The Tenacity of the Harary Graphs

Margaret Cozzens*

National Science Foundationtand
Northeastern University

Dara Moazzami
Shahid Beheshti University

Sam Stueckle

Department of Mathematics
Northeastern University
Boston, MA 02115

ABSTRACT. As a network begins losing links or nodes eventu-
ally there is a loss in its effectiveness. Thus, communication
networks must be constructed to be as stable as possible, not
only with respect to the initial disruption, but also with respect
to the possible reconstruction of the network. Many graph the-
oretical parameters have been used to describe the stability
of communication networks, including connectivity, integrity,
toughness, tenacity and binding number. Several of these deal
with two fundamental questions about the resulting graph. How
many vertices ean still communicate? How difficult is it to re-
connect the graph? For any fixed integers n,p, withp > n 41,
Harary constructed classes of graphs Hy, p, that are n-connected
with the minimum number of edges. Thus Harary graphs are
examples of graphs with maximum connectivity. This property
makes them useful to network designers and thus it is of in-
terest to study the behavior of other stability parameters for
the Harary graphs. In this paper we study the tenacity of the
Harary graphs.
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Preliminaries

The stability of a communication network composed of processing nodes
and communication links is of prime importance to network designers. As
the network begins losing links or nodes eventually there is a loss in its
effectiveness. Thus, communication networks must be constructed to be as
stable as possible, not only with respect to the initial disruption, but also
with respect to the possible reconstruction of the network. Many graph
theoretical parameters have been used in the past to describe the stabil-
ity of communication networks. Most notably, the vertex-connectivity and
edge-connectivity have been frequently used. The difficulty with these pa-
rameters is that they do not take into account what remains after the graph
is disconnected. Consequently, a number of other parameters have recently
been introduced which attempt to cope with this difficulty. Several of these
deal with two fundamental questions. How many vertices can still commu-
nicate? How difficult is it to reconnect the graph? In this paper we will
deal with both of these issues but first we will give some basic definitions
and notation. Any undefined terms can be found in the standard references
on graph theory, including Chartrand and Lesniak [3].

Throughout this paper we will let p and g be the number of vertices and
edges, respectively, of G. A set of vertices in G is independent if no two of
them are adjacent. The largest number of vertices in any such set is called
the vertez independence number of G and is denoted by 8(G) or .

Let G be a graph with vertex set V. Let A be a subset of V. We define
G — A to be the graph induced by the vertices of V — A. Also, for any
graph G, 7(G) is the number of vertices in a largest component of G and
w(G) is the number of components of G.

A cut-set of a graph G is a set of vertices whose removal results in a
disconnected graph or the trivial graph K. The connectivity of G, k =
K(G), is the minimum order of a cut-set in G. A graph G is called n-
connected if kK > n.

The tenacity of a graph G was defined in [4] as T(G) = min{!4ZE- A},

where the minimum is taken over all cut-sets A of G. Note that T'(K;) = p.
A subset A of V(G) is said to be a T-set of G if T(G) = [4¥HEA)  Note
that if G is disconnected then the set A may be empty.

Given a graph G, the graph G™ has V(G") = V(G) and wv € E(G") if
and only if the distance from u to » in G is at most r. Thus, in particular,
C;has V(Cp)={0,1,...,p—1} and E(C}) = {ij: [i - j| < r}

For any fixed integers n, p, with p > n+1, Harary [5] constructed classes
of graphs Hp p, that are n-connected with the minimum number of edges
on p vertices. Thus Harary graphs are examples of graphs which in some
sense have the maximum possible connectivity and hence are of interest
as possibly having good stability properties. Also, the Harary graph H,, ,
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with n = 2r is the rth power of the p-cycle, Cy, for which both the integrity
and toughness have been studied in [1,2]. Here we consider the tenacity, T,
of the Harary graphs. Hy, is constructed as follows:

Figure 1.

Case 1: If n is even then let n = 2r. Then H, , has vertices 0,1,2,...,p—1
and two vertices i and j are adjacent if and only if |{—j| < r (where addition
is taken modulo p). Hyg is shown in Figure 1. Note that this is Cp and is
n-regular.

Figure 2.

Case 2: If nisodd (n > 1) and p is even.. Let n = 2r +1 (r > 0). Then
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Hjr 41,5 is constructed by drawing Hap, and adding edges joining vertex i
to vertex i + & for 1 < < §. Again note that this is an n-regular graph.
Hjs g is shown in Figure 2.

Case 3: If nisodd (n > 1) and p is odd. Let n = 2r 41 (r > 0). then
Hary1p is constructed by first drawing Harp, and adding edges joining
vertex ¢ to vertex ¢+ ?%1 for0<:1< %1 Note that under this definition,
vertex 0 is adjacent to both vertices LJ;—‘ and &;-1 Again note that all
vertices of Hyp have degree n except vertex 0, which has degree n + 1.
Hsg g is shown in Figure 3.

Figure 3.

The tenacity for several classes of graphs is studied in [4] and [6]. The
comparison of tenacity to the integrity and toughness of these classes of
graphs indicates that tenacity can be a useful measure of graph stability.
In this paper we find the exact values or good bounds for the tenacity of the
Harary graphs. The following three propositions, along with Theorem 1,
were proved in [4].

Proposition 1. If G is a spanning subgraph of H, then T(G) < T(H).
Proposition 2. For any graph G, T(G) > “ZX2.
Proposition 8. If G is not complete, then T(G) < 2=5(G}+1,

Theorem 1. If G is a bipartite, r-regular, r-connected graph on p vertices
then T(G) = ’%2.
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Tenacity of the Harary Graphs

Throughout the rest of this paper we will let the connectivity n = 2r or
n = 2r + 1 and the number of vertices p=k(r +1)+sfor0<s<r+1.
So we can see that p=s mod (r+1) and k = | #7]. Also we assume that
the graph H,p is not complete, so n+1 < p. Note that this implies that
k > 2. We determine the tenacity first when n is even, then when n is odd
and p is even, and lastly we consider the cases when n and p are both odd.

Lemma 1. If A is a minimal T-set for Hnp, n = 2r, then A consists of
the union of sets of r consecutive vertices such that there exists at least one
vertex not in A between any two sets of consecutive vertices in A.

