Computing star chromatic number
from related graph invariants

Guo-Gang Gao*
Département d’IRO, Université de Montréal
C.P. 6128, Succ A, Montréal, Canada H3C 3J7

Eric Mendelsohnt
Department of Mathematics, University of Toronto
Toronto, Ontario, Canada M5S 1A1

Huishan Zhou
Department of Mathematics and Computer Science

Georgia State University, University Plaza
Atlanta, GA 30303-3083, USA

Abstract

The concept of the star chromatic number of a graph was intro-
duced by Vince (7], which is a natural generalization of the chromatic
number of a graph. In this paper, we will prove that if the comple-
ment of a graph G is disconnected, then its star chromatic number
is equal to its chromatic number. From this, we derive a number of
interesting results. Let G be a graph such that the product of its star
chromatic number and its independence ratio is equal to 1. Then for
any graph H, the star chromatic number of the lexicographic prod-
uct of graphs G and H is equal to the product of the star chromatic
number of G and the chromatic number of H. In addition, we present
many classes of graphs whose star chromatic numbers are equal to
their chromatic numbers.
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1 Introduction

The chromatic number of a graph has been well studied in the literature. In
1988, A. Vince [7)] introduced the concept of the star chromatic number of a
graph, which is a natural generalization of the chromatic number of a graph.
His work relies on continuous methods. Later on this concept was studied
from a purely combinatorial point of view by Bondy and Hell [2]. We
only consider finite simple graphs (without loops or multiple edges) in this
paper. Most of our definitions and notation are standard and can be found
in [3], others will be defined as needed. Let k and d be positive integers
such that k > 2d. Put [k] ={0,1,...,k—1}. A (k, d)-colouring of a graph
G = (V,E) is a mapping c : V — [k] such that d < |¢(u) — ¢(v)| < k- d,
for each edge uv € E. A k-colouring of G is just a (k,1)-colouring of
G by this definition. Therefore the chromatic number of G, denoted by
X(G), is the smallest k for which there is a (k,1)-colouring of G. The
star chromatic number of G, denoted by x*(G), is defined as x*(G) =
inf{k/d : G has a (k,d)-colouring}. If |V(G)] = n and G has a (k,d)-
colouring, then there exist integers k' and d' such that G has a (k',d’)-
colouring with &'/d’ < k/d and k¥’ < n (cf. [2, 7]). Therefore, to calculate
x*(G), it is enough to consider those pairs k,d such that 2d < k < n. Thus

x*(G) = min{k/d : G has a (k, d)-colouring for 2d < k < n}.

In [2, 7], it has been proved that x(G) ~ 1 < x*(G) £ x(G), i.e., x(G) =
[x*(G)].

We denote by a(G) the independence number of G, which is defined as
the cardinality of a maximum independent set of G. The independence ratio
of G is defined to be the fraction i(G) = a(G)/|V(G)|. The lericographic
product of graphs G and H is the graph G[H] with vertex set V(G) x V(H),
in which (u,v) is adjacent to (u’,v') if and only if either uv’ € E(G) or
u=1u' and vv' € E(H).

This paper is organized as follows: In Section 2, we present many
classes of graphs whose star chromatic numbers are equal to their chro-
matic numbers. We prove, in Section 3, that if the complement of G is
disconnected, then x*(G) = x(G). We also prove that if x*(G)i(G) = 1,
then x*(G[H]) = x*(G)x(H) for any graph H. As a result of these, a
number of interesting results are derived.

2 Star chromatic numbers of some graphs
When we write a rational number in the form k/d, we always assume that

k and d are coprime integers. For a rational number k/d > 2, the graph G¢
has vertex set V(G) = {0,1,2,...,k — 1} and edge set E(G) = {ij:d <
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|i—j| < k—d, for i,j € [k]}. A homomorphism of a graph G to a graph H
is a mapping f of the vertex sets V(G) — V(H) which preserves the edges,
i.e., uv € E(G) implies f(u)f(v) € E(H). If such a mapping exists, we say
G is homomorphic to H and write G — H.

