Existence of BIBDs with Block Size 8 and $\lambda = 7$

Jianxing Yin

Department of Mathematics, Suzhou University Suzhou 215006, P.R. of China

Abstract. It is shown that the obvious nesessary condition for the existence of a $B(8,7;\nu)$ is sufficient, with the possible exception of $\nu \in \{48,56,96,448\}$.

1. Introduction

Let v, k and λ be positive integers. A balanced incomplete block design (BIBD) with parameters v, k and λ , denoted by $B(k, \lambda; v)$, is a pair (X, A) where X is a v-set (of points) and A is a collection of k-subsets of X (called blocks) such that every pair of distinct points of X is contained in exactly λ blocks of A. The notation $B(k, \lambda)$ denotes the set of all integers v for which there exists a $B(k, \lambda; v)$.

The obvious necessary condition for the existence of a $B(k, \lambda; \nu)$ is $\lambda(\nu - 1) \equiv 0 \mod (k-1)$ and $\lambda\nu(\nu - 1) \equiv 0 \mod k(k-1)$. When $\lambda = k-1$, this implies that $\nu(\nu - 1) \equiv 0 \mod k$. For $3 \le k \le 7$, it was proved in [4] that this condition is also sufficient. The following result was also obtained in [4].

Lemma 1.1.
$$\{8,9,16,17,24,25,32,33,40,41\} \subset B(8,7)$$
.

In this paper, we are concerned mainly with the existence of a B(8,7; v), where the necessary condition for existence is $v \equiv 0$ or 1 mod 8. We show that this condition is also sufficient, with the possible exception of $v \in \{48, 56, 96, 448\}$.

2. Constructions

To obtain the required designs we employ some old and new constructions listed below. Fundamental to these constructions is a number of other designs which we define now.

Let X be a finite set (of points), λ a positive integer. A group divisible design (GDD) of index λ is a triple (X, G, A), where

- 1) G is a collection of subsets of X (called groups) which partition X,
- 2) A is a collection of subsets of X (called *blocks*) such that a group and a block contain at most one common point, and
- 3) every pair of points from distinct groups occurs in exactly λ blocks of A.

The group-type (or type) of a GDD is a listing of the group sizes using so-called "exponential" notation, i.e. $1^i 2^j 3^k \dots$ denotes i groups of size 1, j groups of size 2, etc. Let K be a set of positive integers. We say that a GDD is a (K, λ) -GDD if $|A| \in K$ for every block A of A. When $K = \{k\}$, the design is simply denoted by (k, λ) -GDD.

Three particular GDDs of which we will make use need to be mentioned. A (K, λ) - GDD of type 1^v is referred to as a pairwise balanced design (PBD), denoted by B $(K, \lambda; v)$. A (k, 1)-GDD of type m^k is referred to as a transversal design (TD), denoted by TD(k, m). A (k, λ) -GDD of type $1^u w^1$ is defined to be an incomplete BIBD, denoted by IB $(k, \lambda; u + w, w)$. The group of size w is thought of as a hole. Intuitively, an incomplete BIBD is a BIBD from which a sub-BIBD is missing (this is the hole). We wish to remark that a BIBD may be viewed as an incomplete BIBD with a hole of size 0 or 1. For more detailed information on PBDs and related designs, the interested reader may refer to [1,4,6].

We also require the notion of a resolvable BIBD. A resolvable B($k, \lambda; v$) briefly, RB($k, \lambda; v$) is defined to be a B($k, \lambda; v$) in which the block set can be partitioned into classes (called *parallel classes*) such that every point of the design occurs precisely once in each class.

Lemma 2.1. ([5]). Let $m = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r}$ be the factorization of m into powers of distinct primes p_i . Then a TD(k, m) exists where $k \le 1 + \min\{p_i^{k_i}\}$.

Lemma 2.2. ([3]). If $n \in \{8, 15, 29, 36, 43, 50, 57, 64, 71, 85\}$, then there exists an RB(8, 1; 8n).

We now give our constructions. We often construct BIBDs from GDDs by filling in the groups as follows (see, for example, [6]).

Lemma 2.3. Let w be a non-negative integer. Suppose that the following designs exist:

- 1) $a(k,\lambda)$ -GDD of type $\{t_1,t_2,\ldots,t_n\}$,
- 2) an $IB(k, \lambda; t_i + w, w)$, for $1 \le i \le n-1$, and
- 3) $a B(k, \lambda; t_n + w)$.

Then there exists a B(k, λ ; t + w), where $t = \sum t_i$.

For our purpose, we mention a special form of Lemma 2.3 below.

Lemma 2.4. Let q be a prime power not less than 8 and w a non-negative integer. Suppose that the following designs exist:

- 1) an IB(8,7; q + w, w), and
- 2) a B(8,7; u+w) where $0 \le u \le q$.

Then there exists a B(8,7; 8q + u + w).

