On the Linear Vertex-Arboricity of a Surface
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ABSTRACT. The linear vertex-arboricity of a surface S is the
maximum of the linear vertex-arboricities of all graphs embed-
dable into S. Poh showed that the linear vertex-arboricity of a
sphere is three. We show that the linear vertex-arboricities of
a projective plane and a torus are three and four respectively.
Moreover we show that the linear vertex-arboricity of a Klein
bottle is three or four.

1 Introduction

In this paper we assume that all graphs are finite, undirected graphs without
loops or multiple edges. The vertex set and the edge set of a graph G are
denoted by V/(G) and E(G) respectively. We denote the number of elements
of a set A by |A|. For any subset V of V(G), the subgraph of G induced by
V is denoted by G[V]. A forest is called a linear forest if each component is
a path. An n-partition (V3, -+, V4) of V(G) is said to be linear arborescent
if G[V;] is a linear forest for 1 < i < n. The linear vertez-arboricity of a
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graph G, denoted by la(G), is the smallest number n such that V(G) has a
linear arborescent n-partition.

A compact, connected, 2-dimensional manifold is called a surface. By 8S
we denote the boundary of a surface S. If 3S = @, then S is called a closed
surface. A closed orientable surface with g handles is denoted by S, and
a closed nonorientable surface with k crosscaps is denoted by Nx. Then
So, S1, N1 and N2 mean a sphere, a torus, a projective plane and a Klein
bottle respectively. The linear vertez-arboricity of a surface S, denoted by
la(S), is defined to be the maximum of the linear vertex arboricities of all
graphs embeddable into S. In our notation Poh [3] showed that la(S,) = 3.

In Section 2 we prove the following theorem.
Theorem 1.1. la(N;) =3.

In Section 3 we show Theorem 1.2.
Theorem 1.2. la(S)) = 4.

Moreover in Section 4 we give the upper bound of the linear vertex-
arboricity of a closed surface S by using the Euler characteristic x(S) of
S.

Theorem 1.3. Let S be a closed surface. If x(S) < -3, then

la(8) < l15+ \/169—48x(S)J
< 1 .

If =2 < x(S) <1, then la(S) < 4 — x(9).

Since the complete graph with at most 6 vertices is embeddable into Ny,
we have la(N2) > 3. By Theorem 1.3, we have the following corollary.

Corollary 1.4. la(N2) =3 or 4.

2 The Linear Vertex-Arboricity of a Projective Plane

Let G be a graph and H a subgraph of G. For u,v € V(H), the edge
uv € E(G) is called a chord of H if uv ¢ E(H). If H has no chord, then H
is said to be chordless in G.

A graph G on a surface S is called a triangulation of S if G is the 1-
skelton of a triangulation of S. Poh [3] showed the following lemma for a
triangulation of a disk.

Lemma 2.1 [Poh]. Let G be a triangulation of a disk D and 8D =
v192 ---vgvy (k > 3). If two paths Py = vy -+ v, and Py = vpyy --- vy are
chordless in G for some integer r (1 < r < k), then there exists a linear
arborescent 3-partition (Vy, Vz, V3) of V(G) such that P; is a component of
GVi] for i =1,2.



For any vertex v of a graph G, the degree of v in G is denoted by degg(v).
At first we show the following lemma.

Lemma 2.2. Let G be a triangulation of a disk D and 8D = vgv; - - - vk
(k = 2). If two paths P, = vy---v, and Py = vy4) --- vy are chordless in
G for some integer r (1 < r < k), then there exists a linear arborescent
3-partition (V1, Vs, V3) of V(G) satisfying the following properties:

(1) P; is a component of G[V;] for i =1,2 and
(2) v € V3 and deggy,)(vo0) < 1.

Proof: We show Lemma 2.2 by induction on |V(G)|. If |V(G)| = 3, then
Lemma 2.2 holds clearly. If [V(G)| > 3, then the following two cases occur:

Case 1: P, U P, has a chord and
Case 2: P, UP; is chordless in G.

