On Covering Designs with
Block Size 5 and Index 6

Ahmed M. Assaf

Department of Mathematics
Central Michigan University
Mt. Pleasant, MI 48859

Abstract. Let V be a finite set of order v. A (v, x,)) covering design of index A
and block size & is a collection of x-element subsets, called blocks, such that every
2-subset of ¥ occurs in at least A blocks. The covering problem is to determine the
minimum number of blocks, a(v,x,)), in a covering design. It is well known that
a(v,x,2) > [£[.}A]] = ¢(v,s,)) where [7] is the smallest integer satisfying
z < [z]. It is shown here that a(v, 5,6) = ¢(v,5,6) for all positive integers v > 5
with the possible exception of v = 18.

1. Introduction

A (v, &, ) covering design (or respectively packing design) of order v, block
size » and index X is a collection 8 of x-element subsets, called blocks, of a v-set
V such that every 2-subset of V occurs in at least (at most) A blocks.

Let a(v, x,)) denote the minimum number of blocks in a (v, x, \) covering
design; and o(v, £, \) denote the maximum number of blocks in a (v, x, \) pack-
ing design. A (v, &, )) covering design with [8| = a(v, &, )\) is called 2 minimum
covering design. Similarly a (v, 5, )\) packing design with |8] = o(v, &, ) will
be called a maximum packing design. It is well known that [23]

u—
K —

a(v,5,3) > [5 [ :AH = $(v,m,2)

and

v—1

o(v,%,)) < [f [n_ lk” = ¥(v,5,3)

where [z] is the smallest integer and [ z] is the largest integer satisfying [z] <
z < [z].

When a(v, &, \) = ¢(v,x, ) the (v, &, X) covering design is called minimal
covering design. Similarly when o(v,&,)) = ¥(v,s,)) the (v, s, \) packing
design is called optimal packing design.

Many researchers have been involved in determining the covering numbers
known to date (see bibliography) most notably W. H. Mills and R. C. Mullin.
In one of their papers they proved the following [22].
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Theorem 1.1. Let v be an odd integer greater than S .

(i) If v=1 (mod 4) and X > 1, then a(v,5,)) = ¢(v,5,)\) + e where
e=1if Mv—-1) =0 (mod 4) and \w¥=l = _1 (mod 5) and
e = 0 otherwise with the exceptions that «(9,5,2) = ¢(9,5,2) + 1,
a(13,5,2) = ¢(13,5,2) + 1 and the possible exceptions of the pairs
(v,2) € {(53,2),(73,2)}, and

(ii) Ifv=13 (mod 4) and A > 1 then a(v,5,)) = ¢(v,5,)\) + e wheree
as in (i) with the exceptions a(15,5,)) = ¢(15,5,)) + 1 forh = 1,2
and the possible exception of the pairs (v,)) € {(63,2),(83,2)}.

Our interest here is in the case x = 5 and A = 6. Since the case v odd has
been treated by Mills and Mullin we only treat v even. Our goal is to prove the
following.

Theorem 1.2. Let v > 5 be an even integer. Then av,5,6) = ¢(v,5,6) with
the possible exception of v = 18.

2. Recursive Constructions

In order to describe our recursive constructians we require several other types
of combinatorial designs. A balanced incomplete block design, B{v,, )], is a
(v, &, )) covering design where every 2-subsets of points is contained in precisely
A blocks. Ifa B[ v, &, A] exists thenitisclearthata(v, s, ) = Av(v—1/x(x—1)
= ¢(v,x, ) and Hanani, [14], has proved the following existence theorem for
Blv,5,)].

Theorem 2.1. Necessary and sufficient conditions for the existence ofa B[v, 5, \]
are that \(v—1) = 0 (mod 4) and Av(v—1) =0 (mod 20) and (v,)) #
(15,2).

The following obvious lemma is most useful to us.
Lemma 2.1. If there exists a B[v,5,)] and a(v,5,)\) = ¢(v,5,)) then
a(v,5, 2+ X)) =¢(v,5, 2+ )).

Corollary. Let v=0 or 6 (mod 10) be a positive integer. Then a(v,5,6) =
#(v,5,6).

Proof.