It was proved in (2, 7] that a graph G is (k, d)-colourable if and only if
there is 2 homomorphism from G to G¢. In the discussion of star chromatic
numbers, these graphs G take the role of complete graphs as in the discus-
sion of chromatic numbers. It was proved in [2, 7] that x*(G§) = k/d.
Since any odd cycle C3q4) is isomorphic to G3, +1» it is obvious that
X*(Can41) = (2n + 1)/n. Perhaps odd cycles of length greater than 3
are the simplest examples of those graphs such that x* < x, and there are
graphs such that x* = x, such as complete graphs and wheels (though it is
not quite easy to see that it is true). A wheel W is a graph consisting of
a cycle Cx = {vo,...,vk—-1} with a center vertex v adjacent to all vertices
of Ci. A wheel Wi is called odd or even depending upon the parity of k.
It is trivial that every even wheel has star chromatic number 3. For each
odd wheel, we will see that its star chromatic number is 4. In both cases,
X*(Wi) = x(Wi). In this section, we give several sufficient conditions under
which x*(G) = x(G).

Lemma 2.1 (Vince [7]) If x(G) = w(G), then x*(G) = x(G).

Theorem 2.1 Let G be a graph obtained by deleting a Hamiltonian path
from a complete graph. Then x*(G) = x(G) = [n/2].

Proof. Since w(G) = x(G) = [n/2], then we have x*(G) = x(G), by
Lemma 2.1. |

Theorem 2.2 Let G be a graph obtained by deleting a matching from a
complete graph. Then x*(G) = x(G) = w(G).

Proof. Suppose that the complete graph has n vertices, and the matching
has size m. Then x(G) = w(G) = n—m, and it follows that x*(G) = x(G),
by Lemma 2.1. |

Lemma 2.2 There is no integer solution k' and d' for

- v
ndd 1<%<n and k' <nd-1.
Proof. Otherwise, we have d' < d from 2‘2;1< ';—: and ¥’ < nd-1. From
k' < nd', we have ¥’ < nd’ - 1. So
/ ’
k<nd 1=n—-l<n—-

=" & d' d

leads to a contradiction. 1
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Theorem 2.3 Let G be the graph obtained by adding edges to Ge,_, and
x(G) = n. Then x*(G) = x(G).

Proof. We know that x(G¢,_,) = n, x*(G%,_,) = n—1/d. We also know
that adding any edge to G§ increases the star chromatic number [8]. Since
there is no integer solution k¥’ and d’ for
nd—-1 K

7 <?<n and ¥’ < nd-1.
We must have x*(G) = x(G). |

We write »(G) to denote the number of vertices in G, for convenience,
in the following context.

Theorem 2.4 If v(G) < tw(G), then x*(G) can only take one of the
following values:

J
x(6) =x(6) - £,
where i =2,3,...,t — 1; j is an integer between 0 and i — 1 inclusively.

Proof. Let K., where w = w(G), be the maximum clique of G. The
restriction of a (k,d)-colouring of G on K, is a (k,d)-colouring on K,,.
Since the colour difference of any two vertices of K, is at least d, k > dw.
If d > t, then

k> tw > v(G).

Therefore in evaluating x*(G), we need not to consider the case d > ¢. If
d = 1, this is the ordinary colouring. If d =i (i = 2,3,...,¢ — 1), we need,
by [2], that

x-1<% <x k<v(G),

ie.,

ix—i< k<iy.
Therefore k has only i choices: ix — (1-1),ix-(i-2), ..., ix, ie., we
only need to consider the (ix — j, i)-colourability of G for j = 1,2,...,i—1.

]
Corollary 2.1 If ¥(G) < 3w(G), then x*(G) is either x(G) or x(G) — L.
Furthermore if G is (2x — 1, 2)-colourable and 2x — 1 < v(G), then x*(G) =
x(G) — %; otherwise x*(G) = x(G).

Corollary 2.2 If v(G) < min{3w(G), 2x(G) — 1}, then x*(G) = x(G).
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Grotzsch [4] proved that any triangle-free planar graph is 3-colourable.
Later on, Griinbaum [5] generalized Grdtzsch’s result and proved that every
planar graph with at most 3 triangles is still 3-colourable. Based on this
result, we now give a sufficient condition under which x*(G) = x(G) = 3.