Casel. Letv,yibeachordof PLUP,forl <s<randr+1<t<k.
We divide D into two disks D; and D such that D;UD; = D, D;NDy =
UV, 0D = vouy + - v,V - - - Ukvo aNd ODp = V5 - - - VU4« - V0, Let Gy =
GN Dy for j =1,2. We note that G; is a triangulation of Dy for j = 1,2.
We set P/ = P,naD, for 1 <1i,j < 2. Since |V(G1)| < |V(G)], by induc-
tion hypothesis, there exists a linear arborescent 3-partition (V!, V3, Vq!)
of V(G,) satisfying the following properties:

(i) P} is a component of G;[V}!] for i = 1,2 and
(i) v € V4 and degg, (v3)(%) < 1.

By Lemma 2.1, there exists a linear arborescent 3-partition (Vi2, V2, V) of
V(G?2) such that P? is a component of G2[V/?] for i = 1,2. Let V; = V,luV;?
for 1 <i < 3. Then (W4, V3, Va) is a linear arborescent 3-partition of V(G)
that satisfies the properties (1) and (2) of Lemma 2.2.

Case 2. There exists a vertex u of G — 3D such that a cycle uv,vy41u
is the boundary circuit of a triangular face A. Since P, U P, is chordless
in G, there exists a shortest path P = u;---u; of G — P, U P> such that
u; = vo and y; = u. There exist two disks ID; and D; in D such that
DyUDy; =D —-AU{vvep1}, DiNDy =P, 8D, = wpv; -+ - v,y - - - 43 and
0D; = uy -+ uvryy - vivp. Let Gy = GN D; for j = 1,2. Since P is
‘chordless in G for j = 1,2, by Lemma 2.1, there exists a linear arborescent
3-partition (V{, V4, VJ) of V(G;) such that P; and P are components of
G;[V]] and G;[VJ] respectively. Let V; = VI U V2, V, = Vi UV and
Va = V}UuV2. Then (W, Va, V3) is a linear arborescent 3-partition satisfying
the properties (1) and (2) of Lemma 2.2.



In order to determine la(N;), we prove Lemma 2.3 by using Lemma 2.2.

Lemma 2.3. Let G be a triangulation of a disk D and 8D = vjv} - - - vivdv}

v2ud (k 2 1). We set P = v}---v] for j =1,2. If 8D is chordless in
G then there exists a linear arborescent 3-partition (V4, V2, V3) of V(G)
satisfying the following properties:

(1) P, and P, are components of G[V}],
(2) v} € Vs and deggpy,(v]) < 1 for j =1,2 and

(3) v} and v are not contained in the same component of G[V3].

Proof: Since 8D is chordlessin G, there exxst two vertices u’ and u” of G—
8D such that two cycles u'vjvu’ and u"vivu” are the boundary circuits
of triangular faces A’ and A" mpectlvely There exists a shortest path
P=1wu---w (I 2 1) of G — 8D such that u; = u’ and u; = u". We divide
D into two disks Dy and Dg such that D;UD: = D-A'UA"U{v} vk,vkvo},
DynDy = P, 8D, = vdv}---viu .- uv} and 8D, = vdof- - viuy - - - wivd.
Let G; =GND;forj =1, 2 Since P; and P are chordless in G; fOl'J =1,2,
by Lemma. 2.2, there exists a linear a.rbor@oent 3-partition (Vl , Vz , Vj) of
V(Gj;) satisfying the following properties:

(i) P, and P are components of G1[V}!] and G1[V] respectively,
(ii) P; and P are components of G2[V}?] and G2[V;#] respectively and
(iii) v} € V4 and deg, (le(vo) <lforj=1,2.

Let V; = VAU V2 for 1 < i < 3. Then (W}, V,, V3) is a linear arborescent
3-partition of V(G) satisfying the properties (1), (2) and (3) of Lemma 2.3.

