Construction of some sequences with zero autocorrelation function

Christos Koukouvinos

Department of Mathematics National Technical University of Athens Zografou 157 73, Athens Greece

Abstract. It is known that if there are base sequences of lengths m+1, m+1, m, m and y is a Yang number then there are T-sequences of lengths y(2m+1). Base sequences of lengths m+1, m+1, m, m for m=26, 27, 28 and some new decompositions into squares are constructed. T-sequences of lengths 61(2m+1) for some new decompositions into squares are also presented.

1. Introduction

Four sequences A,B,C,D of lengths m+1,m+1,m,m with entries ± 1 and zero nonperiodic autocorrelation sum are called *base sequences*. If A,B,C,D are base sequences with lengths m+1,m pairs, then the sequences $(\frac{1}{2}(A+B)),(\frac{1}{2}(A-B)),(\frac{1}{2}(C+D))$ are called *suitable sequences* of lengths m+1,m+1,m,m respectively.

Four sequences $X = (x_1, ..., x_n)$, $Y = (y_1, ..., y_n)$, $Z = (z_1, ..., z_n)$, $W = (w_1, ..., w_n)$ of length n with entries $0, \pm 1$ are called T-sequences if:

- (i) $|x_i| + |y_i| + |z_i| + |w_i| = 1, i = 1, ..., n$
- (ii) they have zero nonperiodic autocorrelation sum.

Base sequences are crucial to Yang's [6,7,8] constructions for finding longer T-sequences of odd length. The most prolific method for constructing Hadamard matrices uses T-matrices or T-sequences. The essential defference between T-matrices and T-sequences is that the former have zero periodic autocorrelation function and the latter have zero non periodic autocorrelation function. For more details the reader is referred to Geramita and Seberry [1], and Seberry and Yamada [5].

Yang [6,7] found that if there are base sequences of lengths m+1, m+1, m, m then there are T-sequences of length y(2m+1) for y=3,7,13 and 2g+1, where $g=2^a10^b26^c$, $a,b,c\geq 0$ (Golay numbers). These are instances of what are termed Yang numbers. This method of multiplication of sequences was extended by Yang [8,9].

A quadruple (E, F; G, H) of $(0, \pm 1)$ -sequences is said to be a set of *near* normal sequences for length n = 4m + 1 (abbreviated as NN(n)) if the following conditions are satisfied.

(i) E = (X/0, 1), F = (Y/0), where X and Y are ± 1 sequences of length m, $0 = 0_{m-1}$ the sequence of zeros of length m - 1, and $X/0 = (x_1, 0, x_2, 0, ..., x_{m-1}, 0, x_m)$

- (ii) G and H are quasi-symmetric supplementary $(0,\pm 1)$ -sequences of length 2m, i.e. G+H is a ± 1 sequence of length 2m and zeros appear symmetrically in G and H.
- (iii) The sequences E, F, G, H have zero nonperiodic autocorrelation sum. Yang [9] constructed near normal sequences for length 61 (NN(61)) where,

$$E = (----+-+++-+-+/0_{14}, +),$$

$$F = (++++--+-++++--+/0_{14}),$$

$$G = (--00-++0+0-++0+-0+++0+0--+00-+),$$

$$H = (00+-000+0+000-00+000-0+000++00).$$

Koukouvinos and Seberry [4] reformulated some results of Yang [8] who gave a method to multiply by y to get four T-sequences of lengths y(2m + 1), where y is a Yang number and m + 1, m + 1, m, m are the lengths of base sequences.

2. The New Results

Theorem 1. Let a, b, c, d be the sums of the elements of suitable sequences with lengths m + 1, m + 1, m, m so that $2m + 1 = a^2 + b^2 + c^2 + d^2$. Then using Yang's method to multiply by 61 we get four T-sequences of lengths 61(2m + 1) corresponding to one of four decompositions.

$$61(2m+1) = (4a-4b-5c+2d)^{2} + (4a+4b-2c-5d)^{2} + (5a+2b+4c+4d)^{2} + (-2a+5b-4c+4d)^{2}$$

$$61(2m+1) = (4b-4a-5c+2d)^{2} + (4b+4a-2c-5d)^{2} + (5b+2a+4c+4d)^{2} + (-2b+5a-4c+4d)^{2}$$

$$61(2m+1) = (4a-4b-5d+2c)^{2} + (4a+4b-2d-5c)^{2} + (5a+2b+4d+4c)^{2} + (-2a+5b-4d+4c)^{2}$$

$$61(2m+1) = (4b-4a-5d+2c)^{2} + (4b+4a-2d-5c)^{2} + (5b+2a+4d+4c)^{2} + (-2b+5a-4d+4c)^{2}$$

Proof. If we apply Theorem 3 of [4], using the near normal sequences for length 61 constructed by Yang [9], we obtain the desired result by a straightforward verification.