Proof. From Lemma 2.1, a TD(9, q) exists. Delete q - u points from one group of a TD(9, q), and then break the blocks of the resulting design by a B(8, 7; 8) or a B(8, 7; 9) (see Lemma 1.1). The result is an (8, 7)-GDD of type $q^8 u^1$. The conclusion then follows from Lemma 2.3.

Lemma 2.5. Let n be a positive integer such that 6n+1 is a prime power. Then there exists an IB(8, 7; 7n+1, n).

Proof. Let point set $X = [GF(6n+1)] \cup \{\infty_0, \infty_1, \dots \infty_{n-1}\}$, and let x be a primitive element of GF(6n+1). It was shown in [4, Lemma 4.2] that $\{B_i : 0 \le i \le n-1\}$ forms a (6n+1,7,7) difference family based on the additive group of GF(6n+1) where

$$B_i = \{0, x^i, x^{i+n}, x^{i+2n}, x^{i+3n}, x^{i+4n}, x^{i+5n}\}, \qquad \text{for } 0 \le i \le n-1.$$

Let $\mathbf{D} = \{\{\infty_i\} \cup B_i : 0 \le i \le n-1\}$. The proof that $(X, \text{dev}\mathbf{D})$ is indeed an IB(8,7;7n+1,n) is by standard difference set techniques, where $\text{dev}\mathbf{D} = \{D+g : g \in \text{GF}(6n+1) \text{ and } D \in \mathbf{D}\}$.

The following lemma is the variation and modification of Theorem 3.7 in [2].

Lemma 2.6. Let q be an odd prime power not less than 9. Then there exists an (8,7)-GDD of type 8^q .

Proof. Suppose that x is a primitive element of GF(q). We construct an (8,7)-GDD of type 8^q as follows. Let the point set be $GF(q) \times (Z_7 \cup \{\infty\})$ and group set be $\{\{g\} \times (Z_7 \cup \{\infty\}) : g \in GF(q)\}$. Then the 8q(q-1) blocks are obtained when the following base blocks are developed in the first component under the additive group of GF(q):

$$\left\{ (x^{i}, \infty), (x^{i+1}, 0), (x^{i+2}, 1), (x^{i+3}, 3), \\ (-x^{i}, \infty), (-x^{i+1}, 0), (-x^{i+2}, 1), (-x^{i+3}, 3) \right\} \bmod (-, 7)$$

$$\left\{ (x^{i}, 0), (x^{i+1}, 1), (x^{i+2}, 2), (x^{i+3}, 4), \\ (-x^{i}, 0), (-x^{i+1}, 1), (-x^{i+2}, 2), (-x^{i+3}, 4) \right\} \bmod (-, 7)$$

$$\left\{ (x^{j+1}, \infty), (x^{j+2}, 0), (x^{j+3}, 1), (x^{j+4}, 2), \\ (x^{j+5}, 3), (x^{j+6}, 4), (x^{j+7}, 5), (x^{j+8}, 6) \right\}$$

where i runs from 0 to (q-3)/2 and j runs from 0 to q-2.

Lemma 2.7. Let n be a positive integer relatively prime to 210 = 2.3.5.7. Then there exists an (8,7)-GDD of type 8^n .

Proof. Let $n = p_1 p_2 \dots p_r$ be the factorization of n into primes that $p_1 \le p_2 \dots \le p_r$, and let $Q_i = p_i p_{i+1} \dots p_r$. Start with a $TD(p_1, Q_2)$ and successively partially break up the groups of size Q_i using a $TD(p_i, Q_{i+1})$. Finally, fill with blocks of size $Q_r = P_r$ to produce a $B(\{p_1, p_2, \dots, p_r\}, 1; n)$. The condition that n is relatively prime to 210 implies that $p_j (1 \le j \le r)$ is an odd prime not less than 11. Give weight 8 to every point of the PBD and apply the Fundamental Construction (see [6]) with the necessary input designs from Lemma 2.6 to obtain an (8,7)-GDD of type 8^n .

Lemma 2.8. Suppose that an RB(8,1;v) exists, that $u \in B(8,7)$ or u = 0, and that u < (v - 1)/7. Then $v + u \in B(8,7)$.

Proof. For u = 0, the proof is straightforward. Now assume u > 0. Take an RB(8,1; v) and adjoin u infinite points to u of its parallel classes of blocks, where one infinite point is adjoined to each of u parallel classes. This creates a PBD B($\{8,9,u\},1;v+u\}$). Since $\{8,9,u\}\subset B(8,7)$, we can then break up the blocks of the PBD to show that $v+u\in B(8,7)$.

Lemma 2.9. If there is an IB(8,7; v+u,u) and $8u+e \in B(8,7)$, where e=0 or 1, then $8u+8v+e \in B(8,7)$.

Proof. By definition, an IB(8,7; v + u, u) is an (8,7)-GDD of type 1^vu^1 . Give weight 8 to every point of an IB(8,7; v + u, u). Since a TD(8,8) exists by Lemma 2.1, the Fundamental Construction (see [6]) gives us an (8,7)-GDD of type $8^v(8u)^1$. The required result then follows from Lemma 2.3 and the fact that $\{8 + e, 8u + e\} \subset B(8,7)$.

