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Abstract. It is shown that the obvious nesessary condition for the existence of a
B(8,7; v) is sufficient, with the possible exception of v € {48,56,96,448}.

1. Introduction

Let v, k and X be positive integers. A balanced incomplete block design (BIBD)
with parameters v, k and ), denoted by B(k, \; v), isapair (X,A) where X isa
v-set (of points) and A is a collection of k-subsets of X (called blocks) such that
every pair of distinct points of X is contained in exactly A blocks of A . The no-
tation B(k, \) denotes the set of all integers v for which there exists a B(k, X; v).

The obvious necessary condition for the existence ofa B(k, A; v) is \(v—=1) =
0 mod (k—1) and A\v(v—1) = 0 mod k(k—1). When X = k— 1, this implies
thatv(v—1) = 0 mod k. For3 < k < 7, it was proved in [4] that this condition
is also sufficient. The following result was also obtained in [4].

Lemmal.l. {8,9,16,17,24,25,32,33,40,41} Cc B(8,7).

In this paper, we are concemed mainly with the existence of a B(8, 7; v}, where
the necessary condition for existence is v = 0 or 1 mod 8. We show that this
condition is also sufficient, with the possible exception of v € {48,56,96,448}.

2. Constructions

To obtain the required designs we employ some old and new constructions listed
below. Fundamental to these constructions is a number of other designs which we
define now.

Let X be a finite set (of points), A a positive integer. A group divisible design
(GDD) of index X is a triple (X, G,A), where

1) G is acollection of subsets of X (called groups) which partition X,

2) A is acollection of subsets of X (called blocks) such that a group and a

block contain at most one common point, and

3) every pair of points from distinct groups occurs in exactly A blocks of A .

The group-type (or type) of aGDD is a listing of the group sizes using so-called
“exponential” notation, i.e. 1¥273% .. denotes i groups of size 1, j groups of size
2, etc. Let K be a set of positive integers. We say that a GDD is a (K, \)-GDD
if|A] € K for every block A of A. When K = {k}, the design is simply denoted
by (k,\)-GDD.
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Three particular GDDs of which we will make use need to be mentioned. A
(K, )\)- GDD of type 1V is referred to as a pazrwzse balanced design (PBD), de-
noted by B( K, \;v). A (k,1)-GDD of type mF is referred to as a transversal
design (TD), denoted by TD(k,m). A (k,\)-GDD of type 1%w! is defined to
be an incomplete BIBD, denoted by IB(k, \; u + w, w). The group of size w is
thought of as a hole. Intuitively, an incomplete BIBD is a BIBD from which a sub-
BIBD is missing (this is the hole). We wish to remark that a BIBD may be viewed
as an incomplete BIBD with a hole of size 0 or 1. For more detailed information
on PBDs and related designs, the interested reader may refer to [1,4,6].

We also require the notion of a resolvable BIBD. A resolvable B( k£, A; v) briefly,
RB(k, \; v)) is defined to be a Bk, A; v) in which the block set can be partitioned
into classes (called parallel classes) such that every point of the design occurs
precisely once in each class.

Lemma 2.1. ([5)). Let m = pl ;D2 ...p¥ be the factorization of m into powers
of distinct primes p;. Thena TD(k, m) ex:sts where k < 1+ min{p¥}.

Lemma 2.2. ([3]). Ifn € {8,15,29,36,43,50,57,64,71,85}, then there
exists an RB(8,1;8n).

We now give our constructions. We often construct BIBDs from GDDs by
filling in the groups as follows (see, for example, [6]).

Lemma 2.3. Let w be anon-negative integer. Suppose that the following designs
exist:
1) a(k,)\)-GDDoftype {ti,t2,...,ts},
2) an IB(k,\ti+w,w), forl1 <i<n—1,and
3) aB(k, ity +w).
Then there exists aB(k,\;t + w), wheret =) ;.
For our purpose, we mention a special form of Lemma 2.3 below.
Lemma 2.4. Let q beaprime power not less than 8 and w a non-negative integer.

Suppose that the following designs exist:

1) anIB(8,7;q+ w,w), and
2) aB(8,7;u+w) where0 < u<yqg.