Proof: We assume H,, , is labeled by 0,1,2,...,p—1. Let Abea minimal
T-set for H, p and j be the least integer such that S = {5,5+1,...,5+t-1}
is a maximal set of consecutive vertices such that S C A. Re-label the
vertices of Hppasvy =j,v2=3+1,...,ue =7+t —1,...,% =j-1.
Since A # V(Hnp), S # V(Hnp) 80 vp does not belong to A. Since A
must leave at least two components, ¢ # p — 1, s0 vy41 # vp. Therefore
{vt+1,p} N A = 0. Choose v; such that 1 <i <1, and delete v; from A
yielding a new set A’ = A — {v;} with |A’| = |A| —1. Now suppose ¢ <.
The edges v;vp and v;ve4) are in Hpp— A’. Consider a vertex v adjacent
to v; in Hpp—A’,if k 2 ¢+ 1 then k < i+, 50 v is also adjacent to ve4
in Hpp— A’ andifk<pthenk>p—r+1 and vy is also adjacent to v, in
H,p—A'. Sincet < r, then vp and v;41 are adjacent in Hyp— A. Therefore
we can conclude that deleting vertex v; from A does not change the number
of components, and so w(Hy p — A) = w(Hp p— A’) and the maximum order
of a component of Hpp — A is 7(Hnp — A') < 7(Hnp— A) + 1.

Therefore, 'A—l"('{,(ﬁ;ﬁ-;—)ﬂ < MAl-lbr(Hnp A)+L _ T(H, ), contrary to

np w(Hn,p—A
our choice of A. Thus we must have { > r.

Now suppose ¢ > r. Delete v, from the set A yielding a new set A; =
A — {v}. Since t> r, the edge v, is not in H, , — A;. Consider a vertex
vy adjacent to v, in Hyp — Ay. Then k 2t +1 and k < t+7r. So v
is also adjacent to v;41 in Hy p — A;. Therefore deleting v, from A yields
W(Hpp—A) = w(Hpp— A1) and 7(Hp,p— A1) < 7(Hpp—A)+1. Therefore
'A“l"’"i’i"_ _IA' < IA"L*E;,T:'_";)A)H, again contrary to our choice of A.
Thus £ = r and so A consists of the union of sets of exactly r consecutive
vertices. a

Lemma 1 gives us an indication of the size of the cut-set for the tenacity
of Harary graphs when n = 2r; the next lemma gives us the size of the
largest component.

Lemma 2. There is a T-set, A, for Hq p, n = 2r, such that all components
of Hy p have order T(Hyn p — A) or 7(Hnp — A) — 1.
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Proof: Among all minimum order T-sets, consider those sets with max-
imum order, s, of the minimum order component. Among these sets let
A be one with the fewest components of order s. Suppose 8 < 7(Hpnp —
A) — 2. Note that all of the components must be sets of consecutive ver-
tices. Suppose Cy is a smallest component, so |V(Ck)| = s, and without
loss of generality let Cx = {v1,v2,...,v5}. Suppose C. is a largest com-
ponent, so |V(C.)| = 7(Hnp — A), and C, = {vj,...,%j4r(H, -4)}- Let
C,Cs,...,C, be components with vertices between v, and v;, such that
|Ci| = pi for 1 £ i < a and C; = {w,,%,,...,%, }. Now construct A’ as
follows, A’ = A— {v,+1,vlp‘+1,1)2p?+1, . .,von.;.l) U{v1,,v2;,.- %, ¥}
Therefore |A’| = |A|, 7(Hnp — A’) < 7(Hn,p — A) and w(H,.,, -A) =
w(Hnp—A). So, ALT{Hnpcd) o A4 (Mo ) Therefore T(Hp,p—A') =
7(Hn ,,—A) But H, »— A’ has one less component of order s than Hy, ,— A,
and this is a contradiction. Thus all components of H,; — A have order
T(Hpp — A) of T(Hpp — A) — 1. So 7(Hy p — A) = [E~]. O

These two lemmas allow us to determine precisely the tenacity of Harary
graphs when n = 2r.

Theorem 2. Let Hy , be a Harary graph withn = 2r andp = k(r+1) +s,
for 0 < s <7 +1. Then T(Ha,p) —-r+—+-f—L

Proof: Let A be a minimal T-set of H,p. By Lemma 1 and Lemma 2
|A] = rw, and 7(Hp p — A) = [E“]. Thus, from the definition of tenacity
we have T = min{""+r li2<w<k}

Now consider the function f(w) = ﬂr—r_“:]- =r+ L-'w—"] Let wy

and w; be any two integers in (2, k] with wy < we, then [2] < [£]

2 _
Thus f(w2) = r + r—3—] r+ L—l-l— = f(w). Hence the function

f(w) is a nomncreasmg function and the minimum value occurs at the

boundary. Thus w =k and [2%] = [k("“)""’—"‘] 1+ [£]. Therefore,
14+[£1

T(Hzr,p) =r+ —k'ﬁ— (]

Corollary 1. Let Cp be the p-cycle, then

1+2 ifp=0 mod 2

T(Cp) =
) {1+’,__1 ifp=1 mod 2

Corollary 2. Let C; be the power of a cycle with p = k(r +1) + s, then
14121
T(C;) =r+ —79_.

Lemma 3. Let H, , be the Harary graph for p even and n odd, son = 2r+1
for some r. Then p=0 mod (n+ 1) if and only if s =0 and k is even.

38



Proof: Let k = 2¢+ 1, for some g. Thus p=k(r+1) +s=(2¢+1)(r +
1)+s=g(n+1)+s+r+1. Since s+r+1<n+1,p#0 mod (n+ 1). Let
k = 2q. Thus p = k(r+1)+8 = 2¢(r+1)+8 = q(2r+14+1)+s = g(n+1)+s.
Thus p =0 mod (n+ 1) if and only if s =0. a

Lemma 4. Let H, p be the Harary graph with n = 2r + 1, and p even,
then
k ifp#£0 mod (n+1)

AHny) = {k -1 ifp=0 mod (n+1).
Proof: Let G = H, ;. Since at least r consecutive vertices must be between
any two members of an independent set and s < r + 1, then B(G) < k.
Consider the set B = {0,r +1,2(r +1),3(r + 1),...,(k - 1)(r +1)}. Let
0 < s < r+ 1 and assume k = 2q + 1 for some g. Since vertex i is adjacent
to vertex i+ & = i+q(r+1)+ 25,1 <i <8, and It < #EH <r 4,
then vertex ¢(r +1) € B, 06 <t < k — 1, is not adjacent to vertex z(r+1)
for any 1 < z < k — 1. Thus the set B is an independent set and therefore
B(G) =k.

Assume 0 < s < r+ 1 and k = 2q for some g. Since vertex i is adjacent
toi+E=i+q(r+1)+45, foralll <i< £ and 0 < § <r+1, we see that
t(r+1) € B, 0 <t < k—1is not adjacent to z(r+1) forany 1 <z < k—1.
Thus B is again an independent set and B(G) = k.

