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ABSTRACT. In an edge-colored graph, a cycle is said to be alter-
nating, if the successive edges in it differ in color. In this work,
we consider the problem of finding alternating cycles through
p fixed vertices in k-edge-colored graphs, k > 2. We first prove
that this problem is NP-Hard even for p = 2 and k = 2. Next,
we prove efficient algorithms for p = 1 and k non fixed, and
also for p= 2 and k = 2, when we restrict ourselves to the case
of k-edge-colored complete graphs.

1 Introduction

The notion of alternating cycles, i.e. cycles such that no consecutive edges
have the same color, was originally introduced by B. Bollobas and P. Erdos
in [3]. In the same paper, the authors present conditions on colored degrees,
sufficient for the existence of alternating hamiltonian cycles in edge-colored
complete graphs. Results in almost the same vein are proved in [1,4]. For
other works on alternating cycles and paths, the reader is encouraged to
consult [2,5,10,11,14].

The aim of this work is to establish some further results on the existence
of alternating cycles through a fixed set of p vertices. We recall that the
analogous non colored version of this problem is polynomial for graphs for
p fixed [13] and NP-complete otherwise [8]. It is also NP-complete for
digraphs (7] even for p = 2.
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Formally, in what follows, G° denotes a k-edge-colored graph, of order
n, with vertex-set V(G°¢) and edge-set E(G°), k > 2. If A and B denote
subsets of V(G*), then E(AB) denotes the set of edges between A and
B, i.e. edges with one extremity in A and the other in B. Whenever the
edges between A and B are monochromatic, then their color is denoted by
¢(AB). If A = {z} and B = {y}, then for simplicity we write zy (resp.
c(zy)) instead of E(AB) (resp. c(AB)). If v is a vertex of K¢ and ¢; is a
color, then we define ', (v) = {u | u € V(K§) ~ v and c(vu) = ;}. The
c;-degree of v is defined as | I';,(v) | and is denoted ¢;(v). Whenever G¢ is
complete, then it is denoted by K¢. A bipartite tournament is an oriented
complete bipartite graph.

In this work, we consider the following two problems:

Problem 1. How easy is it to find an alternating cycle through p fized
vertices &1, %2, ..., Tp in a k-edge-colored graph G€ or else to decide that such
a cycle does not ezist.

Problem 2. How easy is i to find an alternating cycle through p fixed
ordered vertices zy,%2, ...,Zp in a k-edge-colored graph G¢ or else to decide
that such a cycle does not exist?

In the first result of this paper, we prove that both Problems 1 and 2 are
NP-hard, even if p = k = 2. Next we study these problems by restricting
ourselves to the case of edge-colored complete graphs. In particular, we
give an O(n?) algorithm for finding an alternating cycle (if any) through a
fixed vertex in a k-edge colored complete graph, for k non fixed, k > 2. We
also give another O(n?) algorithm for finding an alternating cycle through
two fixed vertices in a 2-edge-colored complete graph. This last algorithm
improves an O(n®) algorithm of [12], since, as a corollary, we show that
it can be used in order to find a directed cycle (if any) through two fixed
vertices in a bipartite tournament.

2 Main results

We start this section by proving that the problem of finding an alternating
cycle through two specified vertices in a 2-edge-colored graph G° is NP-
hard.

Theorem 2.1. Deciding if there exists an alternating cycle through two
fixed vertices in an edge-colored complete graph is NP-hard.

Proof: The reduction is from the following “local cycle problem” (LC) :
Given a directed graph D and two specified vertices z,y of D, decide if
there is a cycle containing z and y in D. LC is known to be NP-hard [8].
Moreover, LC remains NP-hard even if D is restricted to be a bipartite
graph. To see this, it suffices to add an intermediate vertex on each arc of
D in order to obtain a directed bipartite graph.
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Now consider any bipartite instance D(X,Y) of LC, where X and Y are
the bipartitions of D. Replace each XY-arc (Y X-arc) by a red (blue) edge.
Clearly, an alternating cycle containing z and y in the resulting edge-colored
graph corresponds to a cycle through z, y in D. a

In the remaining part of this section, we study Problems 1 and 2 by re-
stricting ourselves to the case of edge colored complete graphs. In paticular,
we give a positive answer to these problems, for p=1, and for k=2, p=2 in
Theorems 2.3 and 2.6, respectively.