Corollary 2.3 Let G be any planar graph containing at least one triangle
but no more than 3 triangles. Then x(G) = x*(G) = 3.

Proof. By Griinbaum’s theorem, x(G) < 3. Since G contains at least
one triangle, then x(G) = w(G) = 3. Therefore, x(G) = x*(G) = 3, by
Lemma 2.1. 1

Remark: The converse of the above corollary is not true. For example,
Wan41 — e (a subgraph from Wa, 41 by deleting an edge e) clearly has star
chromatic number 3 (Wjn4; is edge-critical 4-chromatic), but it contains
2n — 1 or 2n triangles.

3 Two sufficient conditions

Vince (7] asked for a characterization of all graphs G having x*(G) = x(G).
In other words, what determines a graph G whose star chromatic number
is an integér? However, Guichard [6] recently showed that the problem to
decide whether or not a given graph satisfies x* = x is intractable. In spite
of this, we will give a sufficient condition for a graph G such that x*(G) is
an integer.

Zhu (8] studied some basic properties of star chromatic numbers and
relations between the star chromatic numbers of graphs and their products.
Zhu introduced the circle chromatic number of G, which is proved to be
equivalent to the star chromatic number of G. ’

Definition 3.1 Let C be a circle in IR? of length 1, and let r > 1 be any
real number. Denote by C(") the set of all open intervals of C of length 1/r.
An r-circle colouring of a graph G is a mapping ¢ from V(G) to C() such
that whenever (z,y) € E(G), ¢(z) N ¢(y) = @. If such an r-circle colouring
exists, we say that G is r-circle colourable. The circle-chromatic number of
G, x°(G) = inf{r : G is r-circle colourable}.

Zhu also introduced the interval chromatic number of G, and showed
that it is equivalent to the chromatic number of G.

Definition 3.2 Let I be a closed interval of length 1, and let r > 1 be any
real number. Denote by O(") the set of all open intervals of I of length 1/7.
An r-interval colouring of a graph G is a mapping ¢ from V(G) to O(") such
that whenever (z,y) € E(G), ¢(z) N c(y) = @. If such an r-interval colour-
ing exists, we say that G is r-interval colourable. The interval-chromatic
number of G, x*(G) = inf{r : G is r-interval colourable}.
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From the definitions of the circle colouring and of the interval colouring,
Zhu [8] gives a nice sufficient condition for x*(G) to be an integer.

Proposition 3.1 (Zhu [8]) For any graph G, x(G) = x*(G) if and only if
for any real number r, if G is r-circle colourable then there is an r-circle
colouring ¢ of G and an = € C such that z & c(g) for any g € V(G).

An immediate consequence of this is the following. A vertex is called
universal if it is adjacent to all other vertices in a graph.

Theorem 3.1 (Zhu [8]) If G has a universal vertez then x*(G) = x(G).

As a corollary, one can see that x*(Wan4+1) = x(Wany1) =4 forn > 1.
The sufficient condition in Theorem 3.1 can be strengthened a bit by relying
on Zhu'’s results (cf. [8]). The following theorem was independently proved
by Abbott and Zhou [1] recently.

Theorem 3.2 Let G be a graph such that its complement is disconnected.
Then x*(G) = x(G).

Proof. We may assume that V(G) = V) U V3, where there are edges
between every vertex of Vj and every vertex of V5. Suppose c is an r-circle
colouring of G for some rational number . Take v; € V; and v, € V5. Let
¢(v1) = (a1,b1), c(v2) = (az,b2), then (ay,b1) N (a2,b2) = @, where (a;, b;)
(i = 1,2) are intervals on the unit length circle C in IR2. We may assume
ay, by, as and bs appear on C in clockwise order. We may further define an
order < as the clockwise order on the vertices of the circle C from a; to b
(i.e., regard @y as the smallest, and b, as the largest). Let

t = max{b: (a,b) = c(v) forv € V;,b < az}.

Then t does not belong to any c(v) (v € V;), for otherwise it contradicts
the maximality. The vertex t does not belong to any c(v) (v € V) either
since there is an edge between each vertex of V; and each vertex of V5.
Therefore, x*(G) = x(G) by Proposition 3.1. |

Theorem 3.3 Let G be a graph obtained by deleting a 2-factor F from a
complete graph, then

*(G) = x(G) =} if F is a Hamiltonian cycle of odd length,
X | x(G) otherwise.