Suppose s = 0 and k = 2q for some q. First, consider the set B and
assume B(G) = k. Since s = 0, p = 2¢(r + 1). So there are r consecutive
vertices between two members of an independent set. Thus we need to
consider edges of the form {i,i+ §}. Since s = 0, vertex i(r + 1) for any
0 <i<gq-1,isadjacent to ¢(r+1) for some g <t < k-1, and thisis a
contradiction to the definition of independent set, and so B(G) < k. Now,
consider the set C = {0,7+1,2(r+1),...,(g=1){r+1), g(r+1)+1,..., (k=
2)(r + 1) + 1}. Since vertex i is adjacent to vertex i + § = i +q(r +1)
for any 1 < i < %, then vertex i(r +1), 0 <i < ¢g—1, is not adjacent to
tr+1)+1for g <t <2¢—2=k—2 Thus C is an independent set.
Hence (k—1) < B(G) < k. Therefore since 8(G) and k are integers, we can
conclude that 8(G) =k — 1. (]

The next theorem provides bounds on the tenacity of the Harary graphs.
As the corollaries illustrate, it gives precise values for the tenacity in many
instances.

Theorem 8. Let H,, be a Harary graph for p even, withn odd, n =2r+1,
then
r+2 ifp#0 mod (n+1)

1+ (%]
rt % STHnp) S \krvet2  jrp— 0 mod (n+1)
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Proof: Let G = H,,. By Proposition 3, T(G) < 2‘—%&%@ Thus by
Lemma 4, if p # 0 mod (n + 1), then T(G) < 2=l = r + &L, and if
p=0 mod (n+1), then T(G) < B={§=—+1 _ kriet3

Since V(Harp) = V(G) and E(Harp) C E(G), then Ha, p is a spanning
subgraph of G. By Proposition 1, we have T'(Harp) < T(G). Thus by
Theorem 2, we have r + 1—+£-ﬂ < T(G). ]

Corollary 3. Ifn is odd, p is even and s = 1, then T(Hpp) =71+ 2
Corollary 4. Ifn isodd, p is even, s = 0 and k is odd then T(H, p) = r+4£.

Corollary 5. Ifn is odd, p is even, s = 0 and k is even then r + % <
T(HnoP) S %-:-1.1—2'

We now have a lemma. analogous to Lemma 3 when p is odd.

Lemma 5. Let H, , be the Harary graph with p and n both odd, n = 2r+1
andr>0. Thenp=1 mod (n+1) if and only if s =1 and k is even.

Proof: Let1 < s < r+1 and k = 2g+1, for some ¢g. Thusp = k(r+1)+s =
gn+1)+s+r+1. Sincel<s+r+1<n+1,p#1 mod (n+1).

Now suppose k = 2g and 1 < s <7+ 1. Thus p = g(n + 1) + s. Since
1<s<n+l,p#1 mod (n+1). If s =0, then p = k(r+1). Since p is odd
we know that k is odd. Thus p= g(n+1)+r+1. Since1 <r+1 < (n+1),
then p # 1 mod (n+1). Finally, consider the case when s = 1. If k is odd,
thenp=q(n+1)+r+2. Sincel <r+2<n+1,thenp#1 mod (n+1).
If k is even, then p=g(n+1)+ 1. Thusp=1 mod (n +1). O

From Lemma 4 and the next lemma we see that the independence number
of all Harary graphs is either k or k — 1.

Lemma 6. Let H, , be the Harary graph with p and n both odd, n = 2r+1
and r > 0. Then

B(Hop) = k ifp#1 mod (n+1)
™PP T 1k—1 ifp=1 mod (n+10)
Proof: The proof is similar to Lemma 4. a

Analogous to Theorem 3 we also have bounds on the tenacity of Harary
graphs of odd order.

Theorem 4. Let Hy,p be the Harary graph with p and n odd, and n =
2r+1, then

r+2l ifp#1 mod (n+1)

1+ (%]
r+—g STHnp) < krtst?  jfp=1 mod (n+1)
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Corollary 6. If p and n are odd and s =0, then T(Hnp) =1+ 715
Corollary 7. Ifp and n are odd, s = 1 and k is odd, then T(Hyp) = r+%.

Corollary 8. If p and n are odd, s = 1 and k is even, then r +% <
T(anp) S %‘;%3'

Now we will investigate the tenacity of Harary graphs with n odd and
even order. Note that if s = 0 then Corollaries 4 and 5 give the tenacity
and bounds on the tenacity of Hy , respectively.

Lemma 7. Let H, , be the Harary graph withn =2r+1, p even, r 2 2,
0 <s<r+1,s <k, andk odd. Then there is a cut-set A with kr elements
such that w(Hpp — A) = k, and 7(Hp p — A) = 2.

Proof: We may assume H,, is labeled by 0,1,2,...,p — 1. Let s <k,
then s = k — | for some ! and so p = s(r + 2) + I(r + 1). Since k is odd,
k =2q+1 for some gq.

Case 1: If r is even then s is odd and [l is even. Therefore s=k—-12>1
and ! = 2¢ for some t. Hence k — ! = 2¢q +1 — 2t > 1 which implies that
g > t. Define the sets W; for 1 < < 2¢+ 1 as follows:

{ir + 4} 1<i<t
Wi = {ir —t+2i = 1,ir — t + 2i} t+1<i<gq
U ) {ir—t+ g +1i) g+1<i<q+t

{ir —2t+2i - 1,ir —2t+2i} q+t+1<i<2q+1

Let W = J2#1! W; and A = V(G) — W. The number of vertices in W is
equal tot +2(g—t) +t+2(g—t+1)=2(2¢+1) -2t =2k —-l=k + 3,
so |A| = p — k — s = kr. Now, we can see that for any 1 < i < 2¢+1, the
elements in W; differ from those in W;4; by at least +1. Note that if two
vertices differ by r + 1 then there are r vertices between them. Hence, no
vertex in W; is adjacent to a vertex in Wj, 1 <i < j <2¢+1, by an edge
in the copy of Ha,p in G. Thus we need only consider edges of the form
{z,z + §}. In fact, we need to consider only such edges when z is at most
2. Hence, since § = gr+2¢—t+1+3 < (g+1)r—t+q+(g+1), we need
to consider only vertices in W; for 1 <i < q.

So consider W; = {ir+i} for1 < i <t. Thenir+i+§ = (g+i)r—t+q+
(g+i)+1+5 > (g+i)r —t+q+(g+i) = jr —t+q+j, for j = q+i. Also,
ir+i+8 < (g+i)r—t+q+(g+i)+1+7=(g+i+1)r—t+q+(g+i+1) =
( +1)r —t+ g+ (j +1). Therefore the set {ir +1i+ 5} is strictly between
W; and Wjy, for j = ¢+ i, and so it is contained in A.