The following Lemma will be used in the proof of Theorem 2.3.

Lemma 2.2.. Let = be a fixed vertex in a k-edge-colored complete graph
K¢&. There exists an alternating cycle containing z, if and only if there
exists an alternating cycle of length three or four containing z in Kg.

Proof.: If there exists an alternating cycle of length three or four containing
z, then, obviously, there exists an alternating cycle containing x in K§.

Conversely, assume that there exists an alternating cycle C : zz,z5...zpz
through z in K5. Choose C to be a shortest possible cycle through z. If
p < 3, there is nothing to prove. Assume therefore p > 4. from now on, we
suppose without loss of generality that the edge zz, is colored q and z,x
is colored f. Since C is alternating, clearly q # f.

Assume first that for some i, 1 < ¢ < p — 1, ¢(ziziy1)=t, where t # ¢
and t # f. Since C is alternating, both the edges z;_;z; and z;,1z;2 are
colored by colors other than ¢£. Throughout, for technical reasons we can
suppose that i % p — 1, for otherwise we may consider the cycle obtained
from C by interchanging ¢ and f and having opposite orientation. Let r
be the color of zz;,1. If r # q and r # f, then either zz;41Zit2...Tp—12ZpT
OT ITZi+1ZiTi—1...-L2Z1Z iS & cycle shorter than C, depending upon if r is
the color of z;;1zi42 or not. If r = f, then zz;12:%i—1...x22 12 is again a
cycle shorter than C. Finally, if r = g, then, the cycle zz;,1Zi12...2p—1ZpT
is shorter than C unless the color of z;;1z;+2 is g. Assume therefore that
c(Zit1Ziv2) = q. If c(zzip2) # q (resp. c(zzita) = g), then the cycle
TTi42Ti4+1Z4...22X1T (resp. zz;+za:i+3...z,_1zpz) is shorter than C, a con-
tradiction to the choice of C.

Assume next that all edges of C are in colors f and ¢. Clearly, since
C is colored by two colors, its length is even and therefore p is odd. We
look now if there exists a smallest even integer i, 1 <1 < l;—l, such that
the edge zx2;41 is in a color other than q. If { exists, then it follows from
its minimality that the color of zz3(;—1)4+1 is q and consequently the cycle
TTo(i—1)+1T2(i—1)+2%2i+1% is of length four through z, a contradiction to
the choice of C. If, on the other hand, the integer i does not exist, it follows
that the edge zz,_» is colored ¢ and therefeore, once more, the alternating
cycle zz,_2z, 12,z contains z; also a contradiction. This completes the
proof. a
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Theorem 2.3.. Let = be a vertex in a k-edge-colored complete graph K&.
There exists an alternating cycle containing z in K¢, if and only if (i) or
(ii) below holds.

(i) There are two colors i and j and two vertices u and v so that u €
Ti(z),v € Ty(a), i # j and c(uv) # i, c(uv) # 5.

(ii) For some colors i, j, q and h, i # j, q # %, h # j, there exist two
vertices w and z in I's(z) and a vertex s in I';j(x) such that c(wz) = q
and c(ws) = h.

Proof: If either (i) or (ii) is satisfied, respectively, then clearly there exists
a cycle of length three or four through z.

