Lattices with series-parallel and interval order and a
generalization of Catalan numbers

Joel Berman and Philip Dwinger

Department of Mathematics, Statistics, and Computer Science
University of Illinois at Chicago (M/C 249)
Box 4348
Chicago, IL 60680

ABSTRACT. We obtain a formula for the number of finite lat-
tices of a given height and cardinality that have a series-parallel
and interval order. Our approach is to consider a naturally de-
fined class of m nested intervals on an m+ k-element chain, and
we show that there are (';‘:l‘)v(m + 1) such sets of nested in-

tervals. Here, 7(m + 1) denotes the Catalan number X+ (*7).

1. Introduction

One of the objectives of this paper is to enumerate the non-isomorphic finite
lattices that have a series-parallel and interval order. Partially ordered sets
(posets) that are series-parallel and those that are interval orders have been
studied intensively in recent years. The finite lattices that have both series-
parallel and interval orders were fully characterized in [2].

All sets, posets and lattices in this paper are finite.

Recall that a poset A has a series-parallel order if A can be constructed
from singletons, using only disjoint unions and linear sums as operations,
[8]. A has an interval order if there exists a map f from A to the intervals
of the reals, such that for a, b € A, a < b if and only if the right end of f(a)
is to the left of the left end of f(b). Equivalently, A has a series-parallel
order if and only if A does not contain

N as a subposet [8] in A
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has an interval order if and only if A does not contain I I as a subposet
[7]. The papers [1] and [3] deal with asymptotic enumeration problems
involving these classes of posets. We focus on lattices. We denote by SPZ
the class of finite lattices that have both a series-parallel and interval order.
The problem of the enumeration of the non-isomorphic lattices in SPZ
has led us to the introduction of a class of numbers which can be considered
as a generalization of the Catalan numbers (e.g. [4], [6], [9]) and which seem
to be of interest in themselves. In section 3 we will derive a formula for
these “generalized” Catalan numbers. In section 4 we will use the results
obtained to achieve our goal of enumerating the members of SPZT.

2. Preliminaries

Let C be a chain of n elements, n > 1. Unless indicated otherwise, we will
assume that C = {1, 2,...,n} with the natural order and in that case we
denote C by [n]. An interval of [r] is an ordered pair [i,j], 1 <i <j < n.
(Note that our definition of interval differs from the usual one). An interval
[2, 5] is proper, if i < 3.

Let A be a set of intervals of [n]. A is m-nested on [n] if

(i) each interval of A is proper;
(i) [Al=m2=>1;

(iii) for distinct [¢,7], [k,€] € Aeither j <koré<iork<i<j<{for
i<k<f<yj;

(iv) each element of [r] is either the left end point or the right end point
of an interval of A.

Note that if a set A of intervals of [n] only satisfies (i), (ii) and (iii)
and not necessarily (iv), then there exists a subchain of [r] on which A is
m-nested.

For n > 1, we denote the set of sets of intervals which are m-nested on
[7] by I'(m,n) and we let y(m,n) = [[(m, n)|. Thus I'(m,n) and y(m,n)
are defined for n > 1, m > 1, but we will adopt the convention that
I'(0,0) = {@} and thus (0,0) = 1 and also that ¥(0,1) = 1. Finally, we
write y(m) for 4(m — 1,m), m > 1. The numbers y(m) are the Catalan
numbers and it is well-known that

v(m) = _1":(2(m R 1)), m>1. (2.1)

m-—1

Lemma 2.1. Form > 1,n > 1, y(m,n) # 0 ifand only if m+1 < n < 2m.
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Proof: If y(m,n) # 0, then it is immediate that » < 2m and by using
induction on m, it is easily shown that m+1<n. If m+1 < n <2m, let

A={[1,2],[3,4],...,[2k — 3,2k — 2], 2k — 1, 7], [2k,7],..., [n — 1,n]}

where k =n — m. Then A € I'(m, n). a

It will often be convenient to set k =n — m and thus write v(m, m + k)
and y(m,m + k) instead of I'(m,n) and y(m,n) respectively. Thus for
m>1,y(mm+k)#0forl1 <k<m.

