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Abstract. Three general constructions for covers are given. A cover is a set of k-
subsets of a y-set, V, such that every ¢-subset of V is contained in at least one of the
k-sets. These constructions use the idea of dividing the v-set into either two or three
equal sized subsets. The last two constructions also use the idea of establishing a cor-
respondence between the two equal subsets in order to facilitate the construction.

1. Introduction

A (v, k,t)-cover is aset of k-subsets of a v-set, V', such that every t-subset of V' is

contained in at least one of the k-sets. Weletv > k > t. The k-sets are often called
blocks and the covers are often called covering designs. We define C(v, &,t) to
be the minimum number of blocks in any (v, k,t)-cover. It is convenient to set
C(v,k,it) =1ifk>v>tandC(v,k,t) =0 ifv <t.

There are two main reasons why we study C(v, k,t) . The first reason is that the
covers that have the extreme number of blocks often are special combinatorial ob-
jects like Balanced Incomplete Block Designs or Geometries. In the cases where
the minimum covers are not special configurations (usually because the special
configuration does not exist for the required parameters), the minimal covers are
good approximations to the combinatorial configurations.

The second reason we study them is that they are used in betting schemes for
lotteries. The idea is as follows. The gambler must pick » numbers from n num-
bers and pays a small fee for the privilege. The lottery company on the appointed
day also chooses, at random,  numbers from n numbers. These r numbers are the
winning numbers. The r is usually small like 6 and the n is somewhere around
50. If a gambler’s ticket intersects the winning numbers in » numbers, he wins
millions. If the intersection is smaller, he wins a lesser amount—the smaller the
intersection, the smaller the winnings. Gamblers believe in lucky numbers. They
have 10 to 20 of them. They would bet all combinations of them but that is too
expensive. So entrepreneurs sell gamblers schemes to bet on certain combinations
of these “lucky” numbers guaranteeing a minimum payoff if a subset of the lucky
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numbers are picked as winning numbers. These schemes are exactly (v, k,t)-
covers. However, the entrepreneurs seldom discover or get close to finding the
value of C(v, k, t). Of course, a lottery ticket is a fool’s bet.

Nevertheless, there is or should be an interest in covers. In the rest of the paper,
I will present three constructions for covers. I hope that this will stimulate interest
in this problem and that more people will study this problem.

2. Known Results

There are not many results known about C(v, k,t). We will state the two main
results about lower bounds. Because the proofs are simple counting arguments we
leave them out. The proofs may be found in a splendid survey paper by Mills and
Mullin [2].

Theorem 2.1.

C(v,k,t) > [

viv—-1 v—t+1
ok 2 [ [222 ][22 )]

For upper bounds, constructions are used. The upper and lower bounds meet
only when v, k, t, v — k, or C(v, k,t) are quite small. There are open problems
everywhere, Mills and Mullin review these results [2].

vC(v—1,k—-1,t - l)"‘
k

Theorem 2.2,

3. Constructions

The first construction is an old one by Turan [S]. In fact, he stated this problem as
a graph theoretic problem before covers were discovered. We will not use graph
theory terminology but we will use what are now called Turan Designs. We define
a Turan Design (v, p, k) to be a set of k-subsets (blocks) of a v-set, V, such that
every p-subset of V contains (or is represented by) at least one of the k-sets. Define
T(v,p, k) to be the minimum number of blocks in any Turan Design (v, p, k).

It is easy to check that if one has a (v, k, t)-cover and if one replaces each
block of the cover with its complement in V, then one obtains a Turan Design
(v,v —t,v — k). Of course, if one complements the blocks of a Turan Design,
one gets a cover. Lemma 3.3 follows.

Lemma 3.3.
C(v,k,t) =T(v,v—t,v—k).

We will now show how to construct Turan Designs (v,4,3). Let the set of
elements be V and split them into three sets as equally as possible. Call the sets
Vo, Vi, and V3. Define two groups of blocks. Group 1 consists of all 3-sets that
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are purely from Vp, Vi, or V2. The second group of blocks consists of all pos-
sible blocks that contain 2 elements from V; and 1 element from V;,; where the
subscripts are taken modulo three.