If Williamson type matrices of order w exist and T-sequences of length n exist, then Hadamard matrices of order 4nw can be constructed (see [1,5]). The base sequences constructed in Table 1 for some new decompositions into squares can be used in Theorem 1 to obtain orthogonal designs OD(4t; t, t, t, t) for t = 61(2m + 1) and m = 26, 27, 28. Williamson type matrices of order w are then used with

these orthogonal designs to form Hadamard matrices of order 4tw. This method sometimes leads to Hadamard matrices with maximum known excess (see [2,3,4]) and this is the motivation for looking for new decompositions into squares.

A Hadamard matrix of order $n = 4.61^2$ with maximal excess $\sigma(n) = 8.61^3$

A Hadamard matrix of order $n = 4.61^2$ with maximal excess $\sigma(n) = 8.61^3$ constructed in [3].

Table 1
Base sequences BS(n): (A, B; C, D) with lengths m + 1, m pairs, n = 2m + 1

Length	Sums of squares	Sequences
n=2m+1	$2n = a^2 + b^2 + c^2 + d^2$	
53	52+32+62+62	A = (+-++++++-+-+-+-+-+-)
		B = (-+-++++++++-+)
		C = (+++-+-+-++++++-+)
ł		D = (++++++++++-++-++-)
53	5 ² +3 ² +6 ² +6 ²	A = (-+++-+-+-+-++-++-++-++-+)
		B = (-+-++++-++++++)
		C = (+-++-+++++-++-+)
		D = (++++++++-+++++)
55	$8^2+6^2+3^2+1^2$	<i>A</i> = (++++-++-+-+++++++++-)
		B = (++-++-++-++++++-+-+)
j		C = (++++-++-+-+-++++++)
l		D = (-+++-+)
57	$5^2+5^2+8^2+0^2$	A = (++++-++-+-+-++++-++-++-)
1		B = (-++++-+++-+++++)
		C = (++++-+++++-+-+++++++++)
1		D = (-+++-+-++-++-+)
57	92+12+42+42	A = (+++-++++++++++++++++++++++++++++++
		B = (+++++-+-+-+-+)
		C = (+++++++-++++-+-+)
		D = (+++-+++-+-++)

Acknowledgements

We thank the referees for their valuable suggestions which led to a considerable improvement in the presentation of the results.

References

- [1] A.V.Geramita and J.Seberry, "Orthogonal Designs: Quadratic forms and Hadamard Matrices", Marcel Dekker, New York-Basel, 1979.
- [2] C.Koukouvinos, S.Kounias and J.Seberry, Further results on base sequences, disjoint complementary sequences, OD(4t; t, t, t) and the excess of Hadamard matrices, Ars Combin. 30 (1990), 241–256.
- [3] C.Koukouvinos, S.Kounias and J.Seberry, Further Hadamard matrices with maximal excess and new SBIBD($4k^2$, $2k^2 + k$, $k^2 + k$), Utilitas Math. 36 (1989), 135–150.
- [4] C.Koukouvinos and J.Seberry, Addendum to further results on base sequences, disjoint complementary sequences, OD(4t;t,t,t,t) and the excess of Hadamard matrices, Congr. Numer. 82 (1991), 97-103.
- [5] J.Seberry and M.Yamada, Hadamard matrices, sequences and block designs, in "Contemporary Design Theory: A Collection of Surveys", Edited by J. Dinitz and D. Stinson, John Wiley and Sons, Inc., New York, 1992, pp. 431–560.
- [6] C.H.Yang, Lagrange identity for polynomials and δ -codes of lengths 7 t and 13t, Proc. Amer. Math. Soc. 88 (1983), 746–750.
- [7] C.H. Yang, A composition theorem for δ -codes, Proc. Amer. Math. Soc. 89 (1983), 375–378.
- [8] C.H. Yang, On composition of four-symbol-codes and Hadamard matrices, Proc. Amer. Math. Soc. 107 (1989), 763–776.
- [9] C.H. Yang, On Golay, near normal and base sequences, to appear.