Conversely, assume that there exists an alternating cycle C through z
in K. By Lemma 2.2, we can consider that this cycle has length three or
four. Now, if its length is three, then (i) is satisfied. Assume therefore that
C has length four. Set C : zz,zoz3z. Suppose that c(zz,) =1, c(z1z2) =
¢, c(z2z3) = h and c(z3z) = j. Now, if c(zz3) # i and c(zz2) # j, then
either zz2z3z or zzex 1z is shorter than C, a contradiction to the fact that
C is as short as possible. It follows that the edge zz; is either in color ¢
or in color j. Consequently, the conclusion of (ii) is satisfied by identifying
z,w and s by z;,zs and z3 or z3, x3, T, respectively. This completes the
proof of the theorem. a

We notice that from Lemma 2.2 and Theorem 2.3, an O(n2) algorithm

can easily be derived in order to find an alternating cycle through a given
vertex or else to decide that such a cycle does not exist in K.

In Theorem 2.6 given later, we prove an O(n?) algorithm for finding an
alternating cycle through two fixed vertices in a 2-edge-colored complete
graph. In order to facilitate the discussion, the following notation will be
useful.

Notation: Let z and y be two specified vertices in K5. We let P, :

(z =)909192.-gmim+1(= ¥) and P2 : (z =)fofifz... fifi+1(= y) denote
two alternating paths (if any) between z and y satisfying the following
properties :

i) P, and P; are internally vertex-disjoint,

il) c(zq1) # c(zhr), c(zq1) = c(fiy) = c(zy) and c(gmy) # c(fiy) and

iii) subject to (i) and (ii), the sum of the lengths of P; and P, is as small
as possible.

In what follows we suppose without loss of generality that P; is no longer
than Ps.
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With the notation above, the following lemma is trivial.

Lemma 2.4. There is an alternating cycle containing z and y if and only
if either there is an alternating path P : zp\ps...piy from z to y such that
c(zp1) # c(xy) and c(piy) # c(zy) or else both P; and P, exist in K.

Lemma 2.5. Let z and y be two fixed vertices in a k-edge-colored complete
graph K¢, k > 2. Assume that there is no alternating cycle containing the
edge zy, and that both the paths P, and P; exist between z and y in K.
If the length of Py is at least four, then the length of P, is four.

Proof: Assume by contradiction that the length P, is at least four and
the length of P is at least five, for otherwise we have finished. Suppose
without loss of generality that c(zy) = 1.

Assume first that there is an edge gi—14i, § > 2, such that ¢(gi-14) = 1.
If c(zg;) = 1, then the path Zgigi+1..-gmY is shorter than Py, a contradiction
to the choice of P;. Assume therefore that c(zg;) # 1. If c(ygi—2) # 1, then

- if e(ygi—2) # c(gi—29i—3), then the path zg;g;...¢;_2y is shorter than Py, and
if e(ygi-2) = c(gi—2¢i—3), then the alternating cycle zg;gi—19:—2yz contains
the edge zy, in both cases a contradiction to our assertions. Consequently,
in what follows assume that c(ygi—2) = 1.

If some edge f;ifiz1, § <l —1, is colored 1, then, by interchanging z, y
on P, and by using the above arguments, we can conclude that c(yf;) # 1
and c(zfi+2) = 1. Now by setting P; : £¢i¢i-1gi—2y and P1 : zfiy2fir1 fiy
we obtain a contradiction to the choice of P, and P».

Assume on the other hand, that no edge f;fiy1, ¢ <{—1, is in color 1.
Let ¢, # 1 be the color of an edge f;fi4+1 for some 1 < i <1—1. Then
c(zf;) # ce for otherwise, the path zf;fi+1 - - - y contradits the minimality of
P,. Moreover, c(yf;) = c(fi—1fi, for otherwise, the cycle zy fi fi—1fi-2--- =
contains the edge zy, a contradiction to the hypothesis of the lemma. It
follows that the cycle z f; f;— 1y contains the edge zy, a contradiction again.

Assume next that there is no edge g¢igi+1 on P, such that c(gqi4+1) =1,
for all i, 2 < i < m. The proof of this case is essentially based on the
following claim.

