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ABSTRACT. Graph integrity, a measure of graph vulnerabil-
ity, has drawn considerable attention of graph theorists in re-
cent years. We have given a set of sufficient conditions for
the weighted integrity problem to be NP-Complete a class of
graphs. As a corollary of this result we have shown that weighted
graph integrity problem is NP-Complete on many common classes
of graphs on which the unweighted integrity problem is either
polynomial or of unknown complexity. We have shown that
weighted graph integrity problem is polynomial for interval

graphs.

1. Introduction

Network vulnerability is a concept that has applications in the area of design
and analysis of networks. Several graph theoretic models under various
assumptions have been proposed for the study of network vulnerability.
Graph integrity, introduced by Barefoot et. al. [2, 1], is one of these
measures that has received wide attention [5, 6, 7, 10]. Barefoot et. al.
studied two measures of network vulnerability, the integrity and the edge
integrity of a graph. Recently, Bagga et. al. have introduced a similar
measure called pure edge integrity [4]. The concept of graph integrity is
motivated by design and analysis of networks under hostile environment.
In this model, the basic assumption is that some intelligent enemy is trying
to disrupt the network by destroying its elements. The cost on his part is
measured by the number of elements he would destroy and his success in
incapacitating the network is measured by the order of the largest connected
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component in the remaining network. The enemy of course wants both to
be small. Therefore, the minimum attainable sum of these two quantities
is considered as a measure of vulnerability of the network. This measure is
called graph integrity.

The integrity I(G) of a graph G is defined as

I(G) = min {IS|+m(C -5}

where m(G — S) denotes the order (the number of vertices) of a largest

component of G — S. The edge-integrity I’(G) of a graph G is defined as
' .

I'G) = séné?a){lﬂ +m(G — S)}.

Both I(G) and I’(G) turn out to have interesting properties, and they have

been extensively studied.

The above definitions have led to a number of interesting results. It is to
be noted that all nodes get equal importance in determining the integrity
of a graph. In reality, usually different components of a network are of
different importance. Therefore, assigning equal importance to every node
is not desirable. In this paper, we developed a weighted model of integrity
to overcome these criticisms. This leads us to the following definition of
weighted integrity.

Definition 1.1. The weighted integrity of a graph G = (V, E) is defined
as
L(G) = min {w(X) +mu(G - X)}

where w : V — R20 js vertex weight function. m,(G — S) is the sum of
the vertex weights for the maximum vertex weight connected component
of G — S. It is to be noted that w(X) =) cx w(v).

In the next section we present a set of sufficient conditions for the weighted
integrity problem to be NP-complete. These conditions hold for many com-
monly known classes. However, we have shown that they do not hold for
at least one important class of graphs, viz., cocomparability graphs.

2. Computational Complexity

Let R denote the set of all non-negative rationals, Rt then denotes the set
of all positive rationals.

While providing definitions and notations, it was assumed that some ver-
tices may have zero weights. From an application point of view this means
that a node of no importance may exist in a network. In addition, there
may exist some nodes that can be destroyed with no effort. From a theo-
retical view point, this assumption simply means working with a suitable
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subgraph of the original graph, which is again not desirable. Therefore, it is
important to investigate a model where only non-zero weights are allowed.
In formal notation, the range of the associated weight function w: V — R
is changed from R to R*. Most of the NP-hardness results those can be
proved under the assumption of possible zero weights can be proved under
the assumption of strictly non-zero weights with some extra effort.

The Weighted Integrity Problem (IP) is defined as follows. Given a graph
G = (V,E) and a weight function w : V — R*, find X C V such that
w(X) + my, (G — X) = I,(G). The decision version (IPD) of the same
problem is: given a graph G = (V, E), a weight functionw : V — R* and a
rational k € R*, does there exists X C V such that w(X)+my(G—X) < k?

Given a certificate Y C V, it is easy to see that a solution to IPD can be
verified in polynomial time. Therefore, IPD € NP. Further, note that if a
polynomial time algorithm exist for IPD, then that algorithm can be used
to develop a polynomial time algorithm for IP,

The following are two versions of the knapsack problem. These defini-
tions can be found in any standard text on algorithms [8]. 0 — 1 Knap-
sack Problem—Optimization Version (KPO) is defined as follows. Let
PO, - -+ 3 Pky WO, - . . , Wk, P be positive integers. Find I C {0, ..., k} such that
2 icrPi 2 P and Y, ; w; is minimum. The corresponding decision prob-
lem (KPD) is, let py,...,pk, wo,..., wk, P,W be positive integers. Does
there exist I C {0,...,k} such that 3°;.,p; > P and ), wi < W?

It is known that KPD € NPC (8]. Further, if there exists a polynomial
time algorithm to solve KPO, then it can be used to solve KPD in poly-
nomial time. Therefore, to show that IPD € NPC, it is enough to show
that existence of a polynomial time algorithm for IP implies there exists a
polynomial time algorithm for KPO.

