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A clique of a graph G is a complete subgraph of G. A mazimal clique in
a graph G is a clique that is a subgraph of no other clique in G. A family
C of cliques is a cligue covering (respectively clique partition) of G if every
edge of G is in at least (resp. exactly) one of the cliques of C. We say that C
covers (resp. partitions) G. Each clique in any minimum clique covering of
G can be replaced by a maximal clique to obtain a clique covering with the
same cardinality as C. On the other hand, not every graph G has a clique
partition consisting of only maximal cliques (a mazimal-cligue partition).
For example, the graph obtained by deleting one edge from the complete
graph on four vertices, K4, has no maximal-clique partition.

The minimum number of cliques needed in a clique covering (resp. clique
partition) of G is called the cligue covering number (resp. clique parti-
tion number) of G, denoted cc(G) (resp. cp(G)). When G has one or
more maximal-clique partitions, the smallest cardinality of such partitions
is called the mazimal-clique partition number of G and is denoted mep(G).

Since every clique partition of G is also a clique covering, we have cc(G) <
¢cp(G) for all graphs G. Whenever a graph G has a maximal-clique partition,
we have

ce(G) < ep(G) < mep(G).
Pullman, Shank, and Wallis [2], discuss maximal-clique partitions and give
examples of graphs G for which cc(G) = ep(G) = mep(G) as well as graphs
H for which cc(H) < cp(H) < mep(H). In this paper, we give an example
of a graph G for which c¢(G) < cp(G) = mep(G). Whether or not a graph
G exists for which cc(G) = ¢p(G) < mep(G) remains an open problem. For
a survey of clique covering results, see [1].
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We will show that the graph G (Figure 2) has cc(G) = 8 and cp(G) =
mep(G) = 10. The graph G was obtained by replacing the vertex labeled
v in Figure 1 (the complement of the Petersen graph) by the two vertices
labeled »; and v; in Figure 2 and partitioning the edges incident to v
between the new vertices, v; and vs.

u wo.
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Figure 1. Complement of the Petersen Graph  Figure 2. The graph G

Theorem 1. There exists a graph G for which cc(G) < ¢p(G) = mcp(G).

Proof: Let G be the graph of Figure 2. Let C be a minimum clique covering
of G using maximal cliques. Since the complement of the Petersen graph
contains exactly five Ky’s (see [2], p.351), two of which were dismantled
when we replaced vertex v, we observe that G contains only three cliques
on four vertices. All of the other maximal cliques are K3;s. If C contains
0, 1, or 2 of the K4’s, then an edge count implies C has at least 10, 8, or 6
K3’s respectively, and hence |C| > 8. If C contains all 3 of the K,’s, then C
must also contain the triangle vjuw, and the remaining ten edges require
at least four more K3’s. In fact, the graph can be covered using three K,’s
and five K3’s. Hence cc(G) = 8.

The edge v is in only one maximal clique, and so the triangle v;uw
belongs to any maximal-clique partition of G. Then the K containing uw
cannot belong to any maximal-clique partition. However, for each of the
remaining five edges of this K}, there is exactly one other maximal clique, a
triangle, containing it. These five K3’s contain some of the edges of each of
the other two K4’s. Consequently, none of the K,’s belongs to a maximal-
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clique partition of G. The remaining twelve edges of G can be partitioned
into four maximal K3’s. Hence mep(G) = 10.

Suppose cp(G) < 10. Let d; be the number of cliques of size i in a
minimum clique partition C of G. Hence:

dgs <3 (G contains only three Ky’s)
dy+d3+ds <9 (by assumption) (1)
dy + 3d3 + 6dg =30 (G has 30 edges) (2)

Note that if a clique C is in C then the graph obtained from G by removing
the edges of C will be partitioned by C\{C}. The graph remaining after
removing the three K4’s from G has clique partition number 8, implying
cp(G) = 11 if dy = 3. Hence

dy < 2. (3)

Combining (1) and (2) we note that d4 > 1. Observe that the graph

obtained from G by removing any one or two of the Ky4’s has at least
3 independent vertices of odd degree. Then C contains at least 3 Kp’s.
Hence:

dy >3 4)
3dy + 3d3 + 3dy <27 , (from (1))
3dy —2d2 >3 (subtracting (2))
3ds 20 (using (4))
Thus dy > 3 which contradicts (3). Therefore cp(G) > 10. But ¢p(G) <
mcep(G), so ¢p(G) = 10. O
Replacing the K3 labeled vjuw in Figure 2 by a K, n > 3, gives a graph

H on n + 8 vertices which also has cc(H) = 8 and cp(H) = mcp(H) = 10.
Hence:

Theorem 2. For every n > 11, there is a graph G on n vertices having a
maximal-clique partition for which cc(G) < ¢p(G) = mcp(G).
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