A Note on the Coloring of a Certain Class of Graphs

Puhua Guan¹
Department of Mathematics
University of Puerto Rico
Rio Piedras. PR 00931

Tayuan Huang²
Department of Applied Mathematics
National Chiao-Tung University
Hsin-Chu 30050, Taiwan, ROC
e-mail: thuang@cc.nctu.edu.tw

Abstract. Let Γ_{ℓ} be the union of n complete graphs A_1, A_2, \ldots, A_n of size n each such that $|A_i \cap A_j| \le \ell$ whenever $i \ne j$, we prove that the chromatic number of Γ_{ℓ} is bounded above by $(2n-4)\ell+1$.

1. Introduction

Let $A_1, A_2, \ldots, A_n \in \binom{X}{n}$, called *blocks*, such that $|A_i \cap A_j| \leq \ell$ whenever $i \neq j$, without loss of generality we may assume that $X = \bigcup_{1 \leq i \leq n} A_i$. Consider the graph Γ_ℓ defined over X such that $x, y \in X$ being adjacent if and only if $x, y \in A_i$ for some i. In 1972, Erdös, Faber and Lovász conjectured that the chromatic number of the graph Γ_1 is n. Erdös [1] also suggested that some bounds for the chromatic numbers of Γ_ℓ can be obtained. Although the bounds of the chromatic numbers of Γ_1 have been improving during the last twenty years, see for examples: [2], [3], [4], [5], [6], [7], [8], this problem remains open. A stronger result than that of [7] is given in [8]. For fixed ℓ and large n, the method of [6] gives a bound of about $n\ell$. No bounds for the chromatic numbers of Γ_ℓ ($\ell \geq 2$) were given yet. In this paper, we shall prove:

Theorem. Let Γ_{ℓ} be the union of n complete graphs A_1, A_2, \ldots, A_n of size n each such that $|A_i \cap A_j| \leq \ell$ whenever $i \neq j$, then the chromatic number of Γ_{ℓ} is bounded above by $(2n-4)\ell+1$.

In order to prove this theorem, a hypergraph \mathcal{H} is associated with Γ_{ℓ} . For a fixed edge B of \mathcal{H} of size k, following a counting argument used by Chang and Lawler [2], an upper bound for the number of edges of \mathcal{H} with

¹Partially supported by NFS EPSCOR of Puerto Rico and Cornell MSI army Research Grant.

²Partially supported by NSC, Taiwan, ROC.

non-empty inetrsections with B is derived, and then an upper bound for the chromatic number $\gamma(\Gamma_{\ell})$ of Γ_{ℓ} is obtained.

2. Proof of the Theorem

Let n and ℓ be fixed. For each $x \in X$, let $\beta(x) = \{i \mid 1 \leq i \leq n \text{ with } x \in A_i\}$. Clearly, the chromatic number of Γ_ℓ is equal to that of the induced subgraph of Γ_ℓ over $\{x \mid x \in X \text{ with } |\beta(x)| \geq 2\}$. A hypergraph $\mathcal H$ is associated with the above system naturally with vertex set $\{1,2,\ldots,n\}$ and edge set $\{\beta(x) \mid x \in X \text{ with } |\beta(x)| \geq 2\}$. For $\ell \geq 2$, the hypergraph $\mathcal H$ is not necessarily simple since different blocks might have more then two common points. However, the conditions that $|A_i \cap A_j| \leq \ell$ whenever $i \neq j$ insure that $\mathcal H$ is loopless and with edge multiplicity at most ℓ (i.e., any distinct i,j are contained in at most ℓ edges). A coloring of Γ_ℓ corresponds to an edge coloring of $\mathcal H$ and vice versa, i.e., a color can be assinged to $x \in X$ as well as to the edge $\beta(x)$ of $\mathcal H$ simultaneously.

For $i,j \in \{1,2,\ldots,n\}$, the vertex set of \mathcal{H} , let m(i,j) be the number of edges of \mathcal{H} containing i and j. Since $i,j \in \mathcal{J}(x)$ if and only if $x \in A_i \cap A_j$, and $|A_i \cap A_j| \leq \ell$ for distinct i and j, it follows that $m(i,j) \leq \ell$. Let B be an edge of \mathcal{H} with |B| = k. In order to estimate the number of edges of \mathcal{H} incident with B and of size at least k, counting the number of two elements subsets of such edges shows that it is bounded above by

$$\sum_{i \in B} \sum_{j \notin B} m(i, j) \le k\ell(n - k).$$

Since each such edge contributes at least k-1 two elements subsets, the number of such edges is bounded above by $k\ell(n-k)$. This observation is summarized in the following lemma.

Lemma. If B is an edge in \mathcal{H} with |B| = k, then there are at most $k\ell(n-k)/(k-1)$ edges of \mathcal{H} distinct from B which are of sizes at least k and have non-empty intersections with B.

To prove this theorem, arrange the edges of \mathcal{H} in a nonincreasing order of sizes. The first edge can be colored arbitrarily, suppose that all edges with sizes at least k+1 and some edges with sizes k have been colored properly, and now an edge B in \mathcal{H} of size k is to be colored. As shown in the previous lemma, B has non-empty intersections with at most $k\ell(n-k)/(k-1)$ edges of \mathcal{H} with sizes at least k, it follows that at most $k\ell(n-k)/(k-1)$ colors would be enough to color those edges in the preceding of B and incident with B. As a function of k, $f(k) = k\ell(n-k)/(k-1)$ is decreasing, so

$$k\ell(n-k)/(k-1) \le f(2) = (2n-4)\ell.$$

it follows that there is one more color remained for B. This completes the proof.

Acknowledgements

The authors would like to thank both referees for improving the presentation of this paper, in particular, for pointing out a better bound given in the theorem.

References

- [1] P. Erdös, Selected Problems in Progress in Graph Theory, (J. A. Bondy and U. S. R. Murty eds.) Academic Press 1984, 528-531.
- [2] W. I. Chang and E. L. Lawler, Edge coloring of hypergraphs and a conjecture of Erdös, Faber and Lovász, *Combinatorica* 8(3) 1988, 293-295.
- [3] P. Guan and T. Huang, Some remarks on a conjecture of Erdös. Faber and Lovász, submitted (1992).
- [4] N. Hindman, On a conjecture of Erdös, Faber and Lovász about n-coloring, Canadian J. Math. 33 (1981), 563-570.
- [5] P. Horak, A coloring problem related to the Erdös-Faber-Lovász conjecture, J. Combin. Theory, Ser. B 50 (1990), 321-322.
- [6] J. Kahn, Coloring nearly-disjoint hypergraphs with n + o(n) colors, J. Combin. Theory, Ser. A 59 (1992), 31-39.
- [7] P. D. Seymour, Packing nearly-disjoint sets. Combinatorica 2 (1982), 91-97.
- [8] J. Kahn and P. D. Seymour, A fractional version of Erdős-Faber-Lovász conjecture, *Combinatorica* 12 (1992), 155-160.