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Dedicated to the memory of Professor E. T. Parker who contributed
so much to the theory of latin squares.

Abstract. In this note we study a group operation on the set of all row latin squares
of order n and as a result, are able to provide a shon disproof of the Euler conjecture
for infinitely many values of n. We also discuss several related conjectures.

In [13] Norton observed that all row latin squares of size n x n form a group
Q. whose order is (n!)™ and that Q,, is a direct product of n copies of S, , the
symmetric group on n symbols. A square matrix is called a row latin square if
each of its rows contains each of the elements 1,. .., nexactly once. Hence a row
latin square R may be viewed as an n-tuple (o, ..., ay,) of permutations where
the i-th row of R may be viewed as the image of 1, ..., n under the permutation
o;. Thus if S = (B,...,Bs) is another row latin square of order n, then the
product square RS is given by (a1 81, ...,a.0,) where a;f; denotes the usual
composition of the permutations «; and ;.

Suppose L is a latin square of order n and that the order of L in Q, is m. If
L,L%,...,L™" are all latin squares, then the set {L, L?,...,L™ '} is called a
latin power set. Our interest in looking for latin power sets is motivated by the fact
that the squares L, L?, ..., L™! are mutually orthogonal, see Norton [13, Cor.
4a]. Recall that two latin squares of order n are orthogonal if upon superposition
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each of the » possible ordered pairs occurs exactly once and that a set of squares
is orthogonal if each pair of distinct squares is orthogonal.

With this as motivation, for n= 10 we conducted an extensive but not exhaus-
tive machine search for a latin power set containing three elements. Unfortunately
however, none were found. The following power set containing two mutually or-
thogonal latin squares of order 10 was found by machine.

13426759108 14237561089
10253486719 92453786101
91035812467 67384910512
79141053286 38746101925
L=381075296-41 Lz_106l9584273
5189264107 3 25107169348
84610197532 5109283716 4
27963101854 71510942836
46287310195 83611025497
65719483210 49862137510
The permutations ay, ..., ayo which correspond to the 10rows Ry, ..., Rjo of

L are given by:

@ = (234)(S6T)(894)(1)  as = (152)(38.A4)(497)(6)
@z = (149)(354)(687)(2) o = (185)(24.4)(369)(7)
as = (196)(2AT)(458)(3)  as = (127)(395)(46 4)(8)
as = (173)(298) (5A6)(4) o = (148)(263)(57A4)(9)
as = (134)(286)(479)(5) a0 = (164)(259)(378)(A).

Itis easy to see from these permutations that L? = I, the identity of Q;0, each row
of which contains 1, ..., 10. Hence L? = L~! which is latin by Norton [13, Thm.
5] and moreover from [13, Cor. 4a), L and L? are orthogonal. A. D. Keedwell
kindly pointed out to the authors that other latin squares of order 10 already in the
literature also form power sets containing two elements, see for example the latin
square represented by the permutations in Keedwell [10, Fig. 2].

Clearly there is no latin power set {L, L?} for squares of order 2 or 6 but mo-
tivated by the above examples, it is quite natural to ask whether the following
holds

Conjecture. If n# 2 or 6 then there exists a latin power sef containing at least
two latin squares of order n.

The validity of our conjecture would imply a new disproof of the famous Euler
conjecture concerning the nonexistence of a pair of orthogonal latin squares of
ordern= 2(2k+ 1) fork = 0,1,.... See[2, Ch. 11] for a history and work
related to Euler’s conjecture.

We first prove a few results concerning latin power sets.
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Theorem 1. If L is a Cayley table of a group G of order n with n= p}' ...pfr
where p1 < p2 < --- < py are primes, then the set {L,L?,..., L~} forms a
Iatin power set containing py — 1 elements.

Proof: Since all positive integers < p1 — 1 are relatively prime to », it is easy
to see that L, L2, ..., LP~! are latin squares. Moreover by Norton [13, Cor. 4a],
they are mutually orthogonal.

Corollary 2. If nisaprime there is a latin power set containing n— 1 elements.
Corollary 3. If nisodd there is a latin power set containing at least two elements.

We remark that a special case of Theorem 1 was obtained in [12] for the case
where G is the cyclic group of order x. In the cases of n= 35,77, 119, 143,187
it is worth pointing out that the above construction using power sets gives the
maximal number of orthogonal squares known (4,6,6,10,10 respectively) for these
values of n, see Brouwer [1, p. 167]. We also mention that if n > 2 is even, the
paper [14] of Sinkov implies that no complete (n — 1 elements) latin power set
exists.