Claim. If for all 2 < i < m, there is no edge gigi;1 on Py such that
c(gigi+1) = 1, then c(zgs) = c(gigi+1) and c(giy) = 1.

Proof of the claim: If for some 2 < i < m, ¢(xg;) # c(¢igi+1), then, if
c(xg;) = 1, then zgigi+1...gmy is shorter than Py else if c(zg:) # 1, then the
alternating cycle zgigi+1...gmyz contains the edge zy; a contradiction to
the hypothesis of the lemma. Furthermore, if ¢(yg;) = ¢(gigi—1), then the
cycle zg;yx contains the edge zy, again a contradiction to the hypothesis
of the lemma. On the other hand, if c(yq:) # c(gigi—1) and if e(yq) # 1,
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then the path zq;qs...g;y is shorter than P;. It follows that c(gy) = 1 as
claimed. This completes the proof of Claim.

Now, if no edge fifi+1, 1 <i <1 —1 on P,, satisfies ¢(f; fi+1) = 1, then
by changing the orientation of P, and exchanging z by y, it follows from the
above claim that e(zf;) = 1 and c(fiy) = c(fi-1f:), foralli =2,...,l-1. By
setting P, : zfiy and P; : zq;y, for some 4,j,2 <j<mand 2<i<I-1,
we obtain a contradiction with the choice of P, and P>. On the other hand,
if for some i, 2 < i < 1 — 1, we have ¢(fifi41) = 1, then if c(zf;) # 1,
then the path zf; fi+1fis2...-fiy is shorter than P,, and if ¢(fiy) = 1, then
zf1 fa...[iy is again shorter than P, in both cases a contradiction to the
choice of P,. Assume therefore that c(zf;) = 1 and ¢(f;y) # 1. Now, if
c(fiy) # c(fi—1fi), then the cycle zf, f3... fiyz contains the edge zy and if
c(fiy) = c(fi-1fi), then by setting Py : zfiy and P; : zg;y, for some j,
2 < j € m, in both cases we obtain a contradiction either to the hypothesis
of the lemma or to the choice of P; and P,. This completes the proof of
the lemma. O

Theorem 2.8. There is an O(n?) algorithm for finding a shortest alternat-
ing cycle through two given vertices z and y in a 2-edge-colored complete
graph K¢ or else deciding that such a cycle does not exist.

Proof: Assume for simplicity that the edges of K¢ are colored red (r) and
blue (b). Furthermore, suppose without loss of generality that c(zy) = r.
Now set now R = I'r(z) NI, (y), B =Ts(z)NTe(y), @ =T'r(z) NT(y) and
H =Ty(z) NTr(y).

We notice that if Q@ # 0 and H # @, then an alternating cycle of length
four containing z and y can be easily found. Consequently, in what follows
assume that either Q or H, for example H is empty. We distinguish between
two cases depending upon Q.

First case. Q is empty.

If there is a red edge, say wz in B, then the alternating cycle zwzyz
contains both x and y. Assume therefore that each edge in B is blue. Now
by the structure of K7 in connection with Lemma 2.4, we can conclude

that the desired alternating cycle exists in K¢ if and only if (i) or (ii) below
holds.

(i) There is an edge wz in R and two distinct vertices s and ¢ in B such
that c(wz) = b and c(ws) = r = c(zt). In this case, the cycle ryswztx
is alternating and contains both z and y.

(ii) There are two non-adjacent edges wiz; and wozz in R such that
c(wy121) = b, c(wz22) = b and two distinct vertices s and ¢ in B
such that ¢(sw;) = r = c(twz). In this case, the alternating cycle
zswy z1ytwazex goes through =z, y.
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Second case. Q is not emply.
Let us first point out the facts (i)-(iii) below.

(i) As in the First case, we can suppose that each edge inside B is blue.

