smallest level. If = has successors
which are even edges, then let Y be the set of all such even edges of the
smallest level. If Y contains a pending edge y then let z and y form a class.
Otherwise choose an edge y € Y arbitrarily and let z and y form a class.
Procedure 2: Take a (3,2)-vertex u with even pending edge z of the
smallest level. If the other son w of u is either a (3,2)-vertex with even
pending edge y or a (3,1)-vertex with even pending edge v then let z and
y form a class.

Procedure 3: Take a (3, 2)-vertex u with even pending edge x. If there is
a (3, 1)-vertex w with even edge y such that w and u have the same father
then z and y form a class.

Procedure 4: Each of the remaining even edges forms a class. (Note that
if there is a (3,1)-vertex with two even edges then these two even edges
form a class).

From the procedures defined above, we see that each class contains one,
two or three even edges. All the even edges in the same class will be
coloured simultaneously, and we may also need to consider several classes
of even edges at the same time in the process of colouring. In the process of
treating a class of even edges of T, we may need to change the colour of some
already coloured edges. This may result in the loss of some monochromatic
Py’s. Thus we assign weights to monochromatic P»’s according to their
“local enviroment”, and get prepared for these losses. It is in the treating
of some pending even edges of (3,2) vertices that will result in the loss
of some coloured Py’s. For this purpose we define three types of special
monochromatic paths of 7.

Suppose as depicted in Fig. 4, that u is a (3, 2)-vertex with even pend-
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Figure 4

ing edge z and that z forms a class in the partition by itself. Then the
monochromatic path P = sut is a special path of

e type Lif [ly|l =1,
e type Il if y is odd and ||y|| > 1,
o type III if y is even.

In case when there are two type I special paths sut and s'u’t’, such that
u and v’ have the same father then these two special paths of type I are
called conjugate.

Now we assign weight to each monochromatic path P € P.(T) as follows:
w(P) = % if P is a special path of type I, and w(P) = % if P is a special
path of type II or type III, and w(P) = 1 otherwise. By Lemma 4, there
is a subgraph Q of T* with e(Q) > &(T*) — O(logn), and a colouring of
e(Q) with two colours, say red and blue, such that each monochromatic
component is a path P of length two, and P € P.(T), and the total weight
of red Py’s is equal to the total weight of blue P,’s.

Also the change of the colour of already coloured edge may change a
monochromatic P, into a monochromatic Ps, Py or a claw. It is important
that these changes, if any, will be limited to “local” changes. To be precise,
we associate to each class C of even edges a set C(P) of monochromatic
Py’s as follows:

If a class C is formed by Procedures 1, 2 or 3, then C(P) consists those
monochromatic Py’s which intersect (i.e., has at least one edge in common)
a z — y-path for some edges z,y € C (the z — y-path is the unique path in
T’ connecting the two edges = and y, and z,y are included in this path).
The treating of the classes C formed by Procedure 4 are divided further
into cases, (cf. below). Depending on which case C belongs to, the set
C(P) consists all the monochromatic Py’s depicted in Fig. 4, or all the the
monochromatic Py’s depicted in Fig. 12(a), or all the monochromatic Ps’s
depicted in Fig. 13(a), or all but the top monochromatic P,’s depicted in
Fig. 14(a).

180



N s

z [ o ® 24

.J’. 22'0. .0.23 .'o.
Figure 5

In the treating of a class C of even edges, only those monochromatic Ps’s
associated to C could be changed. Most monochromatic P»’s are associated
to at most one class. For two classes C; and C,, if there is no monochro-
matic P, associated to both classes, then the treating of C; and C» will not
affect each other.

The only cases that a monochromatic P, could be associated to more
than one classes are listed below:

(1): In Fig. 5, if z is even, 2; or/and 22, 23 or/and z4 are even pending
edges, then it could happen that z, 2; or/and z; form a class, 23 or/and z4
form a class. In this case, the monochromatic P, = y,y2 is associated to
both classes.