Forv=0or6 (mod 10) a (v,5,6) minimal covering design can be con-
structed by simply taking the blocks of a B[v, 5,4] and a (v, §,2) minimal cov-
ering design.

A (v, x, ) covering design (or respectively packing design) with a hole of size
his atriple (V, H, B) where V is a v-set, H is a subset of V of cardinality h, and
B is a collection of x-clement subsets, called blocks, of V' such that

1) no 2-subset of H appears in any block;
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2) every other 2-subset of V' appears in at least (at most) A blocks;
3) 1Bl = é(v,5, ) — d(h,v,7), (18] = ¥(v,5,2) — ¥(h,k,}))

Lemma 2.2. If there exists a (v, s, \) covering design with a hole of size h > 5
and a(h,x,)\) = ¢(h,k,)) then a(v,k, ) = ¢(v,5,)0).

Proof.

Form the blocks of an (4, s, \) minimal covering design on the points of the
hole. Adding the blocks of the covering design with the hole gives a (v,&,))
minimal covering design.

We like to mention that in case x = 5,and A(v — 1) = 0 (mod 4) the exis-
tence of a (v, 5, \) packing design with a hole of size h # 5 is equivalent to the
existence of a (v, 5,)) covering design with a hole of size b 7 5.

In many places through the paper instead of constructing a (v,5, 6) minimal
covering design we constructa (v, 5, 6) covering design with a hole of size h > 5
where a(h,5,6) = ¢(h,5,6) and then apply lemma 2.2.

Let &, X and v be positive integers and M be a set of positive integers. A group
divisible design GD[«x, A, M, v] is a triple (V, 8,) where V is a set of points
with |V| = v,and 4 = {G1,...,G,} is a partition of V into = sets called groups.
The collection B consists of x-subsets of V, called blocks, with the following
properties.

1) |BNGi|<1forall B € BandG; € v;

2) |Gile M forallG; € v

3) every 2-subset {z,y} of V such z and y belong to distinct groups is con-

tained in exactly A blocks.

If M = {m} then the group divisible design is denoted by GD[«, A\, m,v}. A
GD( &, )\, m, sm] is called a transversal design and denoted by T[x, X, m]. Itis
well known that a T[«, 1, m] is equivalent to x — 2 mutually orthogonal Latin
squares of side m.

In the sequel we shall use the following existence theorem for transversal de-
signs. The proof of this result may be found in [1], [11], [12], [14], [22], [24].

Theorem 2.2. There exists a T[6,1, m] for all positive integers m with the ex-
ceptionof m € {2,3,4,6} and the possible exception of m € {10,14,18,22,
26,30,34,38,42,44}.

Theorem 2.3. If there exists a GD[6,6,5,5n] and a (20+ h,5,)) covering
design with a hole of size h then there exists 8 (20(n—1) +4u+h,5, \) covering
design with a hole of size 4u + h where 0 < u < 5.

Proof.

TakeaGD[6, 6,5, 5n] and delete 5 — u points from the last group. Inflate this
design by a factor of 4. On the blocks of size 5 and 6 construct a GD[5,1,4,20]
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and a GD[ S, 1,4,24] respectively. Add h points to the groups and on the first
n— 1 groups construct a (20+ A, 5, \) covering design with a hole of size A, and
take the h points with the last group to be the hole.

Theorem 2.4, Ifthereexistsa GD[6,6,5,5n],a (20+h,5,6) covering design
with a hole of size h and a (20+ h, 5, )\) minimal covering design then there exists
a (20n+ h,5,6) minimal covering design.

Proof.

Take a GD[6,6,5, 5n] and inflate this design by a factor of 4. Replace the
blocks of this design by the blocks of GD[ 5, 1,4, 24]. Add h points to the groups
and on the first (n — 1) groups construct a (20 + h, 5,6) covering design with a
hole of size h and on the last group construct a (20 + A, 5,6) minimal covering
design. Itis readily checked that this construction yields a (20 n+ A, 5, 6) minimal
covering design. ‘

It is clear that the application of the above theorems require the existence of
GD[6,6,5,5n]. Our authority for this is the following lemma of Hanani [14 p
286).