For example, if Vo = {1,2,3}and V} = {4,5,6} and V> = {7,8} then the
blocks are: 123 and 456 in group 1 and 124, 125, 126, 134, 135, 136, 234, 235,
236, 457, 458, 467, 468, 567, 568, 781, 782, 783 in group 2.

Proving that this is a Turan Design is fairly straightforward. Consider any 4-
set. Consider the triple (4o,41,42) where o + {1 + 42 = 4 and i; is the number
of elements in the 4-set that comes from V;. If any 4; = 3 or 4 then that 4-
set is represented by a block in group 1 that consists of three elements from V.
Otherwise, for some 7, we have 1; = 2 and 4+ > 1 where j + 1 is taken modulo
three. This 4-set is represented by a block in group 2 that has the two elements
from V; and one element from Vj,;. Hence we have the following theorem.

Theorem 3.4.
T(3m+s,4,3) <m(m—1+[8/2)(2m—1+2|3/2]) for3m+ s> 3,

where s=0,1,2,

Turan went on to conjecture that these designs are minimum design but not
necessarily unique. Translating this conjecture to covers, we get the following.

Conjecture 3.5.

C3m+3,3m+s-3,3m+s—4) =m(m— 1+ [s/2])
(2m—2+2]|s/2]) for3m+s>3,

where s=0,1,2.

This conjecture has been proved forv = 4,5,...,12. In the cases where the
upper bound of Theorem 3.4 does not meet the lower bound of Theorem 2.1, there
is a great deal of work to be done. For v > 13, the conjecture is open. Forv = 13,
there is a gap of 6 between the bounds. Better constructions are needed.

The next construction first appeared in Morley and van Rees [4]. This constructs
(43—4,23—2,3) covers. Letthe v-set, V,beontheelements 1,2,...,45—4.
Divide V into two sets Vo and V). Let Vp contain the elements 1,2,...,25 -2
and let V; contain the elements 2s — 1,2s,...,4s — 4. Also, let the element ¢
in Vo correspond to the element 1 + 23 — 2 in V;. The first set of blocks are all
possible blocks consisting of s— 1 elements from Vp with the corresponding s — 1
elements from V;. The second set of blocks are all possible blocks consisting of
s— 1 elements from Vg and the s — 1 non-corresponding elements from V;. Also
included are two blocks: one consisting of the elements from Vp and the other
consisting of the elements of V;. We obtain the following theorem.
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Theorem 3.6.

23—-2

C(4s—4,23—2,39) 32(8 1 )+2 fors>2.

Proof: Clearly, the construction has the correct number of blocks. But does it
produce a cover? If we consider any s set as an ordered pair (¢, /) wherei+j=s
and where i is the number of elements from V; and j is the number of elements
from V;. If i = sori = 0, then the set is covered by the one of the two last blocks.

If the s-set, S, has 0 < i < s, then let the 1 elements from Vp be the set A and
let the j elements from V; be B. Let B consist of B;, m elements that correspond
to m elements in A, and B, , j — m elements that do not comrespond to any element
in A. If m > 1, consider the following (s — 1)-subset from Vp. It consists of
the 1 clements in A united with the j — m elements in Vp that correspond to the
elements of B, united with s — 1 — i — j + m = m — 1 other elements from
Vo. This set, W, along with its corresponding elements from V; form a block
containing S. If m = 0, then consider the following (s — 1)-subset from Vp. It
consists of 1 elements from A united with any s — 1 — 1 elements from Vp that
do not correspond with any element from B, and that are not in A. This set, W,
along with the elements in V; that do not correspond to any element in W form
a block that contains S. In either case, the s-set is contained in a block and the
construction produces the required cover. 1

This cover has an automorphism group that is isomorphic to the direct product
S:—1 x S2. By looking at the blocks that contain a specific element we get the
next theorem which was incorrectly stated in [4].

Theorem 3.7.

2s-2

C(43—5,2s—3,s—1)g( l>+lfor:322.