(2): In Fig. 5, if z, 21, z2 are even edges, and 23 is not a pending edge,
(21 could be a pending edge), then it could happen that z and 2; form a
class, z; form a class by itself or with some successsor(s). In this case the
monochromatic path 2;z; is associated to both classes.

(3): In Fig. 5, if 27 is even but not a pending edge, z is even, 2; is an
even pending edge, z3 or/and z4 are even pending edge(s), then it could
happen that z and z; form a class, z3 or/and z4 form a class, z; form a
class by itself or with some successor(s). In this case the monochromatic
path y,y2 is associated to two classes, and the monochromatic path z;2, is
associated to three classes.

(4): In Fig. 5, if 2)z5 and 2324 are two special paths, then the monochro-
matic path y,y2 is associated to the two classes, say C; = {z;} and
Cy = {23}.

We leave it to the reader to check that in almost all these cases, the
treating below of the classes associated to a same monochromatic P» do
not affect each other. The only case that we need to take special care
of is for two conjugate special paths of type 1. Special paths are coloured
in groups, and each group consists four special paths of the same type,
cf. Cases 4, 5 and 6 below. In case when two special paths of type I are
conjugate, we always put them in the same group. This is because that in
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each group of four special paths of type I, for exactly one special path of
type I, we need to change the top monochromatic P; into a monochromatic
Ps, (see the fourth special path in Fig. 16(b)), and that monochromatic P
is associated to both conjugate special paths.

We have now finished our preparation work, and we start to colour the
edges of T'. First we transfer the colouring of Q into a partial colouring of
T as follows:

Let z,y be two edges that form a monochromatic Pz in Q. Let v be
their common vertex and let z be the other edge of T* incident to v. Let
P(z) = vvy -+ vz, P(y) = vwp---wyy and P(2) = vur-- -y, We
colour the edges of P(z) and P(y) alternately by two colours with vv;, vu
receiving the colour of z. If z or/and y is even then the edge v}z -17)jz|
or/and the edge wjjy||—1w|y Will stay temporarily uncoloured. If z € @
then we will colour the edges of P(z) when we consider the monochromatic
path containing z, if z & Q then we colour the edges of P(z) only if ||2]| > 3,
and in this case we colour an even number of edges of P(z) alternately by
two colours, with the edge zu; receiving the opposite colour of z. The last
edge or the last two edges (depending on whether z is odd or even) will
stay permanently uncoloured. There are at most O(logn) of such edges.

We treat each monochromatic Pz of Q as above. In the end, we have
coloured a subgraph of T such that each monochromatic component is
either a Py or a P,. The number of red Py’s is equal to the number of
blue P;’s. Each monochromatic P;’s corresponds to a monochromatic Py
of Q. Thus we can say that the total weight of red P>’s is equal to the total
weight of blue Py’s.

We denote by U the set of the “temporarily” uncoloured edges. Note
that each edge z € U is contained in an even edge of T’. The partition of
the even edges of T’ defined above induces a partition of U.

Note that we have removed the colour of some monochromatic P;’s of T
in order to balance the total weights of red P»’s and blue P,’s. However
there are at most O(logn) Py’s of T' for which the colour have been removed.
Recall that each monochromatic P, is associated to at most three classes
of the above partition. Thus there are at most O(logn) classes C for which
there is a monochromatic path P € C(P) whose colour has been removed.
For uncoloured edges in such classes, we will let them remain uncoloured
permanently. Obviously the total number of such uncoloured edges is at
most O(logn).

We now proceed to colour the other uncoloured edges in U. The discus-
sions are divided into cases, and the solutions for the cases are given by
figures. For the sake of simplicity, in all figures from Fig. 6 to Fig. 18,
the odd edges of T" are depicted by a single edge, and even edges of 7" are
depicted by a path of length two. It is a matter of routine to check that the
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uncoloured edge

a b
Figure 6

figures can be used as patterns also when the depicted edges of T represent
longer paths. In case the odd edge of 7’ must be actually a single edge of
T, we state that fact explictly and explain why this must be the case. In
case the odd edge of 7" must be a path of length at least three, we also
state that explictly, and give explanation if needed.