Proof of Theorem 1.1: By the definition of the linear arboricity, it holds
that la(K,) = [3], where K, is the complete graph with n vertices. Since
K is embeddable into N;, we have la(N;) > la(Ks) = 3. Therefore it is
sufficient to show that la(N;) < 3. Let G be a graph embedded into N;.
Every graph on a surface S is a subgraph of some triangulation of S. We
may assume that G is a triangulation of N;. There exists a shortest cycle
C = vovy ---vxvp (k > 2) of G such that C is non-separating in Ny, that
is, N1 — C is connected. We obtain a disk D by cutting N; along C. Let G
be the resultant graph embedded uwo D and 0 the graph map from Gto
G. There exist two paths Cy = vovl .-y} and C; = v3vi..-vf of G such
that 8(v}) = 6(v}) = v; for 0 < i < k. Then 8D = vyv} -- ‘”L"o”iq -vivd.
- Since C is chordless in G, C; U C; is chordless in G. Let P; =Cj; - v’
for j =1,2. By Lemma 2.3, there exists a linear arbor%oent 3-part1tlon
(W, V2, Va) of V(G) satisfying the following properties:
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(i) P, and P, are components of 5[171],
(ii) v} € Vs and degg [V:l(”J) <1forj=1,2and

(iii) v} and v2 are not contained in the same component of é[V:;]

Let V; = 0(V;) for 1 < i < 3. Then (V;,V2,V3) is a linear arborescent
3-partition of V(G) such that C — vy is a component of G[V;] and v € V5.
Therefore la(G) < 3.

8 The Linear Vertex-Arboricity of a Torus

In this section we prove Theorem 1.2 by the argument similar to that in
the previous section.

Proof of Theorem 1.2: Since K7 is embeddable into S;, we have la(S;) >
la(K7) = 4. It is sufficient to show that la(S;) < 4. Let G be a graph
embedded into S;. We may assume that G is a triangulation of S;. There
exists a shortest cycle C = wpv; ---vxvp (k > 2) of G such that C is non-
separating in S;. We obtain an annulus A by cutting S; along C. Let G
be the resultant graph on A and @ the graph map from G onto G. There
exist two cycles C; = vv}---vly} and C; = v3v?...v2u of G such that
0(v}) = 8(v?) = v; for 0 < i < k. We obtain a sphere A from A by capping
off C1 and C; with 2-cells A; and A2 respectively. Let G be a graph on
A obtained from G by adding the edges vjv? on Aj for 0 < i < k and
j=1, 2 Then G is a triangulation of A. There exists a shortest path
P = v}uy---uwd (I > 1) of G. We obtain the disk D by cutting A along
P. Let G’ be the resultant graph on D and § the graph ma.p from G’ onto
G. There exist two paths P, = u}---u} and P, = u}...u} of G’ such that
6(u}) = 6(u?) = u; for 1 < i < 1. Since 8D = §-1(P) is chordless in G,
by Lemma 2.3, there exists a linear arborescent 3-partition (V{, V3, V{) of
V(G') satisfying the following properties:

(i) P, and P, are components of G'[VY{],
.(ii) v} € V{ and degervy (@) <1forj=1,2and
(iii) v} and vZ are not contained in the same component of G'[V§).

Let V; = 5(Vi’) for 1 < i <3. Then (171,‘72,173) is a linear arborescent
3-partition of V(&) such that = s, degayp, ](vj) <1forj=1,2and
vo and v are not contained in the same component of G[V3] Let V; =

(VKCl UC2) - {'Uo, 'Uo}) for1 < i < 3 and V4 = V(C1 UCz) {'Uo, ‘Uo}
Then W, Va, Vs, V4) is a linear arborescent 4-partition of V(G) satisfying
the following properties:



(i) v € Vs and deggp,)(v§) <1 for j =1,2,

(ii) v} and v? are not contained in the same component of G[V3] and
(iii) C; — v} is a component of G[Vj] for j =1,2.

Let V; = 6(V;) for 1 < i < 4. Then (V},V2,V3,V4) is a linear arborescent
4-partition of V(G). Therefore la(S;) < 4.

4 The Upper Bound of the Linear Vertex-Arboricity

A graph G is said to be critical if la(G — v) < la(G) for every vertex v of
G. Matsumoto [2] showed the following lemmas.

Lemma 4.1. If a graph G is critical, then §(G) > la(G) — 1, where §(G)
is the minimum degree of G.

Lemma 4.2. la(G) <1+ I_A(20)J for any graph G, where A(G) is the
maximum degree of G.

Let f be a 2-cell embedding of a graph G into a surface S. Then x(S) =
[V(G)| — |E(G)| + |R(f)|, where R(f) is the set of all faces of f. Since
2|E(G)| 2 3|R(f)|, we have the following lemma by easy calculation.