Finally, consider W; = {ir —¢t +2i — l,ir —t +2i} fort +1 < i < q.
Then r —t+ 2~ 1+ 8 = (g+i)r —26+2¢+2i+ 5 > (g+i)r -2t +
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29+ 2 = (q+i)r —2t+2(q+14) = jr— 2t + 24, for j = q+1i. Also,
ir—t+2i+ 8 = (q+i)r—20+2(q+4)+1+§ < (q+i)r—2t+2(q+5)+ 147 =
(g+i+)r—2t+2(q+i+1)-1=0G+1)r—-2t+2G+1)-1.

Hence the set {ir —¢ 4+ 2i — 1.+ &,ir — ¢ + 2i + [} is strictly between
W; and Wjy, for j = q+ i and so it is contained in A. Therefore the W;,
1 <¢<29+1 =k are the components of H,p — A, 50 7(Hpp — A) = 2,
and w(Hyp — A) =k

Case 2: If r is odd, then s is even and [ is odd. Hence s = 2h for some h.
Define the sets W; for 1 < i < 2g + 1 as follows:

{ir+2i-1,ir+2} 1<i<h
{ir+i+h} h+1<i<gq

" ) {ir+2-q+h-1ir+2i—q—h} q+1<i<q+h
{ir+i+ 2k} g+h+1<i<2g+1

Let W = U2''W; and A = V(G) - W. The number of vertices in
Wisequal to2h+(q—h)+2h+qg—-h+1=29+142h =k + s, so
|A] =p — k — 8 = kr. Now, we can see that for any 1 < ¢ < 2¢+ 1, the
elements in W; differ from those in W;; by at least »+1. Hence, no vertex
in W; is adjacent to a vertex in Wj, 1 <i < j < 2¢+1, by an edge in the
copy of Hyy,p in G. Thus we need only consider edges of the form {z,z+£}.
In fact, we need to consider only such edges when z is at most §. Hence,
since f =gr+q+h+5+3 <(g+1)r+2(g+1)—g+h—1, we need only
consider vertices in W; for 1 <i1<gq.

So consider W; = {ir + 2i — 1,ir + 2i} for 1 < i < h. Since r > 2, then
ir+2i-1+5 = (q+t)r+2(q+z) g+h+5—3 > (g+i)r+2(g+i)- q+h_
ir+2j5 —q+h for j = q+i. Also, ir+2i+% = (q+i)r+2(q+i)—q+h+5 +2
(g+i+)r+2(g+i+1)—q+h-1=0G+1)r+2G+1)- q+h—l
Therefore the set {ir +2i — 1+ §,4r + 2i + £} is strictly between W; and
Wj41 for j = g+ 4, and so it is contained in A.

Finally, consider W; = {zr+t+h} for h+1 <i < q. Then :r+z+h+§ =
(q+i)r+(g+i)+2h+5+3 > (g+i)r+(g+i)+2h = jr+j+2h, for j = g+i.
Also, ir+i+h+5 < (qg+i+1)r+(qg+i+1)+2h=(G+1)r+ (i +1)+2h.
Hence the set {ir+i+h+ £} is strictly between W; and W, for j = g+i
and so it is contained in A. Therefore the W;, 1 < ¢ < 2g-+ 1 = k are the
components of Hpp — A, 50 T(Hpp — A) =2, and w(Hpp— A)=k O

Using this result, we have the first theorem for even order Harary graphs
with odd n.

Theorem 5. Let H,p be the Harary graph with n = 2r + 1, p even, k
0dd,0< s<r+1ands<k. ThenT(Hpp)=r+2%.

Proof: Note first that if » = 1 then s = 1 and so p = 2k+-1, a contradiction.
Thus we may assume that » > 2. By Theorem 3, we have r + 1+1£1 <
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T(Hy,p). Hence, since s < k, we have r+2 < T(H, p). By Lemma 7, there
is a cut-set A of Hy,p, with kr elements such that 7(H,, — A) = 2 and
w(Hy,p — A) = k. Therefore, the tenacity attains the lower bound using A,
so (Hpp)=r+%. a

Now we consider the cases when 8 > k. The following two lemmas are
needed in the proofs of lemmas 10, 11, and 12.

Lemma 8. Let H,p, be the Harary graph with n = 2r + 1, p even, 0 <
8 <r+1, k odd and s > k, where s = ak + b, for some a and b.

Case 1: For 0 < b < k then

(i) if r is even, then

r> {6 a odd
8 aeven
and
(ii) if r is odd, then
s {5 a odd
9 aeven

Case 2: For b =0, so s = ak, then
(i) if r is even then r > 4 and

(ii) if r is odd then r > 7.

Proof: We will prove only the case when r is even and 0 < b < k and leave
the remaining cases to the reader. Hence s is odd.

If a is odd then b is even and the minimum value for b is 2. Since a
and k are odd and b < k, the minimum values for k and a are 3 and 1
respectively. Therefore the minimum value for s is 1(3) + 2 = 5. Since r is
even and s <r+ 1, we have r > 6.

Similarly, if a is even then b is odd and the minimum value for b is 1.
Since a is even, k is odd and b < k, the minimum values for k and a are
3 and 2 respectively. Therefore the minimum value for s is 2(3) +1 = 7.
Since r is even and s < v+ 1, we have r > 8.

Lemma 9. Let Hy , be the Harary graph with n = 2r+1, p even, O<s<
r+1, and k odd. If s = ak+b for somea and b,0 < b < k, thena+1 < 5.
Ifb=0,s0 s=ak, thena+1<%.

Proof: Again we will prove only the case when r iseven and 0 < b < k
and leave the remaining cases to the reader. Hence s is odd, so s <.
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If a is odd then b is even and the minimum values for b and k are 2 and
3 respectively. Thus 3a+ 2 < ak + b= s. Since 2a + 2 < 3a + 2, we have
2a+2 < s <r. Therefore a+1 < §.

Similarly, if a is even then b is odd and the minimum value for bis 1. Since
b < k and k is odd, the minimum value for k is 3. Thus 3a+1 < ak+b = s.
Since a is even, we have 2a +2 < 3a+1. Thus 2a +2 < ¢ < r and so
a+1<35. a

Now, we consider the cases when p is a multipie of k.

Lemma 10. Let H, , be the Harary graph withn = 2r+1, p even, k odd,
and s = ak for some a. Then there is a cut-set A with kr elements such
that w(Hy,p — A)=k,and T1(H,p — A) =a+1.