1) Classes of uncoloured edges formed by Procedure 1.

Each class contains either two edges or three edges. If a class contains
two edges, then the uncoloured edges are as depicted in Fig. 6(a), and we
re-colour the edges as in Fig. 6(b).

If a class contains three edges then the uncoloured edges are as depicted
in Fig. 7(a), or 8(a), where w is a (3, 1)-vertex with two even pending edges.
Then ||y|| = 1, for otherwise we would have a removable end. Depending
on whether z and z have different colours or not, we divide this into two
subcases.

Case 1. z and z have different colours, as depicted in Fig. 7(a).

We take two copies of such classes and re-colour the edges as in Fig. 7(b).

Case 2. = and y have the same colour, as depicted in Fig. 8(a).

We take two copies of such classes and re-colour the edges as in Fig. 8(b).

After this re-colouring, we see that if the original monochromatic sub-
graphs are isomorphic, the new monochromatic subgraphs are still isomor-
phic. In other owrds, we may have added some monochromatic paths of
various lengths, we also may have destroyed some monochromatic paths of
various lengths. However the same change happened to both monochro-
matic subgraphs. This is true for all the re-colouring process, except for
the last three cases of the classes formed by Procedure 4. We will explain
what happens there when we deal with those cases.

183



3

uncoloured edges

uncoloured edges
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Figure 7

Figure 8
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c&oured edges

Figure 9

Note that since we need to take two copies of the same classes and colour
together, it may happen that the total number of such classes is odd, and
we cannot colour every such class this way. In this case, we just leave the
uncoloured edges in one class uncoloured permanently.

2) Classes of uncoloured edges formed by Procedure 2.

Again each such class contains either two edges or three edges. If a class
contains two edges, then the uncoloured edges are as depicted in Fig. 9(a),
where u and w are (3, 2)-vertices, and = and z are even pending edges. We
colour the uncoloured edges as in Fig. 9(b).

Note that the edge y must be odd. For otherwise y and z should form
a class by Procedure 1. We should point out here that y cannot form a
class with a predecessor by Procedure 1, because any predecessor of y is
also a prodecessor of z, and z has the priority to form a class w1th their
predecessor by Procedure 1.

If a class contains three edges then the uncoloured edges are as depicted
in Fig. 10(a), and we take four copies of such classes and re-colour the
edges as in Fig. 10(b).

Note that in this case we must have ||y|| = 1, for otherwise the monochro-
matic path containing y would be a removable end. :

3) Classes of uncoloured edges formed by Procedure 3.

Again each such class contains either two edges or three edges. If a class
contains two edges, then the uncoloured edges are as depicted in Fig. 11(a),
where u is a (3, 2)-vertex with an even pending edge 23, w is a (3, 1)-vertex
with exactly one even pending edge. The vertex a cannot be a (3,1) or
(3, 2)-vertex with even pending edge, for otherwise suppose 23 is an even
pending edge, then z; and 23 should have formed a class by Procedure 2.
The edge y must have ||y|| = 1, for otherwise we would have a removable
end.
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We then re-colour the edges as in Fig. 11(b).

If a class contains three edges then the uncoloured edges are as depicted
in Fig. 12(a), and we take four copies of such classes and colour three copies
as A and colour one copy as B in Fig. 12(b).

4) Classes of uncoloured edges formed by Procedure 4.

We divide this case into six subcases.

Case 1. The class contains a single edge as depicted in Fig. 13(a), where
u is a (3, 1)-vertex. We take two copies of such classes, and colour them as
in Fig. 13(b).

Case 2. The class contains two uncoloured edges as depicted in Fig.
14(a), where u is a (3,1)-vertex. We take two copies of such classes, and
colour them as in Fig. 14(b).
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Observe that w cannot be a (3, 1)-vertex, for otherwise the tree T would
contain a removable end. The vertex w also cannot be a (3, 2)-vertex with
even pending edges, for otherwise this even edge and the even pending edge
of u would have been put into one class by Procedure 3.