In Problem 5.2 of [2, p. 488], it is asked “Is it true that there do not exist sets
of n— 1 mutually orthogonal latin squares based on a cyclic group unless nis a
prime?” Qur next result gives a partial resolution to this question.

Corollary 4. If = is not a prime then no complete latin power set containing
n— 1 elements exists based on a group tab\]e.

‘We now provide a proof of part of our conjecture.

Theorem S, If n > 7 and n = 0,1 (mod 3) then there exists a latin power
set with at least two latin squares of order n.

Proof: A Mendelsohn triple system is a pair ( M, T") where M is a set of elements
and T is a collection of triples such that every ordered pair (a, b), a # b, belongs
to exactly one cyclic triple of T'. A Mendelsohn triple system ( M, T") is of order
n if the number of elements in M is n, and it is said to be resolvable if the blocks
can be partitioned into n sets each containing the same number of blocks which
are pairwise disjoint as sets. It is easy to see that a resolvable Mendelsohn triple
system of order n can be considered as a permutation representation of a latin
square of order n, see our earlier example in the case n= 10. Also it is clear that
if L denotes a latin square which corresponds to a resolvable Mendelsohn triple
system, then L2 = L~ holds. Since L~! must be a latin square by [13, Thm. 5],
L and L? form a latin power set. It is known that resolvable Mendelsohn triple
systems of order nexistifn= 0,1 (mod 3) except for n = 6, see [9] or [11].
This completes the proof.

It is easy to see from Corollary 3 and Theorem 5 that our conjecture on the
existence of latin power sets is true except for the case where n = 3k + 2 and
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k is even, i.e. except whenn = 2 (mod 6). Also it is easily seen that we have
produced an easy disproof of Euler’s conjecture except for the case when n =
3k + 2 and k is divisible by 4, i.e. except whenn = 2 (mod 12). While this
provides a class of counter examples to Euler’s conjecture, it does not detract from
Parker’s achievement of providing the first disproof of the conjecture forn= 10,
see [2, p. 397] for details.

Unfortunately for n = 2 (mod 6) the situation is not so simple. However
through the use of so called circular Tuscan-2 squares and related results one can
construct latin power sets containing latin squares of various orders. As discussed
in [6-8] an Italian square is an nx n array in which each of the symbols 1,2,...,n
appears once in each row (this is of course just a row latin square). A Tuscan-k
square is an Italian square with the further property that for any two symbols a
and b and for each m from 1 to k, there is at most one row in which b is the m-
th symbol to the right of a. A circular Tuscan-k array is an n x (n+ 1) ammay
in which each of the n+ 1 symbols 0, 1,..., n appears once in each row and in
which the Tuscan-k property holds when the rows are taken to be circular, see
[6-8] for details.

In [6, Thm. A] the authors prove that if an n x (n+ 1) circular Tuscan-k array
exists then there exist & orthogonal (n+ 1) x (n+ 1) latin squares. If we use
permutation representations of latin squares, this can be strengthened to

Theorem 6. Ifan nx (n+ 1) circular Tuscan-k array exists then there exists a
Iatin power set containing k latin squares of order n+ 1.

In question QS5 of [6] it is asked whether for all even n > 8 docircular nx (n+
1) Tuscan-2 arrays exist? While this question remains open it is conjectured in
[6] that the answer is yes and a computer search described there shows that such
circular nx (n+ 1) Tuscan-2 arrays do indeed exist foralleven8 < n < 50. We
also point out that circular Tuscan-k arrays are related to so-called 1-fold perfect
Mendelsohn designs, see Hsu and Keedwell [9], where a number of constructions
of Mendelsohn designs are given using generalized complete mappings of various
groups.

We close by relating these power set ideas to two previously published con-
jectures of Dénes and Keedwell. Suppose L is a latin square whose i-th row is
defined by a; regarded as a permutation of its first row. In [4] Dénes and Keed-
well indicate they have shown that if L is the Cayley table of a non-soluble group,
then at least one square-root square V'L = (/a1, ..., /@) always exists. This
led them to conjecture that in the case of a non-soluble group, at least one of the
square-root squares is a latin square.

Another conjecture of Dénes and Keedwell is stated as follows in [5]): A nec-
essary and sufficient condition for a latin square A to have an orthogonal mate is
that either A? is a latin square or A can be represented as the product A = BC of
two not necessarily distinct latin squares B and C.
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