Then there exists a B(8,7; 8¢+ u + w).

Proof. From Lemma 2.1,a TD(9, ¢) exists. Delete ¢ — u points from one group
of a TD(9, q), and then break the blocks of the resulting design by a B(8,7;8)
oraB(8,7;9) (see Lemma 1.1). The result is an (8,7)-GDD of type ¢® u'. The
conclusion then follows from Lemma 2.3.

Lemma 2.5. Let n be a positive integer such that 6 n+ 1 is a prime power. Then
there exists an IB(8,7,7n+ 1, n).
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Proof. Let point set X = [GF(6n+ 1)] U {c0p,001,...00,-1},andlet z be a
primitive element of GF(6 n+ 1). It was shown in [4, Lemma4.2] that {B; : 0 <
i<n-—1}formsa(6n+ 1,7,7) difference family based on the additive group
of GF(6n+ 1) where

B,' = {0’ zi' .'1:"*",.'1:'.*2“, 2:1'4-3r|,zi+4», xﬁsu}, for 0 S i S n—1.

LetD = {{oo;} UB;: 0 < i < n~—1}. The proof that (X, devD) is indeed
an IB(8,7;7n+ 1, n) is by standard difference set techniques, where devD =
{D+g:9€GF(6n+1)andDeD}.

The following lemma is the variation and modification of Theorem 3.7 in [2].

Lemma 2.6. Let g be an odd prime power not less than 9. Then there exists an
(8,7)-GDD of type 89.

Proof. Suppose that z is a primitive element of GF(g). We construct an (8,7)-
GDD of type 8 as follows. Let the point set be GF(g) x (Z7U{oo}) and group set
be {{g} x (Z7 U {o0}) : g € GF(g) }. Then the 8¢(g — 1) blocks are obtained
when the following base blocks are developed in the first component under the
additive group of GF(gq):

{(z%,00),(z™!,0), (22, 1), (22, 3),
(—g',00),(-z"1,0),(-z"2,1),(-2z"*3,3)} mod (-,7)

{(',0),(z"", 1), (z™2,2), (2%, 9),
(-2%,0), (—z"1, 1), (~2"2,2),(~2"3,4)} mod (-, 7)

{(=*1, 00),(2*2,0),(27*3, 1), (2*4,2),
(*%,3),(27*%,4),(2*7,5),(2*%,6) }

where 4 runs from 0 to (¢ — 3) /2 and j runs fromQto g — 2.

Lemma 2.7. Let n be a positive integer relatively prime (0 210 = 2.3.5.7. Then
there exists an (8,7)-GDD of type 8".

Proof. Letn = p;p; ...p, bethe factorization of ninto primes thatp; < pz -+ <
Pr,and let Q; = pipis1 ... py. Start with a TD(p;,Q2) and successively partially
break up the groups of size Q; using a TD(p;, Q;+1). Finally, fill with blocks of
size Q; = P, to produce a B({p1,p2,...,pr}, 1; ). The condition that n is rel-
atively prime to 210 implies that p;(1 < j < r) is an odd prime not less than
11. Give weight 8 to every point of the PBD and apply the Fundamental Con-
struction (see [6]) with the necessary input designs from Lemma 2.6 to obtain an
(8,7)-GDD of type 8™.
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Lemma 2.8. Suppose that an RB(8, 1; v) exists, that v € B(8,7) oru =0,
andthat u < (v—1)/7. Then v+ u € B(8,7).

Proof. For u = 0, the proof is straightforward. Now assume u > 0. Take
an RB(8, 1; v) and adjoin u infinite points to  of its parallel classes of blocks,
where one infinite point is adioined to each of u parallel classes. This creates a
PBDB({8,9,u},1;v+u). Since {8,9,u} C B(8,7), we can then break up the
blocks of the PBD to show thatv + u € B(8,7).

Lemma2.9. Ifthereisan IB(8,7,v+u,u) and 8u+e € B(8,7), wheree =0
orl,then8u+8v+ecB(8,7).