We will prove in section 3 that

y(m,m+ k) = (7::11)'7(171+ 1) for m>1. (2.2)

3. A combinatorial proof of (2.2)

Recall the definition of a binary tree [6]. A binary tree T consists of a set
of m nodes, m > 0. One node is the root of T, denoted root(T"). Then
T ~ root(T') consists of two binary trees, the left subtree T, of root(T)
and the right subtree T'r of root(T"). We say two binary trees T and T’ are
isomorphic (similar in the sense of [6]) if there is a bijection f : T — T’
such that for a,b € T, f(a) is in the left (right) subtree of f(b) if and only
if a is in the left (right) subtree of b. If T and T” are isomorphic we will
write T =~ T’. The set of nonisomorphic binary trees with m nodes will be
denoted by 7;,. It is known that || = v(m + 1) for all m > 0, e.g., [6, p.
389]. We define a function

Tree : U I'(m,m + k) UT(0,0) — U T
lénkzslm i>0
such that for A € T'(m, m + k), Tree(A) € Tr.

First, we introduce some additional notation. If A € I'(m, m + k), then
the major interval of A, denoted by maj(A), is [¢, m + k] where £ =min{j :
[i,m + k] € A}. We write A for A ~ maj(A). For A € T(m,m + k)
with maj(A) = [¢,m + k], define cut(A) as max({j : [¢,5] € A} U {£—-1}).
Note that cut(A) may be 0 and that either cut(A) > £ or cut(A) = £ - 1.
Some examples are in figure 1. Let A = {[i,j] € A:j < cut(A)} and
Ag = {li,j] € A:i> cut(A)}. Note that A= Az U Ap U {maj(A)} and
that Az or Ar can be empty. We let m;, = |AL| and mpr = |Ag|. So if
A # 0, then m = my +mg+ 1. We have Ay € I'(my, m + k) for an
integer kz, > 0. For any integer ¢ and a set of intervals S, let §,(S) denote
{[i +t,7 +1t] : [i,5] € S}. Then there exist non-negative integers ¢ and kg
such that §_.(AR) € I'(mg,mgr + kr). For A € I'(m, m + k) we have that
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Ais (m —1)-nested on a chainof m+k, m+k—1,or m+k —2 elements,
and then kg, + kg is equal to k + 1, k, or k — 1 respectively.

We now define the function Tree inductively. We let Tree(d) = 9. For
1 <k < mand A € T'(m, m+k), the nodes of Tree(A) are the m intervals of
A, root(Tree(A)) = maj(A), (Tree(A)), ~ Tree(AL), and (Tree(A)) R
Tree(6_.(Ar)). Figure 2 contains some examples.

Lemma 3.1. For each m > 0, the function Tree is one-to-one on I'(m, 2m)
and onto Tp,. It follows that y(m,2m) = 15 (3™) = y(m +1) for m > 0.

Proof: The lemma obviously holds for m = 0 and m = 1. Suppose it
holds for all m’ < m. Let A € I'(m,2m) with A, € '(m,2m;). Then
maj(A)=[2m+1,2m] and cut(A)=2m,. We have 6_,(Ag) €(mg, 2mpg)
for t=2m;+1. Now mp+mp+1=m so my and mp are each less than m.
Suppose A, A’ €I'(m, 2m) and that Tree(A)~Tree(A’). By induction we see
that Ay, = A} and Ap =A%, and thus A= A’. Next, consider T'€7,, with
m21. Suppose Ty, has m, nodes and T has mg nodes. Then my, mp <m,
and by induction there exist B € I'(mz,2my) and C =TI'(mg,2mg) such
that Tree(B)~Tf, and Tree(C)~Tr. If A= BUbym;, +1(CYI{[2m +1, 2m)] }
then A€I'(m,2m) and Tree(A)~T. 0

We use the following notation. For a set X and 0 < ¢ < |X|, let (f)
denote the set of all q element subsets of X.

Theorem 3.2. y(m,m+ k) = (7= v(m + 1) for all m,k > 1.

Proof: We will define foreachm >1and0<g<m—1and for m =0
and ¢ =0 a function

B8: {(A,S) :Ael(m,2m), Se (f)} — I(m,2m — q)

such that § is one-to-one and onto I'(m, 2m—gq) and also such that Tree(8(4, S)) ~
Tree(A). From the existence of such a f and Lemma 3.1 we see that
("‘;' 1)'y(m +1) = v(m,2m — q). Letting k = m — ¢ proves the theorem.