Lemma 2.3. There exists a GD[6,6,5,5n] forv=17,8,9,10,12.

If in the definition of GD[ s, ), m, v] (similarly T «, A, m]) condition 2 is chang-
ed to be read as (2) every 2-subset {z, y} of V such that z and y are neither in the
same group (column) nor in the same row is contained in exactly )\ blocks of 8
and no block contains two elements of the same row (We may look at the points
of V as the points of an array A of size m x n and then the groups of the modified
group divisible design are precisely the columns of A). Then the resultant design
is called a modified group divisible design (modified transversal design) and is
denoted by MGD[ %, A, m, v] (MT[ &, X, m]).

A resolvable modified group divisible design, RMGD| &, ), m, v], is amodified
group divisible design where its blocks can be partitioned into parallel classes. It
is clear that a RMGD( 5,1, 5, 5m] is the same as RT[5, 1, m] with one parallel
class of blocks singled out, and since RT[ S, 1, m] is equivalent to T[6,1,m] we
have the following,

Theorem 2.5. There exists a RMGD[5,1,5,5m] for all positive integers m
with the exception of m € {2,3,4,6} and the possible exception of m €
{10,14,18,22,26,30,34,38,42,44}.

The next theorem is in the form most useful to us.

Theorem 2.6. [4] If there exists aRMGD(S5,1,5,5m] anda GD[5,6, {4,s'},
4m + 8], where * means there is exactly one group of size s, and there exists a
(20+h,5,6) covering design with a hole of size h then there existsa (20m+4 u+
h+ s,5,6) covering design with a hole of size4u+ h+ s where0 < u<m-1.
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It is clear that the application of the above theorem requires the existence of a
GD[5,1,{4,s*},4m + s]. We observe that we may choose s = 0 if m = 1
(mod 5);s=4ifm=0or4 (mod 5),and s = XB=L jfyy = 1 (mod 3)
(see {4]). We may also apply the following [14].

Theorem 2.7. There exists a GD[5,1,{4,8*},4m + 8) wherem = 0 or 2
(mod 5) m > 7 with the possible exception of m = 10.

We close this section with the following notations that will be used later.
Ablock (k,x+ m,x+ n,x+ y, f(x)) (mod v) where f(x) = aif s iseven
and f(x) = bif x is odd is denoted by (0 m ny) U {a,d} (mod v).

3. The Structure of Packing and Covering Designs

Let (V, B) bea(v, x,)) packing design, for each 2-subset e = {z, y} of V define
m(e) to be the number of blocks in 8 which contain e. Note that by the definition
of a packing design we have m(e) < X foralle,

The complement of (V, 8), denoted by C(V, B) is defined to be the graph with
vertex set V and edges e occurring with multiplicity A — m(e) for all e. The
number of edges (counting multiplicities) in C(V, B) is given by A () — |8I(5)-

The degree of the vertex z in C(V, 8) is M(v — 1) — rz(s — 1) where r, is the
number of blocks containing z.

In a similar way we define the excess graph of a (V, 8) covering design de-
noted by E(V, ), to be the graph with vertex set V and edges e occurring with
multiplicity m(e) — X for all e. The number of edges in E(V, §) is given by
181(3) — A(3); and the degree of each vertex is r,(x — 1) — A(v — 1) where r,
is as before.

Lemma 3.1. Let (V,B) bea (v,5,4) optimal packing design. Then the degree
of each vertex of C(V, f) is divisible by 4 and the number of edges in the graph
is0,4 or12 whenvmod 5 € {0,1},{2,4},0r {3}.

The only graph with 4 edges and every vertex of degree divisible by 4 is the
graph with four parallel edges connecting two vertices and v — 2 isolated vertices.
Therefore whenv = 2 or4 (mod 5) a (v,5,4) optimal packing design is the
same as, a (v, 5,4) packing design with a hole of size 2.

Lemma 3.2. Let (V,8) be a(v,5,2) optimal packing design where v = 3
(mod 10). Then the degree of each vertex of C(V, B) is divisible by 4 and the
number of edges in the graph is 6. Hence C(V, ) consists of v — 3 isolated
vertices and 3 other vertices each pair of them is connected by 2 edges.