S —

How good are these constructions? For s = 2 and s = 3, they are minimal.
For s = 4, they are off by 2 and 1 respectively. Morley and van Rees [4] claimed
that C(11,5,3) = 21 and hence C(12,6,4) = 42. As pointed out by Mills
(1), this is incorrect. Mills discovered these three base blocks: {c0,1,6,2,7},
{c0,1,6,3,7}and {0,2,3,4,6} which when developed modulo 10, show that
C(11,5,3) = 20 and it is also unique. Hence, 40 < C(12,6,4) < 42. For
larger s, the construction probably does not produce minimal covers but they are
the best ones known.

The third construction is new and is for C(4 5,4 3—4,2s+1). Sincev—k = 4,
itis easier to describe the construction if we do it as a Turan Design (4 s,2s—1,4).
Divide the 4 s elements of the v-set, V, into two sets, Vp containing 1,2,...,2s
and V; containing2s+1,2s+2,...,4s. Alsoletelement { in Vp and the element
i + 23 in V; correspond to each other. The blocks fall into two types.
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To construct the first type of block think of the elements of V as the points of a
complete graph and consider the 2 s— 1 disjoint one factors in some complete one-
factorization of the complete graph of K3,. For each pair of elements, 1 and 7, that
represent one edge in a one factor, form s blocks containing ¢, 7 and all possible
pairs of elements from V; which correspond to the pairs in that one factor. e.g.
if 3 = 4 and the one factor was 12 34 56 78 then the 4-sets containing 1 and 2
are {1,2,9,10}, {1,2,11,12}, {1,2,13,14} and {1,2,15,16}. Since it is
well known that a complete one-factorization exists for K, when = is even, this
constructs s2(2 s — 1) blocks. Note the construction could have been done using
Vi and V, interchanged and we would have an identical result. So we will talk
about the one factors of V; also.

The second type of block is constructed from other Turan Designs as follows.
Add on the blocks of a Turan Design (2 3,2 s — 2,4) twice, once on the elements
of Vo and once on the elements of V;. We now state the theorem.

Theorem 3.8.
T(48,28-1,4) < s%(s—1)+2T(2s,2s—2,4) fors > 3.

Proof: Itis clear that the construction produces the correct number of blocks but
do they form a Turan Design? Any 2s — 1 set can be considered as an ordered
pair (4,7) where 1 + j = 2s — 1. The { represents the number of elements from
Vo and the ; represents the number of elements from V;. The blocks of the first
type represent all 2s — 1 sets with 1 and j greater than or equal to 2. Let T be
such a (2 s — 1)-set and let A be the set of elements from Vj in T'. Let B, be the
set of elements from V) in T that correspond to some element in A. Let B; be the
set of elements from V; in T that do not correspond to some element in A. Let
|Bi|]=mand|B;|=j—-m.Let2 < j<s.

If m > 2, thenlet x and y be elements in B, . Clearly, every pair of elements in
V1 occurs as an edge in some one factor of the complete one-factorization of the
complete graph on the vertices labelled with elements of V). The corresponding
points to z and y, call them zz and yy, are in A and are an edge in the correspond-
ing one factor. So {zz,yy,z,y} represents T. If m < 1 and j — m > 2, then
let z and y be elements in B and let zz and yy be their corresponding elements
which are not in A. Consider the one factor containing zy and the corresponding
one factor containing zzyy. The corresponding one factor has an additional s — 1
edges. Since 1 > s, one edge of the corresponding one factor has ends in A, call
the ends ¢ and b. Then, {a, b, z, y} represent T'. The one case that is left out is if
Jj—m=1,m=1andi=2s—3. Letz bein B; and y in B;. Let zz corre-
spond to z and zz is in A. Let yy correspond to y and it is not in A. Consider the
one factor containing zy and the corresponding one factor containing zzyy. The
number of other edges in the corresponding one factor is s — 1 while the number
of elements, other than zx in A, is 2 s—4 which is biggerthan s—1 for s > 3. So
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one edge of the corresponding one factor has ends in A and {a, b, z, y} represents
T, where a and b are the ends of that edge.