Proof: Let s = ak and k = 2q + 1 for some ¢. The proof of this lemma is
similar to Lemma 7 with W; = {i(r + 1) + (¢ — 1)a,...,i(r + 1) + ia} for
1<i<2g+1. a

If Hy, p is an even order Harary graph with n = 2r 41 and p is a multiple
of k then we have the following theorem.

Theorem 6. Let H,, be the Harary graph with n = 2r + 1, p even,
0 <s<r+1,k odd, and s = ak for some a. Then T(H,p) =r + 1f2.

Proof: By Theorem 3, we have r + 42 < T(H,,). Set A of Lemma
10 achieves this lower bound, since |A| = kr, 7(Hnp — A) = a + 1, and
w(Hp,p — A) = k. Hence [4Lz{Hnesd) — 1 4 142 and the result follows.]

If p is not a multiple of k, in particular, then we have the following lemma.

Lemma 11. Let H,, be the Harary graph with n = 2r + 1, p even,
0 < 8 <r+1, k odd and s > k, where s = ak+b for somea and b,0 < b < k.
Then there is a cut-set A with kr elements such that w(H, , — A) = k, and
T(Hpp — A)=0a+2.

Proof: Let s > k, where s=ak+band 0 < b < k. Thus p = kr + (k —
b)(a +1)+bla+2).

Write p = k(r + 1) + s. If r is even, then s is odd. In this case a is odd
if and only if b is even. If r is odd, then s is even. In this case a is even if
and only if b is even. The remainder of this proof is similar to the proof of
Lemma 7 with W; defined as given in the following cases.

Case 1: Let r be even and a odd, or r odd and a even. Hence b is even.



Therefore b = 2h for some h. Define
({i(r +2) + (i - 1)a—1,...,i(r +2) +ia}

1<i<h
{ir+1)+(@E-1)a+h,...,i(r+1)+ia+h}
h+1<i<q

{itr+2)+(@E—1a-g+h—1,...,i(r+2)+ia—q+h}
g+1<i<q+h

{ir +1) + (G =1)a+2h,...,i(r + 1) +ia + 2h}
g+h+1<i<29+1

\

Case 2: Let r and a both be even or r and a both be odd. Then b is odd
and hence k — b is even. Therefore k — b = 2t for some t. Define

({i(r +1) + (i — Da,...,i(r +1) +ia}

1<i<t
{ir+2)+(@E-Na—-t—1,...,i(r+2) +ia -t}
t+1<i<q

W;

fir+1)+(E-1a+qg—t,...,i(r+1)+ia+gqg—t}
g+1<i<q+t

{ir+2)+ (i —1)a—2t—1,...,i(r +2) + ia — 2t}
g+t+1<i<29+1

\

O

Now, we can determine precisely the tenacity for the remaining Harary
graphs, when p is even and k is odd.

Theorem 7. Let H,, be the Harary graph with n = 2r +1, p even, k
odd, 0 < s < r+1, and s > k, where s = ak + b for some a and b and
0 <b < k. Then T(Hnp) =7+ %2,

Proof: By Lemma 11, there is a cut-set A of Hy, with kr elements.
The number of components of Hp,, — A is k and the largest component
of H, p — A has cardinality 'a + 2. Hence, %ﬁ)‘q—) =r+ &2, By
Theorem 3, we have r + li)r;ﬂ < T(Hpp). Since s =ak +b for 0 < b <k,
then [£] = a + 1. Hence r + %2 < T(Ha,p), and the theorem follows. O

Lemma 12. Let H, , be the Harary graph withn=2r+1,p and k both
even,r > 2,0 < s <r+1, and s < k. Then there is a cut-set A with kr +1
elements such that w(Hnp — A) =k, and 7(Hpp — A) = 2.

Proof: We may assume H, p is labeled by 0,1,2,...,p — 1. Let s <k, so
s = k—1 for some l. Since p and k are even, then s is even and so [ is even.
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Hence | = 2t and k = 2¢, for some ¢t and ¢q. Thus s=k — 1 =2q — 2t > 2,
which implies that ¢ > ¢ 4+ 1. The remainder of this proof is similar to the
proof of Lemma 7 with W; defined as given in the following cases.

Case 1: Let s=2,s0 ¢g=1+ 1. Define W; = {i(r + 1)} for 0 < i < 2q.
Case 2: Let ¢ > ¢t + 1. Define

{i(r+2)-1,i(r +2)} 1<i<qg-t-1

{ir+1)+qg—-t-1} g-t<i<qg+1
TV +2) -t -3,i(r+2)—t -2} q+2<i<2%q—t

(i(r+1) +2¢ -2t — 2} 20-t+1<i<2

a
This lemma provides us with tight bounds on the tenacity of even order
Harary graphs.
Theorem 8. Let H, p be the Harary graph withn = 2r+1, p and k both
even,0 <s<r+1,and s < k. Then r+% <T(Hnp) <r+ -2-

Proof: Again note that if r = 1 then s = 1 and so p = 2k + 1, a con-
tradiction. Thus we may assume that r > 2. By Theorem 3, we have
r+1L,£"'El < T(Hyp). Since s < k, we have [2] = 1. Thusr+2 < T(H,p).
By Lemma 12, there is a cut-set A of H, p with kr+1 elements. The largest
component of Hy, , — A, has cardinality 2 and there are k components in

Hyp—A. Hence 1287 Heor ) — 14 3. Therefore, r+3 < T(Ha,p) <T+3-
O

For example, Has 1308 has 12.02 < T'(Hass,1308) < 12.03.

As before the following two lemmas are required in the proofs of lem-
mas 14, 16, and 17.

Lemma 13. Let H, , be the Harary graph with n =2r 41, p and k both
even,0 < s <r+1, 8 >k where s = ak + b, for some a and b.

Case 1: If 0 < b < k, then

6 aodd
r2 .
10 a even

Case 2: If b= 0, so s = ak, then

Tz{z aodd
4 aeven
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In addition, if ¥ > 2 and b= 0 then

{4 a odd
r2> .
8 aeven

Proof: The proof of this is similar to the proof of Lemma 8. O
Note that if r is odd then all of the bounds in Lemma 13 are increased
by one.

Lemma 14. Let H,p be the Harary graph with n = 2r+1, p and k are
even, 0 < s < r + 1, then the following hold.

Case 1: If s > k, s0 3 = ak+b, forsomeaand b, 0 < b < k, then a+1 < 3
Case 2: If s = ak, for some a, then a < 5.
Case 3: If s=ak and k> 2, thena < §.