Lemma3.3. Let (V,B) bea(v,5,4) minimal covering design. Then the degree
of each vertex of E(V, B) is divisible by 4 and the number of edges in the graph
is0,6 or8 whenvmod 5 € {0,1}, {2,4}, or {3} respectively .
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The only graph with 6 edges and every vertex of degree divisible by 4 is the
graph with v — 3 isolated vertices and 3 other vertices each one connected to the
other 2 by two parallel edges.

The following is very simple but most useful to us.

Theorem 3.1. If there exists

1) A (v,5,)\) covering design with $(v,5,)) blocks
2) A (v,5,)\") packing design with ¢(v,5,\') blocks
3) ¢(v,5,0) + ¥(v,5,)) = §(v,5,2 + X)
4) The complement graph C(V, B) of the packing design is isomorphic to a
subgraph G of the excess graph, E(V, B), of the covering design.
Then there exists a (v, 5, ) + \) covering design with ¢(v,5,) + \') blocks,
that is, a (v, 5, ) + \) minimal covering design.

4. Constructions
In this section we distinguish the following cases.

4.1 v=4 (mod 20)

Lemmad.1l. av,5,6) = ¢(v,5,6) forv=24,44,64,84.

Proof.
For v = 24 the construction is as follows.

1) Takea (24,5,4) optimal packing design, [7]. In this design each pair ap-
pears in exactly four blocks with the exception of one pair, say, (22,23)
that appears in zero blocks.

2) Takea(23,5, 1) minimal covering design which we construct by taking the
blocks of a B[21, 5, 1] together with new two points, say, (22,23) which
we add them to 7 triples that partition the points of B[21,5,1]. Without
loss of generality we may assume that one of these triples is (6 7 8).

3) Take a B[25,5, 1] and assume we have the block (1 2 3 24 25). In this
block change 25 to 8 and in all other blocks change 25 to 24.

4) Finally assume in the (24, 5,4) optimal packing design we have the block
(12 3 7 8). In this block change 8 to 24.

Since we assume in (2) that we have the triple {6 7 8), so it is easily checked

that the above 4 steps yield the blocks of a (24,5, 6) minimal covering design.

For v = 44,64, 84 see the next table. In general the construction in this table

and all other tables to come is as follows. Let X = Z,_, U H,or X = Z3 X
Z(y-nyj2 U Hy, where Hy, = {h1,...,hy} is the hole. The blocks are constructed
by taking the orbits of the tabulated base blocks.
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v Point Set Base Blocks

44 Zaa {012 4 8)twice (0 3 12 19 32) wwice (0 5 15 26 31) twice

{0 6 14 23 33) twice (0 2 5 12 30) (0 4 13 27 33)
(0142021)(0271322)(04 1226 34)

64 Zea 013 720) 3times (0 5 14 32 40) awice (0 10 21 33 49) twice
051628 42 (08183342“0131144 {0 4 16 30 46)
06 21 28 45 (01326_@(05173545 {0 6 15 37 50)
013714)(05152437)(05213344) (0 8 17 38 46)

84 Zg4 (0137 22)twice (0 531 48 56) wwice (0 9 20 44 54)_twicc
(0 13 27 45 68) twice (0 1 3 15 34) twice (0 4 22 46 59) wwice
(0 5 11 21 57) wwice (0 7 30 47 56) twice {0 12 20 37 46)
(013715)(05214861) (08 18 47 67)

(0 11 30 42 62) (0 13 8 39) {0 4 13 24 65)

(0 6 21 33 55) (0 10 24 40 66)

Lemma 4.2. There exists a (24 ,5,6) covering design, with a hole of size 4 .

Proof.

The blocks of a (24,5, 6) covering design with a hole of size 4 are constructed
as follows.

1) TakeaB[21,5,1].

2) TakeaB[25,5,1] and delete the block (21 22 23 24 25) and in all other
blocks change 25 to 23 and 24 to 22.

3) Takea (23,5,1) covering design. This design has a block of size 3, say,
{21,22,23} which we delete, [17].