Proof. In fact F' is the complement of G. If F has more than one cycle,
then F is disconnected, so x(G) = x*(G), by Theorem 3.2. If F has only
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one cycle, then G is isomorphic to Gﬁ(e)’ so x*(G) = 5(56-)-, which equals
to x(G) if ¥(G) is even, and equals to x(G) — 1/2 if v(G) is odd. 1
It was proved in [8] that x*(G[H]) < x*(G)x(H) for any two graphs
G and H, and that x*(G[H]) = x*(G[Ka]) if G contains at least one edge
and x(H) = n.
In the following, we present a sufficient condition under which x*(G[H]) =
X*(G)x(H).

Theorem 3.4 Let G be a graph containing at least one edge and satisfying
X*(G)i(G) = 1. Then
x*(GlH]) = x*(G)x(H).
Proof. Let x(H) = m. It is known (cf. [8]) that x*(G[Km]) < x*(C)x(Km).
The following two facts are well-known, and also easy to prove:
a(G) = aG[Km]), x*(G)i(G) > 1.

Thus, we have

1 _ IV(GIE=DI _ VGO _ x(Km)
{GIKn]) ~ olGlKn) ~ oG) " iG)
From the assumption that x*(G)i(G) = 1 and the two inequalities above,
it follows that x*(G[Km]) = x*(G)x(Km). Thus, we obtain the equahty

x*(G[H]) = x*(G)x(H) provided that x*(G )i(G) = 1. This completes the
proof |

X*(G[Km]) 2

Corollary 3.1 For any graph H, two positive integers k and d, k > 2d,
we have

X*(GilH]) = x*(GR)x(H) = kx(H )/d-

Proof. For the circulant graph G¢, a subset {0,1,. — 1} of V(G}) is
an independent set, in other words, a(G§) > d. Suppose that the equality
does not hold, that is, a(Gf) > d. Let S be an independent set whose
cardinality is a(G,’f) > d. Then there exist two vertices u and v in S such
that d < |u — v] € k -~ d, which implies that u and v are adjacent, a
contradiction. Thus, we have a(G¥) < d. Therefore, we have proved that
i(G%) = d/k, which implies that x*(G’“)z(G ) = 1. Thus the corollary
follows from Theorem 3.4. 1

Theorem 3.5 Let H; be any graph, and G; a graph satisfying x*(G;)i(G;) =
1, fori=1,2,...,s. Let F be the graph obtained from K, = {v1,v2,...,vs}
with the replacement of v; by G;[H;). Then

X*(F) = [X*(G)x(H1)] + [x*(G2)x(H2)1 + - - + [x*(GCs)x(H,)] -
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Proof.

x*(F)

X*(G1[H1) + Go[H3] + - - -+ G,[H,])
x(G1[H\] + G2[Ha] + - -+ G,[H,])  (By Theorem 3.2)
= x(Gi[Hi]) + x(G2[H2]) + - - - + x(G,[H,]))

= > fx*(G-'[H i)l (By (2, 7))

izl

= Y [x*(Gi)x(Hi)]. (By Theorem 3.4)

i=1

Corollary 3.2 In Theorem 3.5, fori=1,2,...,s, if G; is replaced by G:j,
H; is replaced by K,,, then

X(F) = g [5a].

In Theorem 3.5, for i = 1,2,...,3, G; can be degenerated to a single
vertex or a single edge.

Corollary 3.3 For any integers n,m > 1, if x(H) = m, then
X* (Wan41[H]) = x(Wan+1[H]) = 3m + [m/n].

Proof. In Theorem 3.5, set s = 2, let G; be a single vertex, and G2 be an
odd cycle Cany1, set H = Hy = Hy. Then the resulting graph F is clearly
Woan+1[H]. By applying Theorem 3.5, we have

X*Wana[H)) = [x(H)]+ [x*(Consa[H])]

m+ [(2n + 1)m/n]
3m + [m/n].

Thus, the proof is completed. 1
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