3. Main result

In this section, we work towards determining the set B(8,7).

Lemma 3.1. If n is a positive integer relatively prime to 210, then $\{8n, 8n+1\} \subset B(8,7)$

Proof. This is immediate consequence of Lemmas 2.3 and 2.7.

Lemma 3.2. $\{49, 57, 97, 449\} \subset B(8,7)$.

Proof. For v = 57, the result follows from adding one infinite point to every group of a TD(8,7). For the other values of v, a B(8,7; v) was constructed by H. Hanani [4, Lemma 4.1].

Lemma 3.3. If $s \in \{8, 9, 15 - 17, 29 - 33, 36 - 41, 43 - 48, 50 - 55, 57 - 62, 64 - 69, 71 - 76, 79, 80, 85 - 90\}$, then $\{8s, 8s + 1\} \subset B(8, 7)$.

Proof. In view of Lemma 1.1, we can apply Lemma 2.8 with resolvable BIBDs from Lemma 2.2 to establish the lemma.

Lemma 3.4. If $s \in \{13, 14, 19-21, 26-28, 34, 35, 42, 63, 70, 77-78, 81-84\}$, then $\{8s, 8s+1\} \subset B(8,7)$.

Proof. For s=13 or 19, the result follows from Lemma 3.1. For the remaining values of s, we apply Lemma 2.4 with $q \in \{13, 19, 25, 31, 37, 61, 67, 73, 79\}$ and w = (q-1)/6 such that $u + w \in \{8, 9, 16, 17, 24, 25, 32, 33, 40, 41\}$. This guarantees that the conclusion holds because of Lemmas 1.1 and 2.5.

Lemma 3.5. If $s \in \{10, 11, 18, 22, 23, 24, 25, 49\}$, then $\{8s, 8s + 1\} \subset B(8, 7)$.

Proof. For s = 10, the result follow from deleting e points from one group of a TD(9,9), where e = 0 or 1. Take v = 19 and u = 3 in Lemma 2.9. This takes care of the case s = 22, where an IB(8,7; 22,3) exists by Lemma 2.5. Lemma 1.1, 3.2 and 2.4 work for the cases where $s \in \{18, 24, 25, 49\}$. The remaining cases where s = 11 and 23 are contained in Lemma 3.1.

Lemma 3.6. Suppose that a TD(11,t) exists and $0 \le a, b, c \le t$. Then $8(8t + a + b + c) + e \in B(8,7)$ if $\{8t + e, 8a + e, 8b + e, 8c + e\} \subset B(8,7)$, where e = 0, 1.

Proof. In a TD(9,9), we delete one point to obtain a (9,1)-GDD of type 8^{10} . We then break the block of the resulting GDD by a B(8,7;9) to obtain a (8,7)-GDD of type 8^{10} . From Lemmas 2.1 and 2.6 we have also (8,7)-GDD of type 8^8 , 8^9 and 8^{11} . In a TD(11,t), we delete t-a, t-b and t-c points from three group respectively to obtain an ({8,9,10,11},1)-GDD of type $t^8a^1b^1c^1$. Now we apply the Fundamental Construction with weight 8 to the last GDD. This creates an (8,7)-GDD of type $(8t)^8(8a)^1(8b)^1(8c)^1$. The result then follows from Lemma 2.3.

We are now in the position to give our main result.

Theorem 3.1. For every positive integer $v \equiv 0$ or 1 mod 8, with the possible exception of $v \in \{48, 56, 96, 448\}$, there exists a B(8, 7; v).

Proof. From lemmas 3.2-3.5 and 1.1, we know that the conclusion holds for $v \le 721$. Note that for the sequence of integers $n, n+1, n+2, \ldots, n+9$ at least one integer is relatively prime to 210. Simple calculation shows that each value of $v \ge 721$ can be written in the form 8(8t + a + b + c) + e where e = 0 or 1 and a, b, c and t are chosen so that

- 1) t is a positive integer relatively prime to 210,
- 2) $\{8a+e,8b+e,8c+e\} \subset B(8,7)$, where $0 \le a,b,c \le t$.

Now apply Lemma 3.6 and the result follows, where we used Lemmas 2.1, 3.1 and already determined values.

Acknowledgement

The author wishes to thank the referee for pointing out typos in the original manuscript, as well as for other helpful suggestions.

References

- [1] Th. Beth, D. Jungnickel and H. Lenz, "Design Theory", Bibl. Institut, Zurich, 1985.
- [2] S. Furino, Existence results for near resolvable designs. Preprint.
- [3] M. Greig, Resolvable balanced incomplete block designs with a block size of 8. Preprint.
- [4] H. Hanani, Balanced incomplete block designs and related designs, Discrete Math 11 (1975), 255-369.
- [5] H. F. MacNeish, Euler sequences, Ann. Math 23 (1922), 221-227.
- [6] R. M. Wilson, Constructions and uses of pairwise balanced designs, Math. Centre Tracts 55 (1974), 18-41.