Given a graph G = (V| E) and positive vertex weight function w, there
exists a subset of V such that the weight of that vertex set (sum of the
weights of the vertices in the vertex set) and the weight of the maximum
weight connected component after removal of the vertex set is minimum.
In other words, if X C V be such a vertex set, then w(X) + m,(G - X)
will give the weighted integrity of G with respect to the weight function w.
Such a subset of V' is called an achieving vertez cut or simply an achieving
cut. Further, given any achieving cut X, the vertex set of the maximum
weight connected component of G — X is called an achieving component.
In other words, for an achieving cut X, Y is called an achieving component
associated with X, if w(Y') = m,(G — X)) and vertices belonging to Y form
a connected component of G — X,

Before stating the main NP-completeness result, let us consider an exam-
ple. Let T = (V, E) be a rooted undirected tree of height two. Let r be the
root, vg, ..., vk be the leaves and wuy, ..., ux be internal vertices of T’ other
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than root. The root vertex r is adjacent to ug,...,u; and every internal
node v; is adjacent to exactly one leaf node v; for i =0,..., k. Further, let
the weights of the v;’s be large (say of O(k%)), the weight of 7 be medium
(say of O(k?)) and the weights of the u;’s be small (say of O(1)). Further,
let vo be the maximum weight vertex. This graph is shown in Figure 1.
For this graph, the only possible achieving component is the singleton {vo}.
Further, r can not belong to any achieving cut. Therefore, determining the
weighted integrity of T' reduces to computing a minimum weight subset; Y';
of internal vertices such that w(vp) = my(G—-Y). Clearly, this is equivalent
to a 0 — 1 knapsack problem.

The concept of two layered tree can be generalized further. In the in-
tuitive argument presented above, the fact that the root is a single vertex
was never used. Thus, the root can be replaced by any connected graph
such that every internal vertex is adjacent to some vertex of this connected
graph. The modified graph is called a Type 1 subgraph and is shown in
Figure 2.

Let G be an infinite class of graphs. Let every G € G have a “big enough”
induced subgraph which is either a two layered rooted tree or a Type 1
subgraph. Even if only positive weights are allowed, the weighted integrity
problem remains NP-complete on such a class 5. To prove this, we need
to assign very small positive weights to the vertices not belonging to the
induced subgraph of Type 1. The sum of the weights of these vertices
should not exceed some e > 0. The Lemma 2.1 is helpful in determining
such an €.

Lemma 2.1. Let r; = p;/qi; i = 1,...,k be positive rations. Then there
exists an € > 0 such that for any I,J C {1,...,k}, lzie,r,-—z‘.e_,rd #0
implies, |2 ie17i = Lies Ti| > €.

Proof: Let Q=gq;...qx and Qi = Q/qi fori=1,...,k. Now, |3 e, 7i —

, S i  PiQi— Y e, PiQi
Tiesrd #0 [Ty eyl = St 2 § > g =

The concept “big enough” means the size of the Type 1 subgraph should
be polynomially related to the size of the original graph. The reason behind
this is the size of the KPD considered is less than the size of the Type 1
subgraph. Further, the graph may be allowed to be at most polynomially
bigger than the KPD. Therefore, the graph may be only polynomially bigger
than the Type 1 subgraph.

Further, to ensure that for any KPD, there will be a graph at most
polynomially bigger than it with a suitable Type 1 subgraph, it is required
that {|G| : G € G} forms a dense set. Let nop < n; < ... be an infinite
sorted list of positive integers. The set {n; | =0,1,...} is called dense if
there exists a positive real a such that n;4; < nf for all 4.
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Figure 1

Theorem 2.1. Let G be an infinite class of graphs such that {|G| : G € G}
is a dense set. If for all G € G, there exists an induced subgraph H' of
G satisfying the following conditions, then the weighted (vertex) integrity
problem is NP-hard on G.

1. There exists an independent set {vo, . .., vx} of H' such that degy.(v;) =
1fori=0,...,k and k > |G|*.

2. For each v;, there exists a distinct v; € H' adjacent to v; for i =
0,....k

3. All v; in the set {v; | i ¢ I} belong to the same connected component
of H' — {v; | j€ I}, forall I C {0,...,k}.

Proof: Let pq,...,px, wy,...,ws, P be an instance of a KPO. Choose a
graph G from G that has a Type 1 induced subgraph H with k + 1 leaves
and |G| is bounded by some fixed polynomial of k for the class G.

Let vp, ..., vx be the leaves of H and u; be the only vertex in H adjacent
to v; for i = 0,...,k. The vertices vy, ...,vx are high weight vertices.
All vertices in V(H) — {vo, ..., vk, u0,...,ux} are medium weight vertices
and wuy,...,ux are small weight vertices and ug and all other vertices in
V(G) — V(H) are negligibly small weight vertices.
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Connected Component

Figure 2

Given the KOP, a weight function w : V(G) — Rt is constructed as
follows. For vertex v;, weight of v;, w(v) = pi, ¢ = 1,...,k and w(v) =
S pi — P+ 1. Wlo.g, it may be assumed that 3_p; — P > max;p; and
therefore, in turn ) p; — P +1 > max; p;.