4) Take 3 copies of B[25,5,1]. Assume in each copy we have the block
(21 22 23 24 25) which we delete and in all other copies change 25 to
24,

It is readily checked that the above construction yields a (24,5,6) covering
design with a hole of size 4.

Notice that the first two steps yield a (23,5,2) covering design with a hole of
size 3.

Lemmad.3. Letv =4 (mod 20) beapositiveinteger > 24. Then a(v,5,6) =
#(v,5,6).

Proof.

Forv = 24,44,64,84 the result follows from lemma 4.1. For v > 104,
v ¥ 144,184,224, simple calculations show that v can be written in the form
v=20m+ 4u+ h+ s where m, u, h and s are chosen so that

1) There exists a RMGD[5,1,5,5m].

2) 4u+h+s3=4 (mod 20),24 <4u+ h+3< 84.

3) s=0 (mod 4),h =4.
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Now apply theorem 2.6 and the result follows.

Forv = 144, 184 apply theorem2.4 withn= 7,9 andh = 4. Forv = 224 take
aGDI[6,6, 5, 60] and delete the last group. Inflate the resultant design by a factor
of 4. Add 4 points to the groups and on each group constructa (24, 5, 6) covering
with a hole of size 4 except the last group on which we construct a (24,5,6)
minimal covering design.

Forv = 104 take a T{§, 6, 20), add 4 points to the groups. On the first group
constructa (24, 5, 6) covering with a hole of size 4 and on the other groups con-
struct a (24,5, 6) minimal covering design.

42 v=8 (mod 20)

Lemma 4.4, a(v,5,6) = ¢(v,5,6) forv=8,28,48,68,88.
Forv = 8,28,48 see the following table.

v Point St Base Blocks
8 | Zs 0246)+1,1€2 (01245)(01235)
28 | ZnUHs 02613211 (012 7)U{h1,ha} (0310 13)U{h3, ha}

049 17)U{hs, hs} (02812 h)) (02814 hy) (0123 hsy)
(037 18hs) (03 8 I3 hs) (04 9 15 hg)

438 Zao U Hg On Z4g U Hy, construct a (47,5, 2) packing design with a hole of size
7, [8). Take two copies of this design and the following blocks.
(0261424) (0125 hg) (031126)U {h1,h2}
(051825)U{hs, ha} (061329)U{hs,hs} (09 19 28) U {hy,hsg}

For v = 68,88 take a GD[6,3,5,57], n = 7,9 [14], and delete one point
from last group. Inflate the resulting design by a factor of 2. Replace all its blocks
which are of size 5 and 6, by the blocks of GD[ 5, 2,2, 10] and GD[5,2,2,12],
[15]. On the first 6 groups construct a (10, 5, 6) minimal covering design and on
the last group construct a (8,5, 6) minimal covering design.

It is readily checked that this construction yields a (68,5,6) and (88, 5,6)
minimal covering design.

Lemma 4.5. Let v = 8 (mod 20) be a positive integer. Then a(v,5,6) =
#(v,5,6).

Proof.

Forv = 8,28,48,68,88 the result is given in lemma 4.4. For v > 108,
v # 128, write v = 20m + 4u + h + s where m, u, h, s are chosen the same as
in lemma 4.3 with one difference that 4u + h + s = 8 (mod 20). Now apply

theorem 2.6 and the result follows.
For v = 128 apply theorem 2.3 withn=7,h=4 andu = 1.
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4.3 v=12 (mod 20)

Lemma 4.6. a(v,5,6) = ¢(v,5,6) forv=12,32,52,72,92.

Proof.

For v = 12 the construction is as follows.

1) Takea (12,5, 2) minimal covering design. The excess graph of this design
has the following bipartite subgraph, say, at {2,4,6,9,10,11,12}. Fur-
thermore assume in this design we have the block (1 5 10 12 11) where
{1,5,10} are arbitrary numbers. In this block change 11 to 4.

4 12

9 2 6 10 11

2) Takea(12,5,4) minimal covering design. The excess graph of this design
consists of 9 isolated vertices and 3 other vertices, say, {2, 6, 10} each pair
of them is connected by 2 edges. Furthermore assume in this design we
have the block (1 5 10 9 4). In this block change 4 to 11. Assume also in
this design we have the block (2 4 6 10 12) which we delete.