Proof: The proof of this lemma is similar to the proof of Lemma 9. a

If p and k are both even and p is a multiple of k, we have the following
lemma.

Lemma 15. Let Hn, be the Harary graph with n = 2r+1,pand k
both even, k > 2, and 0 < 8 < r + 1. Write s = ak for some a, and
k = 2q for some q. Then there is a cut-set A with kr + 1 elements such
that w(Hyp — A) =k, and 7(Hpp — A) = a+2 + z, where z = [g—:—}j

Proof: The proof of this lemma is similar to the proof of Lemma 7 with
W; defined as given in the following cases.

Case 1: Suppose a < ¢ and so z = 0. Define

({ir+ (i —1)a+2i—1,...,ir + ia+ 2i}
1<i<a-1
{ir+ia+i-1,...,ir+(E+1)a+i-1}
a<igq-1
{ir+qa+i-1}
g<i<q+1
(ir+(G@-2a+26-1)—g—1,...,ir+(i—1)a+2(:-1)—q}
g+2<i<q+a
{ir+(G-1a+(@E-1)-1,...,ir+ia+ (i -1)—1}
g+a+1<i<2q

\
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Case 2: Now, suppose a = ¢ and so z = 1. Define

({ir+ (i —1)a+2i—1,...,ir +ia + 2i}
1<i<qg-1
) {ir+qa+i-1}
g<i<g+l1
{ir+(@—-2)a+2i-¢-3,...,ir+(i—-1)a+2i —¢g-2}
g+2<i<2qg

\

Case 3: Finally, suppose a — 1 = z(g — 1) 4+ u for some integers z and u,
0 < u < ¢ — 1, which implies that a > ¢. Define

({i(r+2)+(i-1)(a+2)—1,...,i(r+2)+i(a+2)}
1<i<u
{i(r+1)+(i—1)(a+2)+y,...,i(r+1)+i(a+2)+u}
ut+l <i< g1
{i(r+1)+qa-1}
g<i<g+l
((r+2)+(-3)(a+2)—g+u—2,.. ., i(r+2)+(i-2)(a+2z) —q+u—1}
g+2 <i < gtu+tl
{i(r+1)+(i-3)(a+2)+2u,...,i{r+1)+(i-2)(a + z)+2u}
gtu+2<i<2g

Wi={

\

0

Theorem 9. Let Hy, be the Harary graph with n = 2r+1, p and k both
even, k > 2,0 < s <r+1, where s = ak for some a, andk 2q for some
4 thenr+—i-<T(an)<r+9ﬂ'i where z = | 2=1|.

Proof: By Theorem 3, we have r + LVL < T(Hnp). Since s = ak, then
[4] = a. Hence r + —+— < T(Hyp). By Lemma 15, there is a cut-set A
of Hy p with kr +1 elements The number of components of Hpp — A is k
and the largest component of Hy, , — A has cardinality a + 2 + 2. Hence,

M—'Jg}:’—:ﬁ)"—) =r+ &342 and the theorem follows. ]
For example, Hgs 296 has 32.750 < T(Hgs 206) < 33.

Lemma 16. Let Hy p be the Harary graph with n = 2r + 1, p and k both
even, k>2,0<s<r+1 ands>k. Write s=ak+b for some a and b.
Then there is a cut-set A with kr + 1 elements such that w(hy,p — A) =k,
and 7(H, , — A) = a+ 2 + z, where z = | 282822 |,

Proof: Write s = ak 4 b, for 0 < b < k. Since p and k are even, then s is
even. Hence b is even. Thus b= 2t and k = 2¢ for some ¢ and q. The proof
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of this lemma is similar to the proof of Lemma 7 with W; defined as given
in the following cases.

Case 1: Suppose a+¢ < ¢ and so z = 0. Define

({ir+ (i —1)a+2i —1,...,ir +ia + 2i}
1<i<a+t-1
{ir+ia+i+t—1,...,ir+(GE+1)a+i+t -1}
a+t<i<qg-1
{ir+ga+t+i-1}
g<i<q+l1
{ir+(i—-2)a+2(i—1)+t—g-1,...,ir+(i-1)a+2(i—1)+t—q}
g+2<i<g+a+t
{ir+(i-1a+@E-1)+2t—1,... ir+ia+(G-1)+2 -1}
g+a+t+1<i<2

Wi={

\
Case 2: Suppose a + ¢ — 1 = 2(g — 1) for some integer 2. Define

{ir4+(GE=-1)(a+2)+4,...,ir+i(a+z)+ 1} 1<i<g—-1
W= {ir+(g-1a+(g—1)z+i} g<i<q+1 .
{ir+(GE-3)a+2)+i,...,ir+(i-2)(a+2)+1i} ¢+2<i<2g

Case 3: Suppose that a + ¢ —1 = 2(g — 1) + ¢ for some integer z and c,
0 <c < g—1. Define

({ir + (i — 1)(a+2) + 2i — 1,...,ir +i(a + 2) + 23}
1<i<e¢
{ir+(G@-1)(a+2)+i+e,...,ir+ila+2z)+i+c}
c+1<i<q-1
) {ir+(@—1)(a+2)+i+c}
g<i<g+l1
{ir+(i-3)(a+2)+2i—g+c-2,...,ir+(i—-2)(a+2)+2i—g+c-1}
g+2<igq+c+l1
{ir+(GE=3)a+2)+i+2,...,ir+ (i —2)(a+2) +i+2c}
g+c+2<i<2qg

\

a

Theorem 10. Let H, ;, be the Harary graph withn = 2r+1, p and k both
even, k> 2,0 < s <r+1, and s > k, where 3 = ak + b for some a and b,
and0 < b < k. Thenr+ %2 < T(Hnp) < v+ 32, where z = | 25352 |,
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Proof: By Lemma 16, there is a cut-set A of Hyp with kr + 1 elements

with w(Hy p — A) = k and 7(Hy , — A) = a+2+ 2. Hence L“%'("ﬁ(ni:._zf%) =

r+-‘¥t2—'|i. Also, since s = ak+b for 0 < b < k, we have [£] = a+ 1.
Hence, by Theorem 3, r + 22 < T(Hqnp). =]

For example, Hg3 422 has 46.875 < T(Hoa,422) < 47.125.

Finally, we will investigate the tenacity of Harary graphs with n odd
and odd order. First note that if s = 0 then p = 0 mod (r + 1) and so
T(Hn,) = 7+ £ by Corollary 6. Also note that if s = 1 then T(Hy,p) is
given by Corollaries 7 and 8.