The assignment of weights of vertices is made in such a way that the
sum of weights of all vertices except the high weight vertices is less than
1. Further, the sum of the weights of all small weight and negligibly small
weight vertices should be less than the weight of any medium vertex. The
weights of small weight vertices should be proportional to the w;’s in the
KOP. The weights of the negligibly small weight vertices should satisfy one
more condition. If I,J C {1,...,k}, then from Lemma 2.1 there exists € >
0 such that if | 3, w(u;) = >, w(us)| # 0 then | 3 w(w) =3 ; w(us)| > €.
The sum of the weights of negligibly small weight vertices should be less
than this . Existence of ¢ is gurranteed by Lemma 2.1. The proof of
the theorem will work for any assignment of weights that satisfy these
properties. Here we present one such assignment.

o Assign weight W = mv(ﬁﬂlfﬂk_ﬂﬂ to every medium weight vertex.
Note that the sum of the weights of all medium weight vertices is 2.

e Assign weights W; = Wz—(z‘—':uif:l—) to u; for i = 1,..., k. Note that

the sum of the weights of all small weight vertices is less than %
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w

20 wi+1)|V(G)| to all negligibly small

e Further, assign weight W’ =

weight vertices.

It is easy to check that this weight assignment satisfies all the conditions.

If X C V(G) then the weighted integrity of G is less than or equal to
w(X)+myw(G— X). Consider a vertex cut X consisting of all small weight
and negligibly small weight vertices. Note that w(X) < W and the maxi-
mum weight connected component of G—X is {vo}. Therefore, the weighted
integrity of G is strictly less than 3} p; — P+ 1+ W. Therefore, it may
be noted that medium weight vertices neither belong to the correspond-
ing achieving component nor any achieving cut. Therefore, an achieving
component may contain only vg and possibly some negligibly small weight
vertices. Hence, if S is an achieving cut, then the maximum weight con-
nected component of G — S must contain vg. and possibly some negligibly
small weight vertices.

If S is a vertex cut such that the maximum weight connected component
of G —S contains only vg and some negligibly small weight vertices then S is
a feasible cut. Following the above discussion it is clear that any achieving
cut is a feasible cut. Further, for I C {1,...,k} if Y} ;pi > P then I is
called a feasible solution of the KPO.

Let S be a feasible cut. Claim 1, I = {i | u; € S} is a feasible solution of
the KPO. Let {vo} U X be the maximum weight connected component of
G —S. Note that, there is a connected component of G — S, which consists
of {v; | i ¢ I}, {u; | ¢ I} and some medium weight vertices. From the
definition of a feasible cut it follows that

w(ve) +w(X) 2 pi+ > Wi+ W.
Ic Ic

Note that, > ;. W; + W — w(X) is a positive proper fraction. Therefore,

w(vy > zps + a proper fraction.
Ic

But w(vg) is an integer. Therefore, the equality can not hold. Hence

Z pi—P+1> Zpi + a proper fraction.
]d

Therefore,

Y m-P2) m
Ic
zpi - ZPﬁ 2 P,
Ie

or,
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or,

Y p2P
T

This completes the proof of claim 1.

Similarly, it may be shown that if I is a feasible solution then S = {u; |
i € I} U {v | v is a negligibly small weight vertex} is a feasible cut.

Claim, if S is an achieving cut, then I = {i{ | u; € S} is a solution to
KPO. Consider another feasible cut S’ = {u; | i € J}U{v | v is a negligibly
small weight vertex} where J is a solution of the KPO. It suffices to show
that if I is not a solution of the KPO, then w(S) > w(S’).

Note w(S) > 3 ;w(u;). If I is not a solution to KPO, then by the
properties of the weights chosen, Y, w(u;) > 3 ;(u;) + €', where €’ is the
sum of the weights of all negligibly small weight vertices. Therefore,

w(8) > Y (w) +¢' = w(S).
I

Thus the proof.
Therefore it is easy to show that,

Corollary 2.1. The weighted integrity problem is NP-complete on

1. trees,
2. meshes,

3. hypercubes, and
4. regular graphs.

Further from [3] we know that,

Theorem 2.2. The weighted integrity problem is polynomial for Interval
graphs.
It is interesting to note that the set of sufficient conditions presented in

this paper do not hold for the class of cocomparability graphs, a super class
for interval graphs. Therefore, we conjecture that,

Conjecture: The weighted integrity problem is polynomial for cocompa-
rability graphs. It will be interesting to see whether the weighted integrity
problem is polynomial for permutation graphs, an important subclass of
the class of cocomparability graphs.
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