Case 3. The class contains a single uncoloured edge as depicted in Fig.
15(a), where z,y, z are all odd edges, for otherwise we would have formed a
class by Procedure 1. We take two copies of such classes, and colour them
as in Fig. 15(b).

Note that w cannot be a (3,1)-vertex, for otherwise T' would have a
removable end.

Case 4. The class contains a single uncoloured edgé as depicted in Fig.
16(a), where zy form a special path of type I. We take four copies of such
classes, and re-colour the edges as in Fig. 16(b).

As noted before, if two special paths of type I are conjugate, we always
put them in the same group of four so that the colouring will not affect
each other.

Unlike the previous cases, after the re-colouring, the change happened
to the red subgraph is not the same as the change happened to the blue
subgraph. (For a moment suppose that the dotted lines represent red edges
and solid lines repredent blue edges). We count the losses and gains of
monochromatic paths of various lengths of the two colours, we see that
“net” loss is a red P,. However zy is a special path of type I, the weight of
this path is %. Therefore the four copies of such a path in the four classes
are actually counted as three red P»’s in the weight function. Thus the
loss of one red P is exactly what we needed to make the red subgraph
isomorphic to the blue subgraph.

Case 5. The class contains a single uncoloured edge as depicted in Fig.
17(a), where zy form a special path of type II. We take four copies of such
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classes, and re-colour the edges as in Fig. 17(b).

Again, the “net” loss of the re-colouring is two red P;’s. This is why we
assign weight -;- to a special path of type II.

Case 6. The class contains a single uncoloured edge as depicted in Fig.
18(a), where zy form a special path of type ITI. We take four copies of such
classes, and re-colour the edges as in Fig. 18(b).

The “net” loss of the re-colouring is two red P,’s. This is why we assign
weight 1 to a special path of type III.

Up to now we have coloured a subgraph of T', with at most O(logn)
edges of T uncoloured. Each monochromatic component of the coloured
subgraph is a Py, or a P, or a P3, or a P, or a claw. It is easy to see from
the process of colouring that the numbers of red P;’s, P3’s, P4’s and claws
are equal to the number of blue P,’s, P3’s, P4's and claws respectively.

For the number of monochromatic Pa’s, we have that the total weight of
red Py’s equal to the total weight of blue P’s. Then through the process
of treating special monochromatic paths, cf. Cases 4, 5 and 6, we see
that the weights are transformed into actual numbers of copies of red Ps’s
and blue P,’s. However there could be some (at most O(logn)) special
monochromatic Ps’s which we did not treat.

There are two circumstances under which we did not treat a special
monochromatic path Ps:

(1): Recall that we removed the colour of some monochromatic Pe’s of
T’ in order to balance the weights of red P»’s and blue Py’s. If such a
monochromatic P, is associated to a class C of even edges, then that class
is not treated. If such a class C consists of a single even edge belonging to
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a special path, then the weight of that special path did not transform into
actual numbers of copies of monochromatic Py’s. Therefore that monochro-
matic P; is still counted as % or % monochromatic Py’s. This would cause
the number of red Py’s be different from the number of blue P,’s. However
there are at most O(logn) such classes C. Therefore the difference between
the number of red Py’s and blue P»’s caused by these classes is at most
O(logn).

(2): In the treating of classes consisting a single even edge belonging to a
special monochromatic path, cf. cases 4, 5 and 6, we always treat 4 classes
simultaneously. If the number of that type of classes is not a multiple of 4,
then there could be 1, 2, or 3 classes remain untreated. It is easy to see that
there are at most 9 such untreated classes for each colour, and therefore the
difference between the number of red P»'s and blue P»’s caused by these
classes is at most 9.

Summing up the discussion above, we have that the difference between
the number of red P,’s and blue Py’s is at most O(logn). Thus we can
remove the colour of some (at most O(logn)) monochromatic P,’s, and
the resulting coloured subgraph of T, has two isomorphic monochromatic
subgraphs. Moreover the number of uncoloured edges of T is at most
O(logn). This completes the proof of Theorem 5, as well as Theorem 1.
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