The function 8 will be defined inductively. The idea is to identify one
endpoint of each interval in S with an endpoint of another interval. Suppose
[p,q] and [p’, ¢'] are intervals of A such that [p,q] € S and in Tree(A) the
node v corresponding to [p,g] is a child of the node v’ corresponding to
[p',4]. If v is a left child of v’ then we replace [p',¢] by [p,¢'] and if v is
a right child of v’ we replace [p’, ¢'] by [p’,q]. We also shift to the left as
necessary to maintain condition (iv) in the definition of m-nested intervals,
Examples are given in Figure 2.

Form =¢=0,let (0,0) =0. For m > 1 and ¢ = 0, define B(A4,0) = A
for every A € I'(m,2m).
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Let m > 2 and suppose B has been defined for all 1 < m’ < m and all
¢, 0 < ¢ <m' -1 so that Tree(8(A’, 5’)) ~ Tree(A’) for A’ € I(m',2m")
and 0 < |6:| =¢q <m' - 1. Suppose A € I'(m,2m), 0 < g <m-—1,
and S € (4). Let |AL] = my, |AL N S| = qi, |Ar| = mg, and |AR N
S| = qr. By the induction hypothesis we have 8(AL, ALN S) = AL and
B(6_2ms+1)(AR), 6—_(2m, +1)(ARNS)) = A}, with A} € I'(my,2my —qL),
Al € D(mp, 2mp —qn), Tree(Az) = Tree(A"), and Tree(Ar) ~ Tree(AL).
There are four cases:

(i) maj(AL) € S, maj(AR) € S, and hence g1, + qr = q—2;
(i) maj(AL) € S, maj(AR) ¢ S, and hence g1 + qgr =q — 1;
(iii) maj(AL) ¢ S, maj(Ar) € S, and hence ¢z +qr=¢—1;
(iv) maj(AL) ¢ S, maj(Ag) ¢ S, and hence g1 + gr = ¢.

In cases (i) and (ii) we define (A, S) = ALUb2m,—q, (AR)U{[6, 2m—q]},
where £ is the left endpoint of maj(A7), and in cases (iii) and (iv) we define

B(A,S) = AL U bomy—qu+1(AR)U {2ms — g1 +1,2m — q]}.

It is not difficult to show that in all cases B(A,S) is an m-nested set
of intervals on [2m — g] and thus B8(A4, S) € I'(m,2m — q). Note that for
cases (i) and (ii), maj{B(A, S)) = [,2m — q] and for cases (iii) and (iv),
maj(B8(A, S)) = [2mL, — g1, + 1,2m — g]. It follows that B(4, S);, = A}, in
all cases, ﬂ(Aa S)R = 62mL—QL(A;2) in cases (l) and (“): and ﬁ(AvS)R =
62my-qu+1(AR) in cases (iii) and (iv). By induction, Tree(B(4,5)L) =~
Tree(A7}) = Tree(AL) and Tree(B(A,S)r) ~ Tree(A}R) =~ Tree(Ar). It
follows that Tree(B(A, S)) ~ Tree(A).

To show B is one-to-one, let A,B € I'(m,2m) and suppose B(4,S) =
B(B,T). We have Tree(A) = Tree(B(A, S)) = Tree(8(B,T)) ~ Tree(B).
But A, B € I'(m, 2m), thus A = B by Lemma 3.1. Also, from B(4,S) ~
B(B,T) we get 2m —|S| = 2m —|T}, so |S| = |T|. We have ALNS =A.NT
and ApN S = ApN T since A = B. From maj(8(A, S)) we can determine
which of cases (i), (ii), (iii) or (iv) holds, and thus maj(A.) € S if and only
if maj(AL) € T and maj(Agr) € S if and only if maj(Ag) € T. It follows
that S=T.

Finally, to show B is onto, we let B € I'(m,2m —q), 0 < ¢ < m —
1. Let A € I'(m,2m) be such that . Tree(A) =~ Tree(B). By induction,
there exist S, C Az and Sr C Ag such that B(AL,SL) = Br and
ﬂ(5_¢(AR) 6_¢(SR)) Bp,fort=2mp+1. Let S = S, USpUS), where
So is defined as follows. Sp = @ except if the left endpoint of maj(By) is
the left endpoint of maj(B), then include maj(B.) in Sy, or if the right
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endpoint of maj(Bg) is 2m — g, then include maj(Bg) in Sp. It follows
from the definition that 8(A, S) = B. 0O

4. Enumeration of lattices with series-parallel and interval orders

We first recall the characterization of the lattices in SPZ given in [2]. For
a poset P, a,b € P, a < b means that b covers q, that is, a < e < b implies
a =c¢e for e € P. A poset P has height n if a longest chain in P has n+ 1
elements.