Lemma 17. Let H,, be the Harary graph withn=2r +1, p and k both
odd,r>2,1<s<r+1, and 8 < k. Then there is a cut-set A with kr
elements such that w(Hy p — A) =k, and 7(Hy p, — A) = 2.

Proof: We may assume H,, is labeled by 0,1,2,...,p— 1. Let s < k,
then s = k — I for some . Thus p = s(r+2)+{(r +1). Since k is odd then
k = 2¢ + 1 for some g. The proof of this lemma is similar to the proof of
Lemma 7 with W; defined as given in the following cases.

Case 1: Ifrisoddthensisoddandliseven. Then s=k—1>1 and
I = 2¢ for some ¢. Hence k — | = 29 + 1 — 2t > 1 which implies that ¢ > ¢.
Define

{ir + i} 1<i<t
W = {ir—t+2-1,ir—-t+2} t+1<i<q
) ir—t+g+i} g+1<i<qg+t

{ir—2642i—1,ir—2t+2} q+t+1<i<29+1

Case 2: If r is even then s is even and [ is odd. Hence s = 2h for some h.
Define

{ir +2i - 1,ir + 23} 1<i<h

W, = {ir+i+h} h+1<i<gq
{ir+2i-q+h-1ir+2i—q+h} g+1<i<q+h
{ir+i+2h} g+h+1<i<2¢+1

O

Using this result, we have the first theorem for odd order Harary graphs
with odd n.

Theorem 11. Let H,, be the Harary graph withn = 2r +1, p and k
both odd, 1< s <r+1 and 8 <k. Then T(Hnp) =7+ .

Proof: First we see that » > 2, since if r =1, 1 < s < 2. By Theorem 3,
we have r + i‘f;ﬂ < T(Hpp). Hence, if s < k, then (r+2) < T(Hn,z). By
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Lemma 17, there is a cut-set A of Hy, p — A with kr elements. The largest
component of H, , — A has cardinality 2 and there are k components in
H,, — A. Therefore, T(Hnp) =7+ %. O

Now we consider the cases when s > k and p and k are odd. Again as
before the following two lemmas are required in the proofs of Lemmas 20,
21, and 22.

Lemma 18. Let Hy, , be the Harary graph withn=2r+1, p and k both
odd,1 < s <r+1, and s > k, where 8 = ak + b, for some a and b.

Case 1: For 0 < b <k,

(i) if r is even, then

> 8 aeven
=14 aeodd ’

(ii) if r is odd, then

. 7 aeven
=15 aodd °

Case 2: For b= 0, s = ak,
(i) if r is even, then r > 6, and

(ii) if r is odd, then r > 3.

Proof: The proof of this is similar to the proof of Lemma 8. ]

Lemma 19. Let Hy,, be the Harary graph withn = 2r +1, p and k both
odd,1<s<r+1,8>k, wheres=ak+b forsomeaandb. If0<b<k
then a +1 < § with equality possible only if r is even and a is odd. If
b =0, so that s = ak, thena+1 < [§].

Proof: The proof of this lemma is similar to the proof of Lemma 9. O

Lemma 20. Let Hy,, be the Harary graph with n = 2r + 1, p and k both
odd, 1 < s <r+1, and s = ak for some a. Then there is & cut-set A with
kr elements such that T(Hpp — A) =a+1, and w(Hy, p — A) = k.

Proof: Let s = ak and k = 2¢ + 1 for some g. The proof of this lemma is
similar to the proof of Lemma 7 with W; = {ir+ (i —1)a+4,...,ir+ia+1}
for1 <i<29+41. (]

Theorem 12. Let H,, be the Harary graphs withn = 2r + 1, p and k
both odd, 1 < s < r+1 and s = ak for some a. Then T(Hnp) =r + 1}2.
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Proof: By Theorem 3, we have r + 1£2 < T(Hy ). Set A of Lemma 20
achieves this lower bound, since |A| = kr, 7(Hy p—A) = a+1, and w(Hy p—
A) = k. Therefore T(Hy,p) = r + 142 when s is a multiple of k and k is
odd. (]

If p is not a multiple of k, in particular, then we have the following lemma.

Lemma 21. Let H,p be the Harary graph with p and k both odd, n =
2r+1,1 < 8 < r+1, and s > k, where 8 = ak-+b for somea and b, 0 < b < k.
Then there is a cut-set A with kr elements such that w(Hp p — A) = k, and
T(Hpnp—A)=a+2.

Proof: Let s > k, and s =ak+b for 0 < b < k. Thus p=kr + (k—b)(a+
1) + b(a + 2). Write p = k(r + 1) + s. If r is even, then s is even. In this
case a is even if and only if b is even. If r is odd, then s is odd. In this case
a is odd if and only if b is even. Thus we have the following two cases, both
of whose proofs are similar to the proof of Lemma 7 with W; as defined.

Case 1: Let r and a both be even, or = and a both odd. Hence b is even.
Therefore b = 2h for some h. Since k is odd, k = 29 + 1 for some ¢g. Hence
k —b=2g+1—2h > 1 which implies that g > h. Define

({i(r +2)+ (i = Da—1,...,ir +2) + ia}

1<i<h
{i(r+1)+ (@ -1a+h,...,i(r+1)+ia+h}
h+1<i<q

{ir+2)+(@E-1Na—g+h-1,...,i(r+2)+ia—q+h
g+1<i<qg+h

{i(r + 1)+ (i = Da+2h,...,i(r + 1) +ia+ 2k}

| gq+h+1<i<29+1

Case 2: If r is even and a is odd, or r is odd and a is even, then b is odd
and hence k — b is even. Therefore k — b = 2t for some ¢. Define

({i(r +1) + (i — 1)a,...,i(r + 1) +ia}

1<i<t
{ir+2)+ (G -1a—-t—1,...,i(r+2) +ia—t}
t+1<i<gq

Weﬂ Gr+1)+G-1at+q—t,...,i{r+1)+ia+q—1t}

g+li<i<q+t
{ir +2)+(E—-1a=-2t—1,...,ir +2) + ia — 2t}
q+t+1<i<2q+1

\
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Theorem 13. Let H,, be the Harary graph withn = 2r+ 1, p and k
both odd, 1 < s < r +1, and s > k, where s = ak + b for some a and b,
0<b<k. Then T(Hnp)=r+ -"’—I—"

Proof: By Theorem 3, we have r + &‘{2 < T(Hpp), since 8 = ak + b for
0 < b < k. Set A of Lemma 21 achieves this lower bound, since |A| = kr,
7(Hnp — A) = a+2, and w(Hnp — A) = k. Therefore T(H,,) = r + 2
when s is a multiple of k and k is odd. a

Lemma 22. Let Hy , be the Harary graph withn =2r+1, p odd, r 2 2,
l1<s<r+1, 8 <k, and k even. Then there is a cut-set with kr + 1
elements such that w(Hnp — A) =k and 7(Hpp — A) =2

Proof: We may assume Hy, , is labeled by 0,1,2,...,p—1. Let s < k, then
8 = k — 1 for some l. Since p is odd and k is even, then s is odd. Hence
l=2t+1and k=2q,forsometand q. Thuss=k-1=2¢-2t-1>1,
which implies that ¢ > ¢ + 1. The proof of this lemma is similar to the
proof of Lemma 7 with

{i(r +2) — 1,i(r + 2)} 1<i<q-t-1
: {ir+1)+qg-t-1} g—t<i<q+1
T i +2)-t-3,i(r+2) -t -2} ¢+2<i<2q-t
{i(r+1)+2¢—-2t -2} 2q-t+1<i<2g

O

This lemma provides us with tight bounds on the tenacity of some odd
order Harary graphs.

