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Abstract. Let [; be the union of n complete graphs 4;, 45,..... 1n of size
n each such that |4, N A, | < Z whenever i # j, we prove that the chromatic
number of [ is bounded above by (2n — 4)¢ + 1.

1. Introduction

Let 4. 4s,.... 4, € (’:), called blocks, such that |A;N A;; < ¢ whenever
i # J, without loss of generality we may assume that X = U)¢icad;.
Consider the graph I, defined over .X such that £,y € X being adjacent
if and only if 2,y € A; for some i. In 1972, Erdés, Faber and Lovész
conjectured that the chromatic number of the graph Iy is n. Erdds (1]
also suggested that some bounds for the chromatic numbers of [, can be
obtained. Although the bounds of the chromatic numbers of I} have been
improving during the last twenty years, see for examples: [2], [3], (4], [5],
(6], (7], 8], this problem remains open. A stronger result than that of [7]
is given in [8]. For fixed ¢ and large n, the method of [6] gives a bound of
about né. No bounds for the chromatic numbers of [ (¢ > 2) were given
yet. In this paper, we shall prove:

Theorem. Let [, be the union of n complete graphs Ay, A, ..., A, of size
n each such that |4; N Aj| < ¢ whenever i # j, then the chromatic number
of I, is bounded above by (2n — 4)¢ + 1.

In order to prove this theorem. a hypergraph H is associated with [7.
For a fixed edge B of H of size k. following a counting argument used by
Chang and Lawler (2], an upper bound for the number of edges of * with
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non-empty inetrsections with B is derived, and then an upper bound for
the chromatic number () of [ is obtained.

2. Proof of the Theorem

Let n and ? be fixed. For each £ € X, let 3(z) = {i| 1 < i< n
with £ € 4;}. Clearly, the chromatic number of I; is equal to that of the
induced subgraph of I, over {z | z € X with {3(x)| > 2}. A hypergraph H
is associated with the above system naturally with vertex set {1.2,....n}
and edge set {3(z) |z € X with |3(z)] > 2}. For £ > 2. the hypergraph H
is not necessarily simple since different blocks might have more then two
common points. However, the conditions that |A; N Aj| < £ whenever i #
insure that M is loopless and with edge multiplicity at most ¢ (i.e.. any
distinct i.J are contained in at most £ edges). A coloring of [; corresponds
to an edge coloring of X and vice versa. i.e.. a color can be assinged to
£ € X as well as 10 the edge 3(zr) of H simultaneously.

For i.j € {1.2,...,n}, the vertex set of X, let m(i, j) be the number of
edges of H containing i and j. Since i.j € 3(x) if and only if £ € 4; N 4;,
and }4; N A;| < ¢ for distinct i and j, it follows that m(7, j) < /. Let B be
an edge of H with |B| = k. In order to estimate the number of edges of H
incident with B and of size at least k, counting the number of two elements
subsets of such edges shows that it is bounded above by

Z Z m(i.j) < kf(n — k).

i€eB j¢B

Since each such edge contributes at least £ — | two elements subsets, the
number of such edges is bounded above by k¢(n — k). This observation is
summarized in the following lemma.

Lemma. If B is an edge in H'with |B| = k, then there are at most
kf(n — k)/(k = 1) edges of H distinct from B which are of sizes at least k
and have non-empty intersections with B.

To prove this theorem, arrange the edges of H in a nonincreasing order of
sizes. The first edge can be colored arbitrarily, suppose that all edges with
sizes at least k + | and some edges with sizes k have been colored properly,
and now an edge B in H of size k is to be colored. Asshown in the previous
lemma, B has non-empty intersections with at most k4(n —k)/(k — 1) edges
of H with sizes at least &, it follows that at most k¢(n — £)/(k — 1) colors
would be enough to color those edges in the preceding of B and incident
with B. As a function of k, f(k) = ké(n — k)/(k — 1) is decreasing, so

ke(n — k)/(k — 1) < f(2) = (2n - 4)L.
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it follows that there is one more color remained for B. This completes the
proof.
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