Now it is easily checked that the above construction yields a (12, 5, 6) minimal
covering design.

For v = 32,52 the construction is as follows.

1) TakeaB[v—1,5,2].

2) Takea(v+ 1,5,2) optimal packing design, [5]. The complement graph
of this design consists of v — 3 isolated vertices and three other vertices,
say, {1,2,v + 1} each two of them are joined by two edges. Furthermore,
assume in this design we have the blocks (34 5 v v+1) (6 78 vv+1) In
the first block change v+ 1 to 10 and in the second block change v+ 1 to 11
where {3,4,5,6,7,8,10, 11} are arbitrary numbers. In all other blocks
change v+ 1 tov.

3) Takea(v,5,2),v= 32,52, minimal covering design [19].

Assume in this design we have the blocks (3 4 5 14 10) (6 7 8 14 11) where
14 is an arbitrary number. In the first block change 10 to v and in the second
change 11 to v.

But the (v, 5, 2) minimal covering design, v = 32,52, is constructed [19] by
taking a hole (block) of size 8. So the excess graph of (v, 5, 2) minimal covering
design, v = 32,52, has a subgraph that is isomorphic to the following graph.
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T~

2 1 3 4 5 6

So without loss of generality we may assume that the triple (1 2 32) appears §
times and (10, 11, 14 ) appears 3 times in the blocks of (v, 5, 2) minimal covering
design v = 32,52, .

It is easy to check that the above construction produces a (v,5,6) minimal
covering design forv = 32,52.

We now construct (v,5,6) minimal covering design, v = 72,92, the same
way as v = 32,52, Since there exists a (v + 1,5, 2) optimal packing design, [5]
forv = 72,92 and since there exists a B[v — 1,5,2] for v = 72,92 so we only
need to show that there exists a (v, 5, 2) covering design with a hole of size 8 for
v=72,92.

Forv = 72 let X = Zg; U Hg. The blocks are the following under the action of
Z6.{0261430){0161642){03173746)(07203139)(014 11)U
{h1,h2} (0217 29)U{h3s, ha} (0518 43)U{hs,he} {09 23 42)U{h7,he}.

Forv = 92 let X = Zg4 U Hs. Then the required blocks are the following under
the actionof Zg4. (0 4 1226 42) (0 137 22) (0 5 3148 56) (0 9 20 44 54)
{013274568)(0131549) (0524 33)U{h;,h2} (06 13 31)U{hs,hs}
{0 10 27 47) U {hs, he} (0 11 32 55) U {h7, hs}. :

Lemma 4.7. Let v = 12 (mod 20) be a positive integer. Then a(v,5,6) =
#(v,5,6).

Proof.

Forv = 12,32,52,72,92 the result follows from lemma 4.6. For v > 112,
v # 132, write v = 20m + 4 u+ h+ s where m, u, h and s are chosen as in lemma
4.3 with the difference that4u+ A+ s = 12 (mod 20),12 <4u+h+s<92.

Now apply theorem 2.6 and the result follows.

For v = 132 apply theorem 2.3 withn=7,h=4 andu = 3.

44 v=2 (mod 20)

Lemma 4.8. Let v = 2 (mod 20) be a positive integer. Then a(v,5,6) =
¢(v,5,6),; b) There exists a (22,5,6) covering design with a hole of size 2.
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Proof.

The blocks of a (v,5,6) minimal covering design for allv = 2 (mod 20),
v # 22 can be constructed as follows.

1) Takea(v,5,4) minimal covering design which exists forall y=2 (mod 20)
with the possible exception of v = 22, [9]. In this design there is a triple,
say {v — 2,v — 1, v} that appears in 6 blocks.

2) TakeaB[v-—1,5,1].

3) Takea(v+1,5,1) minimal covering design, [17). This design has a block
of size 3, say (v—1, v, v+ 1) which we delete and in all other blocks change
v+1ltov.

Now it is readily checked that the above three steps give the blocksof a (v, 5,6)
minimal covering design forall v = 2 (mod 20), v # 22.

For v = 22 the construction is as follows.