Proof. By definition, an IB(8,7; v+ u,u) isan (8,7)-GDD of type 1*ul. Give
weight 8 to every point of an IB(8,7; v + u,u). Since a TD(8, 8) exists by
Lemma 2.1, the Fundamental Construction (see [6]) gives us an (8,7)-GDD of
type 8¥(8u)'. The required result then follows from Lemma 2.3 and the fact that
{8+e,8u+e}CB(8,7).

3. Main result
In this section,we work towards determining the set B(8, 7).

Lemma 3.1. If = is a positive integer relatively prime to 210,

then {8n,8n+ 1} C B(8,7)

Proof. This is immediate consequence of Lemmas 2.3 and 2.7.

Lemma 3.2. {49,57,97,449} C B(8,7).

Proof. For v = 57, the result follows from adding one infinite point to every

group of a TD(8,7). For the other values of v, a B(8, 7; v) was constructed by
H. Hanani [4, Lcmma 4.1].

Lemma3.3. If s € {8,9,15 — 17,29 — 33,36 — 41,43 — 48,50 — 55,57 —
62,64 — 69,71 —76,79,80,85 — 90}, then {83,85+ 1} C B(8,7).

Proof. In view of Lemma 1.1, we can apply Lemma 2.8 with resolvable BIBDs
from Lemma 2.2 10 establish the lemma.

Lemma3d. If s € {13,14,19-21,26-28,34,35,42,63,70,77-78,81 -
84}, then {83,8s+ 1} C B(8,7).

Proof. For s = 13 or 19, the result follows from Lemma 3.1. For the remaining
values of s, we apply Lemma 2.4 with ¢ € {13,19,25,31,37,61,67,73,79}
andw = (¢ — 1)/6 such thatu + w € {8,9,16,17,24,25,32,33,40,41}.
This guarantees that the conclusion holds because of Lemmas 1.1 and 2.5.
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Lemma 3.5. Ifs € {10,11,18,22,23,24,25,49},
then {8s,8s+ 1} C B(8,7).

Proof. For s = 10, the result follow from deleting e points from one group of a
TD(9,9), where e = 0 or 1. Take v = 19 and u = 3 in Lemma 2.9. This takes
care of the case s = 22, where an IB(8, 7; 22, 3) exists by Lemma 2.5. Lemma
1.1, 3.2 and 2.4 work for the cases where s € {18,24,25,49}. The remaining
cases where s = 11 and 23 are contained in Lemma 3.1.

Lemma 3.6. Suppose that a TD(11,t) existsand 0 < a,b,c < t. Then 8(8t +
a+b+c)+e€B(8,7) if {8t+e,8a+e,8b+e,8c+e} C B(8,7), where
e=0,1.

Proof. In a TD(9,9), we delete one point to obtain a (9, 1)-GDD of type 81°.
We then break the block of the resulting GDD by a B(8,7;9) to obtaina (8,7)-
GDD of type 8%, From Lemmas 2.1 and 2.6 we have also (8,7)-GDD of type
8%, 8% and 8!!. Ina TD(11,t), we delete t — a, t — b and ¢ — ¢ points from
three group respectively to obtain an ({8,9,10,11},1)-GDD of type t!a’b'c!.
Now we apply the Fundamental Construction with weight 8 to the last GDD. This
creates an (8,7)-GDD of type (8t)%(8a)!(8b)!(8c) . The result then follows
from Lemma 2.3.

We are now in the position to give our main result.

Theorem 3.1. For every positive integer v =0 or 1 mod 8, with the possible
exception of v € {48,56,96,448}, there exists a B(8,7; v).

Proof. From lemmas 3.2-3.5 and 1.1, we know that the conclusion holds for
v < 721. Note that for the sequence of integers n, n+ 1,n+2,...,n+9 atleast
one integer is relatively prime to 210. Simple calculation shows that each value
of v > 721 can be written in the form 8(8t + a+ b+ ¢) + e where e = 0 or 1 and
e, b, cand ¢ are chosen so that

1) tis a positive integer relatively prime to 210,
2) {8a+e,8b+e¢,8c+e}CB(8,7),where0 <a,bc<t.

Now apply Lemma 3.6 and the result follows,where we used Lemmas 2.1, 3.1 and
already determined values.
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