Let SPZ, denote the class of lattices in SPZ of height n. The following
is in [2].

Theorem 4.1. Let L be a finite lattice. L is in SPZ, if and only if the
following conditions are satisfied.

(i) L has height n and C is a chain in L with |C|=n+1;

(ii) for every a € L ~ C, there exist a, @ € C such that a < a < @ and
there exists c € C such that a < ¢ < G;

(iii) for a,be L~ C, a <b <@ implies b < @.

Note that fora, b€ L~ Cifa < bthena < b. Otherwiseb<a<a<
b — b £ b. Similarly, a < b implies @ < b. Conversely, if for a, b€ L ~ C,
a<band@ < bthena<b. Indeed,ifG<bthena<a@<b<bsoa<b
andifb<atheng<b<athusb<a.

It follows from Theorem 4.1 that lattices in SPZ of height n, n > 0 can
be constructed as follows.

Start with a chain C of n+ 1 elements. Adjoint to C a set B of elements
and assign to each element a € B two elements a and @ of C, satisfying the
conditions g £ @ and fora,be B,a<b<a@a—b<a.

Extend the ordering of C to CU B by lettinga < a <@ for all a € B. If
L =CUB, then B= L ~ C, andif | B| = |L ~ C| = m, then |L| = m+n+1.

In order to enumerate the non-isomorphic lattices in SPZ, we start with
solving this problem for those lattices belonging to this class and which
are elementary in the following sense. If L € SPZ and C is a subchain
satisfying the conditions of Theorem 4.1, then L is elementary, if for a,
beL~C,a=5b a@=>b— a=>. (It can be shown that the property
of being elementary is independent of the choice of C). Figure 3 contains
some examples of lattices in SPZ; the elements of C are not shaded. Note
that in the examples in Figure 3 the second and the third are elementary.
For n > 0 and m > 0, let a(m, n) denote the cardinality of the set of non-
isomorphic elementary lattices L in SPZ of height n and |L| =m +n + 1.
Obviously, a(0,n) = 1 for n > 0. We will also see that for n > 1, a(m,n) #

80



0—-m<n—1. Wewill assume m > 1, n > 2. If L € SPT has height n,
then we have seen that there exists a chain C in L, |C| = n + 1, such that
for a € L ~ C, there exists g, @ € C satisfying the conditions of Theorem
4.1. We will assume that C={0 <1 <--- <n}

Let £ be the set of non-isomorphic lattices in SPZ that are of height =,
elementary and of cardinality n+m+-1. Thus, |£| = a(m,n). Let B be the
set of all sets of intervals of [n] which are m-nested on a subchain of [n]. If
B € B and B is m-nested in a subchain of [n] of m + k elements, then by
Lemma 2.1,1 < k < m. Also, m+ k < n, thus 1 < k < min(m,n — m).
Since there are (,,7 ) subchains of [n] of m + k elements, it follows that

8= 3= (3 ) o+

k=1

Lemma 4.2. a(m,n) = |B|.

Proof: For each L € £ choose and fix an (n + 1)-element chain C in L.
Note that if C’ is any other (n + 1)-element chain in L, then there is a
lattice automorphism of L taking C to C’. We defineamap f: L — B as
follows. For L € Llet f(L) ={[a+1,d] : a € L ~ C}. Obviously, [a+1,d]
is a proper interval of [n], since 0 £ g < a+1 < @ < n. The function f is
one-one since if f(L) = f(L'), then L ~ L’. Thus |f(L)| = m.