When j > s, theni < s and the argument can be done with Vp and V; switched.
When one of 1 or j is less than two, then the blocks of the second type represent
the t-sets. [ |

It happens that T(2s,2 s — 2,4) is a small number. In [2], it can be checked
that 7°(8,6,4) = 6,and T(10,8,4) = 4. Fors > 6,T(2s,25-2,4) =3, as
is shown by this Turan Design: {{1,2,3,4},{5,6,7,8},{9,10,11,12}}. It
is true that Theorem 3.8 requires that s > 4 but a similar construction still works
for s = 2,3. The blocks of type 1 are the same but the blocks of type two require
a different Turan Design. For s = 2, use a Turan Design (4,4 ,4) on 1 block. For
s = 3, use a Turan Design (6,5,4) on 3 blocks. These two small Turan Designs
are trivial to construct. The proof of Theorem 3.8 does not apply for s = 2 or3
unless p is increased. Therefore using Lemma 3.3, we can write Theorem 3.8 in
terms of covers as follows. A (12,8, 6) covering design on 51 blocks was first
found by Morley [3].

Theorem 3.9.

C(8,4,3) =14
C(12,8,6) < 51
C(16,12,9) < 124
C(20,16,11) < 233
C(4s,45—4,23+1) < s*(2s—1)+6, fors>6.

By checking the tables in [2], the (8,4, 3) -cover is best possible and the (12,8, 6) -
cover is off by at most 3. For larger covers in this family it is hard to say how good
the construction is. Of course, Theorem 2.1 can be used to get bounds in the non-
zero modulo 4 cases.

At this point, we will now give a generalization to Theorem 3.6 which was not
in Morley and van Rees. It is more convenient to prove this theorem using Turan
Designs. The construction for a Turan Design (47 + 2¢,3r— 1,27) proceeds as
follows. Divide the v = 47+ 2e set, V, into two sets of elements. The first set,
Vo, consists of the elements 1,2,3,...,2r + e while the second set, V;, consists
oftheelements 2r+e+ 1,2r+ e+ 2,...,47+ 2e. Also the element § from Vp
corresponds to the element § + 27 + e in V; and vice versa.

There are two groups of blocks. The first group consists of all possible 2r-
sets exclusively from Vo or exclusively from Vi. The second group of blocks
consists of every possible r-subset from Vy united with the corresponding r-set
from V; along with every possible r-subset from Vp united with each possible r-
set consisting of elements from V; that do not correspond to any element in the
r-subset. This construction allows us to state the following theorem.
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Theorem 3.10.

T(4r+2e,3r—1,27) gz(zr”) + (2”“) [1+ ("”)],
27r r T

forr>1,e>0.

Proof: Clearly the construction above produces the correct number of blocks so
we need only prove that a Turan Design is constructed. Let the (3r — 1)-set, T,
consist of the set A which consists of ¢+ elements from Vp and the set B which
consists of j elements from V;. Let B consist of the set B; which consists of m
elements that correspond to some element in A and the set B; that consists of
j — m elements that do not correspond to any element in A.

If { or j is less than r, the (3 — 1)-set, T, is represented by one of the blocks in
the first group. If2r—1 > { > 7, theneitherm > r in whichcase T is represented
by a group 2 block consisting of any r elements from B, and the corresponding
r elements from A; or m < r and the situation is a bit more complicated. If
j —m > r, then T is represented by any r elements from B, along with any r
elements from A. If j —m < r, then T is represented by the elements of B; along
with any r — j + m elements from B; along with » elements from A that do not
correspond to any elements from B;. Sincei—(r—(j—m)) =3r—1—r—-m=
2r—1—-m>2r—-1—(r—1) = r, we know that there are r elements in A
with the required property. [ |

Translating this theorem to cover terminology, the following theorem is ob-
tained.

Theorem 3.11.
C(4r+2e,2r+2e,7+2e+1) <2 (2;: e) + (ZT: e) [l+ (T: e)]

forr >1,e>0.

This construction gives the its best result when e equals 0 or 1.
There must be many more constructions of this type that give good results.
Hopefully, this paper will stimulate more research in this area.
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