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Abstract. It is known that if there are base sequences of lengths m + 1, m + 1, m,
m and y is a Yang number then there are T'-sequences of lengths y(2m + 1). Base
sequences of lengths m + 1, m + 1, m, m for m = 26,27, 28 and some new decom-
positions into squares are constructed. T-sequences of lengths 61(2m + 1) for some
new decompositions into squares are also presented.

1. Introduction

Four sequences A,B,C,D of lengths m+ 1, m+ 1, m, m with entries &1 and zero
nonperiodic autocorrelation sum are called base sequences. If A, B, C, D are base
sequences with lengths m + 1, m pairs, then the sequences ($(A+ B)),((A4—
B)),($(C+ D)),(3(C — D)) are called suitable sequences of lengths m + 1,
m + 1, m, m respectively.

Four sequences X = (z1,...,%4), Y = (¥1,...,¥8),Z = (21,...,23), W =
(w1,...,w;) of length n with entries 0, -1 are called T'-sequences if:

@ |zl + |yl + |zi| + |wi] = 1,4=1,...,n

(if) they have zero nonperiodic autocorrelation sum.

Base sequences are crucial to Yang’s [6,7,8] constructions for finding longer
T-sequences of odd length. The most prolific method for constructing Hadamard
matrices uses T-matrices or T'-sequences. The essential defference between T'-
matrices and T'-sequences is that the former have zero periodic autocorrelation
function and the latter have zero non periodic autocorrelation function. For more
details the reader is referred to Geramita and Seberry [1], and Seberry and Yamada
[sl.

Yang [6,7] found that if there are base sequences of lengths m + 1, m + 1,
m, m then there are T-sequences of length y(2m + 1) fory = 3,7,13 and
29+ 1, where g = 2°10%26°, a, b, ¢ > 0 (Golay numbers). These are instances
of what are termed Yang numbers. This method of multiplication of sequences
was extended by Yang [8,9].

A quadruple ( E, F; G, H) of (0,+1)-sequences is said to be a set of near
normal sequences for length n= 4 m+ 1 (abbreviated as NN(n) ) if the following
conditions are satisfied.

@i E=(X/0,1),F=(Y/0),where X andY are &1 sequences of length m,

0 = 0,1 the sequence of zeros of lengthm — 1,and X/0 = (z,,0,2,,0,
s Tm=1,0, Zm)
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(ii) G and H are quasi-symmetric supplementary (0, +1) -sequences of length
2m,i.e. G+ H is a +1 sequence of length 2m and zeros appear symmetri-
callyinG and H.

(ili) The sequences E, F', G, H have zero nonperiodic autocorrelation sum.

Yang [9] constructed near normal sequences for length 61 (NN(61)) where,

E=(—————+——+++—+—+/01a,+),
F=(++++——+—++++——+/014),
G=(——00—++0+0—++0+—-0+++0+0—-—+00—+),
H = (00+—000+0+000—00+000—-0+000++00) .

Koukouvinos and Seberry [4] reformulated some results of Yang [8] who gave
a method to multiply by y to get four T-sequences of lengths y(2m + 1), where
y is a Yang number and m + 1, m + 1, m, m are the lengths of base sequences.

2. The New Results

Theorem 1. Let a, b, ¢, d be the sums of the elements of suitable sequences with

lengths m+ 1,m+ 1, m, m so that 2m + 1 = o? + b? + & + d?. Then using
Yang’s method to multiply by 61 we get four T -sequences of lengths 61(2m+ 1)
corresponding to one of four decompositions.

61(2m+1) = (4a—4b—5c+2d)2+(4a+4b-2c—5d)*+(5a+2b+dc+d d)?
+(—2a+5b—4c+4 d)?

61(2m+1) = (4b—4a—5c+2d)2+(4b+da—2c—5d)2+(5b+2a+4c+4 d)?
+(=2b+5a—-4c+4d)?

61(2m+1) = (4a—4b—5d+2c)2+(4a+4b—2d—5c)>+(5a+2b+4d+4c)?
+(—2a+5b—4d+4c)?

61(2m+1) = (4b—4a—5d+2¢c)2+(4b+4a—2d—5¢)>+(5b+2a+4d+4c)?
+(—2b+5a—4d+4c)?

Proof. If we apply Theorem 3 of [4], using the near normal sequences for length
61 constructed by Yang (9], we obtain the desired result by a straightforward ver-
ification.

If Williamson type matrices of order w exist and T-sequences of length n exist,
then Hadamard matrices of order 4nw can be constructed (see [1,5]). The base
sequences constructed in Table 1 for some new decompositions into squares can be
used in Theorem 1 to obtain orthogonal designs OD(4t; ¢,¢,¢,t) fort = 61(2m+
1) and m = 26,27,28. Williamson type matrices of order w are then used with
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these orthogonal designs to form Hadamard matrices of order 4 tw. This method
sometimes leads to Hadamard matrices with maximum known excess (see [2,3,4])
and this is the motivation for looking for new decompositions into squares.

A Hadamard matrix of order » = 4 .612 with maximal excess o(n) = 8.613

constructed in [3].

Table 1

Base sequences BS(7) : (A, B; C, D) with lengths m + 1,

mpairs,n=2m+ 1

Length | Sums of squares

Sequences

n=2m+l | 2n= gl +P+E+d°

53 5243%+6%+6%

53 52432462462

55 82+62+32+12

57 52+52482402

57 92412442442

A= (b—t++t++t——t bttt m—mt —mt =t =t ++ =)
B=(—t—t+t+4t ettt t =t tmmt et ——)
C=(++———t—tt—t—t—ttt+++t=tt==)
D=(+=—tt+tt+t——tt ettt —t+—++=)
As(—t+t—t———t et ——t =+ ++—++—+)
B=(—4+—t+++t+—ttttd——t b —t 4+ ——=)
C=(+—++—F++t——t -ttt t—F—+++—=)
D=(+++++——t+4t—t b ——m bt =+ ++=)

A= (444t —t——t b bbb ——t bbb ——tt =)
B=(+——t—4tt—tt——ttttttt—t—+———+)
C=(++++—ttt—tmt bt ——t++———+)
D=(—t———tt—t——t—tt ettt tt =)
As(++tt—t——tt b mmmb =ttt =ttt =t =)
B=(—4t——t ettt b=ttt ettt =t =)
C=(+++++—t+tt—t—tt——ttt———t——t+t)
D=(=t+++—F=tttd———— t—tt =ttt =)
A= (4+——F——tt+++tt =ttt mt =t t———t+)
B=(+tt———tt—b—t =ttt =t —m + 4 bt —=)
C=(+++++——t+++—tt———t———t —++ —+ =)
D=(+——+++—t——d——t—t—tt+—+++++==)
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