Next, we show that f(L) satisfies condition (iii) of section 2. Suppose
a,b€ L ~ C and let (a,a) = (,5) and (b,5) = (k,€). Thus [i +1,5] and
[k + 1,4 are elements of f(L). We must show, that either j < k+1 or
£<it+lork+1<i+l1<j<lori+l1<k+1<ét<j. Weassume
b < a (the case b > a is analogous). First suppose b = g, then b > @ or
<@ Nowb=gandb>@—k+1=i+1<j<¢ Againb=aand
b<a—i+1l=k+1<€<j. Next, assume b < a,thenb <aord>ad.
Butb<g—f¢<i+landb<agandb>@—k+1<i+l<j<e

It follows that f(L) € B. The map f is also onto B. Indeed, suppose
B € B. Construct an element of £, using the construction of lattices which
have a series-parallel and interval order as outlined above. Start with a
chain C of n + 1 elements, C = {0 < 1 < -.- < n}. Adjoin to C a set
{ai; : [4,4] € B} of elements such that a;; = i — 1, @ = j. Since i < j, we
have a;; A @;;. Furthermore, a;; < axe < @5 — £ < j and thus @y, < G;;.
Let L = C U {a;; : [i,5] € BY and extend the linear ordering of C to a
partial ordering of L by letting a;; < a;; < @ for all [¢,5] € B. Then
L € £ and it is easy to see that f(_L) = B. It follows that f is a bijection
and hence a(m,n) = |B|. o

Remark: It follows from Lemma 2.1 that m +1 < n.
We infer from Lemma 4.2 and Theorem 3.2

| Il
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Theorem 4.3. a(m,n) = ¥ (1 ,)v(m,m+k) =
k=1

n m-—1\ "
<Sm<n—
k_z_l(m+k)(k—1)7(m+l) for 1<m<n—-1

and a(0,n) =1 for n > 0.

Using (2.1) and applying some binomial coefficient manipulations we de-
rive from Theorem 4.3 the following formula for a(m,n).

;(n—1+m) (n—l) forn>21, m>0 and a(0,0) =1.
m+1 n-1 m
(4.1)

Recall that we required in Theorem 4.3 that 1 < m <n —1. But (4.1) also
holds for m =0,n > 1 and for m =1, n = 1 since a(0,n) =1 for n > 1
and a(1,1) = 0. Thus (4.1) holds for n > 1, m > 0.

It is also easy to verify, using (4.1) that the following formula holds for
a(m,n).

a(m,n) =

a(m,n)=%(n_:n+m) (mf-:'-l) for n>1, m>0 and «(0,0)=1.

Let k be fixed and vary m to obtain the sequence a(m,m + k), m =
1,2,.... For k = 1 we get the Catalan numbers and for k = 2 we have
a(m,m+2) = (%H!). Other small values of k yield sequences that appear
in [9]. From [9] we see that the expression in (4.1) appears in a completely
different context in [5, p. 449].

We will now treat the general case where the lattice does not need to
be elementary. Thus we wish to enumerate the number of non-isomorphic
lattices in SPZ having height n, n > 0, and cardinality m +n + 1. Let
B(m,n) be a family of non-isomorphic representatives and let f(m,n) =
|B(m, n)|. Suppose each lattice L in B(m, n) has the same subchain C, with
|C]l =n+1. We determine 8(m,n) as follows. Note 8(0,n) = a(0,n) =1
for n > 0 and B(1,n) = a(1,n) = 0 for n < 1. Therefore assume m > 1,
n > 2. We partition B(m,n) into classes so that two lattices are in the
same class if they have the same set of pairs (g, @) in C2. Each class in this
partition of B(m,n) contains exactly one elementary lattice from SPZ,. So
for each integer s, with 1 < s < min(n—1,m), there are a(s, n) classes that
have precisely s pairs (a,@). The number of ways to assign the m elements
in L ~ C to these s pairs is (7"!). Then

B(0,n) =1 for all n,
B(1,0)=p5(1,1)=0
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and

B(m,n) = z (m - 1)oz(.s,'n) for m>1,n>2,

= s—1

1 m—1\/n—-1+3s n
_;E(s—l)( 8 )(s+1)
give the cardinality of B(m, n).
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m k maj(d) ecut(d) my mp ky  kp

A,:(‘\fﬁ?\ 5 2 [3.7) 5 3 1 2 1

1 2 3 4 7
A,:ﬂ@ 4 3 [3,7 2 1 2 1 1

As: r ﬂ r\s ? \, 4 3 1,7 0 0 3 0 3

Figure 1: Examples of maj(A) and cut(A)

8 9 10

Tree(dy): /\ =Y Y Y Y, 5= {Base)

Troo( ) /> =Y £y Y s=(a)

N e a Y T I

Figure 2: Examples of Tree and of 8 in Theorem 3.2



G <

Examples of lattices which have a series-parallel and interval order.

> C

Examples of lattices which are not series-parallel or not interval.
Figure 3
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