(ii) If there is a blue edge wz in R and a red edge zu between R and B,
then the cycle zuzwyvz is as desired, where v denotes a vertex of Q.

(iii) If there is a red edge wz, w € B, z € Q, then the cycle zwzyz is as
desired.

Now we show that the problem of finding an alternating cycle through z
and y can be reduced to a shortest path problem from z to y in a directed
acyclic graph D defined as follows: The graph D has vertex-set V(D) =
V(K¢) and arc-set E(D) = EyU E;U E3U E4U E5U Eg, where: E) = {uv|
u € B,v € R, and c(w) =7},

Ez = {uv | u € R,v € Q and c(uv) = b},

E3 = {w |ue€ Q,v€Rand c(uww)=r},

Es={zu|uc B},

Es = {vy | v € Q and there is v' € Q such that c(v'v) = r} and
Eg = {vy | v € R and there is v' € R such that c(v'v) = b}.

The remaining part of the proof of the Second case is based on the fol-
lowing claim.

Claim 1. A shortest alternating cycle C through = and y ezists in K,
if and only if there is a shortest path P from z to y in D either with even
length or else its length is odd and Q — V(P) # 0.

Proof of Claim 1: Assume that the alternating cycle C through z and
y exists in KS. By the structure of K§ in connection with Lemma 2.4, we

can easily conclude that C is defined within the following two possible ways
(a) and (b).

(a) C passes through the edge zy and therefore it has the form
zblr1q1r2q2r3q3r4...qqu+1ya:, where b; € B, T; € R and gi € Q

(b) C does not pass through the edge zy. In this case, C has the form
zb1T1q172G2T343T4. . TkTk+1YGk+2Z, where as above b; € B, 7; € R and
g% €Q.

In both cases (a) and (b), we can easily deduce the existence of a shortest
path P from z to y in D fulfilling the conclusion of the claim.

Conversely, let P : zz122...2py denote a shortest path from z to y in D.
If the length of P is even, then z, € Q. In this case, C passes through zy
and it has vertex-set V(P)U {z;}, where 2, is a vertex of Q identified by v’
in Es. On the other hand, if P has odd length, then z, € R. Let us define
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a path P; between x and y in K, where E(P;) = E(P)U 2z, where
z,, is identified by v’ in Eg. Now, by using Lemma 2.4, we can conclude
that an alternating cycle C exists through = and y if and only if there is an
alternating path P, between z and y in K§ (see the definition of P; and P,
before Lemma 2.4). However, by Lemma 2.5, if the path P; exists, then it
must have length two since P, has length at least six. This justifies the fact
that the existence of C' depends upon the cardinality of @ — V(P). This
completes the proof of the claim.

Clearly, the proof of Theorem 2.6 can easily be turned into an algorithm
for finding an alternating cycle through two vertices or else decide that such
a cycle does not exist in K. Concerning its complexity, let us notice that
in all cases before Claim 1, we check each edge a constant number of times.
In the proof of Claim 1, we use Dijkstra’s shortest path algorithm [6]. It
follows that the whole algorithm terminates within O(n?) operations, as we
claimed.

The proof of the theorem is complete. a
The corollary below is an immediate consequence of Theorem 2.6.

Corollary 2.7. There is an O(n?) algorithm for finding a cycle through
two given vertices in a bipartite tournament of order n.

Proof: Let B denote a bipartite tournament with bipartition classes X and
Y. Now define K¢ to be a 2-edge-colored complete graph obtained from B
as follows : We replace each XY-arc (resp. YX-arc) by a red edge (resp.
by a blue edge) and we fill up X with blue edges and Y with red edges.
Clearly K¢ admits an alternating cycle through z and y if and only if B
admits a directed cycle through z and . a

We notice that Corollary 2.7 improves the O(n®) algorithm of Y. Manous-
sakis and Z.Tuza given in [12] for finding a cycle (if any) through two given
vertices in a bipartite tournament.
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