Theorem 14. Let H, , be the Harary graph withn=2r+1, p odd, k
even,1 <s<r+lands<k. Thenr+ T(Hnm)<7'+k

Proof: First note that if r = 1 then 1 < s < 2, a contradiction. Hence we
have r > 2. By Theorem 3, we have r+% < T(H,p). By Lemma 22, there
is a cut-set A with kr + 1 elements. The largest component of Hpp — A

has cardinality 2 and w(Hp,p — A) = k. Hence, %j’—"‘_‘%& =r+3.
Therefore r + %— ST(Hn,p) <r+ % a

For example, Hjs 325 has 7.050 < T(Hjs,325) < 7.075. Now we consider
the cases when s > k, k is even, and p is odd. The following two lemmas
are needed in the proof of Lemma 25.

Lemma 23. Let Hy, be the Harary graph with n = 2r + 1, p odd, k
even, k>2,1 <s<r+1, and s > k where s = ak + b, for some a and b,

0 <b < k. Then
{5 a odd
> .
~ |9 aeven
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Proof: The proof of this lemma is similar to the proof of Lemma 8. 0O
Note that if r is even then the bounds in the previous lemma can be
increased by 1.

Lemma 24. Let H,, be the Harary graph with n = 2r + 1, p odd, k

even, k > 2,1 < 8 <r+1 and s > k where 8 = ak + b, for some a and b,

0<b<k,thena+1<3.

Proof: The proof of this lemma is similar to the proof of Lemma 9. 0
Since k is even and p is odd, then p is not a multiple of k, so s # ak.

Hence we have our final lemma.

Lemma 25. Let H,, be the Harary graph with n = 2r + 1, p odd, k
even, k > 2,1 < 8 <r+1 and s > k. Write s = ak + b for some a and
b, 0 < b < k. Then there is an cut-set A with kr + 1 elements such that
w(Hnp — A) = k, and 7(Hnp — A) = a+ 1+ 2z, where z = [28tb=1].

Proof: Let s > k, then s = ak + b, for 0 < b < k. Since p is odd and k is
even, then s is odd. Hence b is odd. Thus b= 2t — 1 and k = 2q for some ¢
and g. The remainder of this proof is similar to the proof of Lemma 7 with
W; defined as given in the following cases.

Case 1: Suppose a+t < ¢, 50 2 = [%‘gﬁ—ﬁ‘] = 1. Define

({i(r+2)+(i-1)a-1,...,i(r+2)+ia}
1<i<a+i-1
{i(r+1)+ia+t—1,...,i(r+1)+(+1)a+t—1}
e+t<i<qg-1
{i(r+1)+qga+t-1}
g<i<g+l
{i(r4+2)+(i—2)a+t—q—3,...,i(r+2)+(i—-1)a+t—g—2}
q+2<i<q+a+t
{ir+1)+(i—-1)a+2t—2,...,i(r+1)+ia+2t—2}
gtat+t+1<i<2q

\

Case 2: Suppose a+t—1 = z(g—1) for some integer z and so ¢—1 divides
a+ 5L, Define

({itr+1)+ (G = 1)(a+2),...,i(r+1) +i(a+2)}
1<i<q-1
{ir+1) +(g—D(a+2)}
g<i<qg+1
{ir+1)+(E-3)a+2),...,i{r+1)+ (i —2)(a+2)}
| ¢+2<i<2g




Case 3: Suppose that a+t—-1=2(¢q—1)+cfor0<c<g—1 and so
g — 1 does not divide a + ¥3}. Define

({i(r+2)+(-1)(a+2)-1,...,i(r+2)+i(a+2)}
1<i<e
{ir+1)+(-1)(a+2)+c,...,i(r+1)+i(a+2)+c}
c+1<i<q-1
{i(r+1)+(g—1)(a+2)+c}
g<i<gqg+l
{i(r+2)+(i—-3)(a+2z)—gq+c—-2,...,i(r+2)+(i—2)(a+2) —q+c—1}
g+2<i< g+c+l
{i(r+1)+(i-3)(a+2)+2c,...,i(r+1)+(i—2)(a+2)+2c}
g+c+2<i<2q

\

a
Finally, we have the following theorem.

Theorem 15. Let H,, , be the Harary graph with n = 2r + 1, p odd, k
even, k >2,1 <s<r+1 and s> k. Write s = ak+ b for some a and b,
0 <b<k. Thenr+ 22 < T(Hpm) < 1+ 222 where z = [283b21].

Proof: By Theorem 3, we have r + -“—1‘—2 < T(Hnp), since s = ak + b for
0 < b < k. Also, by Lemma 25, there is a cut-set A of H, p, with kr +1
elements. The number of components of Hy,, — A is k and the largest
component of Hyp — A, has cardinality @ + 1 + 2, where z = [%’é‘f—;)-

JAl+7(Hn,p—A4) _ at+2+z
Hence we have —w(ﬂ'ﬁlﬁ)—l =r4 —ie-—. a

We can summarize what we have proved about the Harary graphs as
follows, wheren =2rorn=2r+1landp=k(r+1)+s,for0<s<r+1:

(1) If n is even or if 7 is odd and k is odd then T(H, ,) = r + “[&L.
(2) If n is odd and k is even then

kriZie 8=0,1
r+% l1<s<k

1+ [£] <

r+——% <T(H < = ve ’

& < T(Hp,p) r.gi?ffg 2<k<s=ak+b, peven

r+ 82 2 <k <g=ak+b, podd
where z = | 2852 | and y = [ 2280.

Note that the best bounds we have on the tenacity of the Harary graphs
with n odd and &k = 2 are given by Theorems 3 and 4.
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