Lemma 4.3. If a graph G is embeddable into a surface S, then d(G) <
6 5x(5)
V@)’
The following lemma is obtained from Lemma 4.1, 4.2 and 4.3.
Lemma 4.4. For any closed surface S,

la(S) < [15 + /169 = 48x(S)J
< 1 :

where d(G) is the average degree of G.

Proof: If x(S) > 0, then S = Sp or Ny, and la(S) = 3. Therefore Lemma
4.4 holds. We may assume that x(S) < 0. Let G be a critical graph
embeddable into S with la(G) = le(S). From Lemmas 4.1 and 4.2, it
follows that 6x(S)
- x .
(@) -1<8G)<d(G)<6—- =
a(G) - 148(C) < dC) < 6 -
By Lemma 4.2, we have |V(G)| > A(G) +1 > 2a(G) — 1. Since x(S) <
6x(S) 6x(S) 6x(S)
. -1<6 - —77.
VG S “Hae) -1 Hence lal@) -1 6 - gy 1

Therefore la(S) = la(C) < l15 + v 162 — 48x(S )J .

0, we have




For a closed surface S of the high Euler characteristic, we estimate the
upper bound of la(S) better than that in Lemma 4.4.

Lemma 4.5. Let S be a closed surface. If x(S) < 1, thenla(S) < 4—x(S).

Proof: We prove Lemma 4.5 by induction on x(S). If x(S) = 1, then
la(S) = 3 = 4 — x(S) by Theorem 1.1. If x(S) < 0, then we show that
1a(G) < 4 — x(S) for every graph G embedded into S. There exists a
shortest cycle C = vgv; - - - vxvo (k = 2) of G such that C is non-separating
in S.

If C is an orientation preserving curve in S, then we obtain a closed
surface S by cutting S along C and capping off each component of the
resultant boundary with a 2-cell. Then x(8) = x(S) +2. Let G be the
resultant graph on S and 6 : G —» G the natural graph map from e} onto
G. There exist two cycles Cy = vdv}---vlv} and Cg3 = v3v}---v}vd of G
such that 0(v}) = 0(v?) = v; for 1 <i < k. Then C;UC; is chordlws in G
because C is chordless in G. Since x(5) = x(85)+2, by induction hypothesis,
there exists a linear arborescent n-partition V..., V) of V(G) for some
n<4-x8) =2-x(8) Lt V; =V - V(clucz) for 1 <i<n,
Vogt = V(Cy U Cy) — {v},v3} and Vot2 = {v},v3}. Since C,UC; is
chordless in G, (Vl, , Vata) is a linear arborescent (n + 2)-part1t.10n of
V(G). Let V; = 8(V;) for 1 <i<n+2 Then (W,...,Va42) is & linear
arborescent (n+2)-partition of V(G). Therefore la(G) < < n+2 < 4-x(5).

If C is an orientation reversing curve in S, then a regular neighborhood
of C in S is a Mobius band. We obtain a closed surface § by cutting S
along C and capping off the resultant boundary with a 2-cell D. Then
x(S) = x(S) +1. Let G be the resultant graph embedded into S, and let
v} and v} be two vertices of G obtained by separatmg vyifor0<i<k
We obtain a graph G embedded into S by identifying v§ and g on D. Let
0 : G — G be the natural graph map from G onto G. We set Pj = v} ---v]
forj = 1,2. Then PUP, is chordless in G because C is chordless in G. Since

x(S) = x(S) +1, by induction hypothesxs there exists a linear arborescent
n-partlt.lon (",...,V) of V(G) for some n < 4 — x(5) = 3 — x(S). Let

V, = V.- V(P UPg) for 1 <i<nand Vopy = V(PLUPR). Then
(W,.. ,.+1) is a linear arborescent (n + 1)-partition of V(G) because
P1UP2 is chordless in G. Let V; = @(V;) for 1 < i < n+1. Then
(Vi,...,Vat1) is 2 linear arborescent (n + 1)-partition of V(G). Therefore

la(G) S n+1<4-x(S).
Theorem 1.3 follows from Lemma 4.4 and 4.5.
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