1) Takea(22,5,4) optimal packing design. In this design each pair appears in
precisely 4 blocks except one pair, say, (9, 10) that appears in zero blocks.

2) TakeaB[21,5,1].

3) Take a (23,5,1) minimal covering design as constructed in lemma 4.1.
So without loss of generality we may assume that the pair (9, 10) appears
in 7 blocks and that the pair (22, 23) appears in precisely one block, say,
{1 2 3 22 23). In this block change 23 to a number, say, 4 and in all other
blocks change 23 to 22. Further assume the pair (4, 21) appears twice in
(23,5, 1) minimal covering design.

4) Assume in the (22,5, 4) optimal packing design we have the block
(12 3 21 4) In this block change the point 4 to 22.

The blocks of a (22, 5,6) covering design with a hole of size 2 is constructed

as follows.

1) Takea (22,5,4) optimal packing design, [7]. In this design each pair ap-
pears in precisely 4 blocks except one pair, say, {21,22} that appears in
zero blocks.

2) TakeaB[21,5,1].

3) Takea (23,5, 1) minimal covering design, [17]. This design has a block
of size 3, say, (21 22 23) which we delete and in all other blocks change
231022,

It is readily checked that the above 3 steps give the blocks of a (22, 5,6) cov-
ering design with a hole of size 2.

4.5 v=14 (mod 20)
Lemma 49. «(v,5,6) = ¢(v,5,6) forv=14,34,54 74,94,

Proof.
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The blocks of a (v, 5,6) minimal covering design are the blocks of a (v, 5, 3)
minimal covering design each taken twice. But a(v,5,3) = ¢(v,5,3) forv =
14,34 ,54,74 ,94,[6], hence a(v,5,6) = ¢(v,5,6) forv = 14,34 ,54,74 94,

Lemma 4.10. Let v = 14 (mod 20) be a positive integer. Then a(v,5,6) =
#(v,5,6).

Proof.

Forv = 14,34,54,74,94 the result is given in lemma 4.9. Forv > 114,
v ¥ 134, write v = 20m + 4u + h + s where m, u, h and s are chosen as in
lemma 4.3 with the difference thath = 2 and4 u+ h+ s = 14 (mod 20). Apply
theorem 2.6 and the result follows.

For v = 134 apply theorem 23 withn=7,h=2 andu = 3.

4.6 v= (mod 20)

Lemma4.11. Let v = 18 (mod 20) be a positive integer. Then av,5,6) =
¢(v,5,6) with the possible exception of v= 18,

Proof.

In [10 lemma 5.9] we have shown that there exists a (v, §,4) minimal covering
design for v = 18 (mod 20) v # 18,178 such that the excess graph of this
design consists of v—4 isolated vertices and the following graph on the remaining
4 vertices, say, {v—-3,v—2,v—1,v}.

v-3 v-1

v v-2

We now construct a (v, 5,6) minimal covering design for v = 18 (mod 20),
v # 18,178 as follows.

1) Take a (v,5,4) minimal covering design v & 18, 178 such that its excess
graph satisfies the above.

2) TakeaB[v+3,5, 1] and assume we have the following blocks (v—1 v v+1
v+2 v+3) (12 3 v—2 v+1) where {1, 2, 3 } are arbitrary numbers . Delete
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the first block and in the second change v+ 1 to a number, say, 5. In all other
blocks change v+ 3 tov,v+2 tov—landv+ 1 tov—2.

3) Takea(v — 3,5,1) minimal covering design, [16]. Assume in this design
we have the block (1 2 3 4 5) and assume that (4,5) appears at least
twice in the blocks of this design. In this block change Stov— 2. Now itis
readily checked that the above 3 steps yield the blocks of a (v, 5, 6) minimal
covering design forall v = 18 (mod 20) v # 18,178. Forv = 178 apply
theorem 2.3 withn=9,h=2 andu=4.

5. Conclusion

We have shown that a(v,5,6) = ¢(v,5,6) for all positive integers v > 5 with
the possible exception of v = 18: v odd follows from 1.1; v =0 or 1 (mod 5)
follows from the corollary; for all other values see lemmas 4.3, 4.5,4.7,4.8, 4.10,
and 4.11.
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