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ABSTRACT. A numbering of graph G = (V, E) is a bijection
f:V = {1,2,...,p} where |V| = p. The additive band-
width of numbering f is B¥(G, f) = max{|f(v) + f(v) - (p +
1)| : wv € E}, and the additive bandwidth of G is B*(G) =
min{B*(G, f) : f a numbering of G}. Labeling V by a num-
bering which yields B*(G) hes the effect of causing the 1’s in
the adjacency matrix of G to be placed as near as possible to
the main contradiagonal, a fact which offers potential storage
savings for some classes of graphs. Properties of additive band-
width are discussed, including relationships with other graphi-
cal invariants, its value for cycles, and bounds on its value for
extensions of full k-ary trees.

1. Introduction

Let G = (V,E) be a graph with V = {v),vs,...,vp}. A numbering
is a bijection f : V — {1,2,...,p}. The bandwidth of numbering f is

B(G,f) = max{|f(u) - f(2)| :
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uv € E}, and the bandwidth of G is



B(G) = min{B(G, f) : f is a numbering of G}. Bandwidth has been
studied by several investigators [1, 3, 4, 5, 6, 7, 8], in the main so as to
provide a compact representation of sparse n x n matrices. A bandwidth
numbering or B-numbering of G is a numbering whose bandwidth is the
bandwidth of G. Using a bandwidth numbering, the 1’s in the associated
adjacency matrix of G' (where the vertices are ordered by the numbering)
lie within B(G) diagonals above and below the main diagonal. Thus all of
the information about G can be stored in a collection of bits corresponding
to those diagonals.

Bascufidn, Ruiz, and Slater (2] defined the additive bandwidth B*(G) by
B*(G) = min{max{|f(u) + f(v) ~ (p+1)| : wv € E} : f is a numbering
of G}. The quantity f(u) + f(v) is called the edge sum of edge uv and
|f(u) + f(v) — (p+1)| is its edge weight. The number p + 1 will be called
the target and B*(G) is a measure of how far edge sums are from the tar-
get. An additive bandwidth numbering or B*-numbering is a numbering
whose additive bandwidth is B*(G). In an edditive bandwidth numbering
all 1’s in the corresponding adjacency matrix lie within B*(G) contradiag-
onals above and below the main contradiagonal. Again, all the information
about G can be stored in a collection of bits corresponding to those di-
agonals. The number of storage bits required for some graphs is less for
a bandwidth numbering than for an additive bandwidth numbering, while
the opposite holds for other graphs. Thus an additive bandwidth number-
ing offers the potential benefit of significant storage savings (in fact, close
to one half) for some classes of graphs. The authors of the seminal paper
[2] derive properties of B*(G) and compute its value for some classes of
graphs, including grids and complete bipartite graphs. In particular, the n
by m grid graph P, x Py, with n < m has bandwidth » and additive band-
width [n/2]. Thus storage requirements for large n improve by a factor of
essentially two (as described in [2]).

Section 2 of this paper describes maximum graphs for a given value of
B*(G), Section 3 presents relationships between B*(G) and other graph-
ical invariants, Section 4 is devoted to the additive bandwidth of cycles,
Section 5 presents partial results on the additive bandwidth of trees, and
Section 6 computes B+ (G + K,) in terms of B+(G).

2. Maximum Graphs

Let d, be the contradiagonal of the adjacency matrix A = (a;;) of graph G
corresponding to the elements a;; having i + j = r, 2 < r < 2p. The main
contradiagonal is dp.1. Then any graph G having p vertices and B*(G) < k
must be a subgraph of G;" & the graph with adjacency matrix having 1’s
in all positions of dp1_g,...,dp+ 1+, €xcept the positions also residing on
the main diagonal. Figure 1 shows G;_ & for small values of p and k.
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It does not follow that every subgraph G of G;: « has BT(G) < k. Con-
sider the graph Gf, of Figure 2. For this G, B*(G) = 1, and a B*-
numbering is shown. Suppose graph H is obtained from G by deleting the
vertex labeled 5 and further suppose B*¥(H) < 1. Then we can produce
a numbering f : V — {1,2,3,4} such that f(u) + f(v) € {4,5,6} for all
uv € E. But the triangle’s vertices must include either labels 1 and 2
or labels 3 and 4, causing an edge sum of 3 or 7, a contradiction. Thus
B*(H) 2 2. The problem here is that a subgraph G of G}, is not necessar-
ily a subgraph of G’;__l'k. For our example, H contains a K; 3 but Figure 1
shows G;’:l does not. However, the following straightforward result is true.
Proposition 1. If H is a spanning subgraph of G, then B¥(H) < B*(G).

The ability of B* to increase when a vertex is removed is indicative of
the difficulties which arise when studying this parameter, difficulties which
do not occur with normal bandwidth. It corresponds to shifting the target
p+1in |f(u) + f(v) — (p+ 1)| by one which can cause an increase of one
in this computed quantity even when f(u) and f(v) remain the same. This
interferes with most induction approaches.

3. Invariant Relationships

Let Fo(G) be the vertez independence number of graph G, that is, the
maximum number of vertices with the property that no two are adjacent.

Proposition 2. For any graph G, p—2fy < B*(G) <p-|5o/2] -1, and
these bounds are sharp.

Proof: The lower bound is established in [2]. Label the vertices of a
maximum independent set by 1,2,...|5/2},p — [5o/2] + 1,p — [5o/2] +
2,...,p and label the rest of the vertices arbitrarily with |8y/2] +1 through
P — [Bo/2]. Then the smallest possible edge sum is |8/2| + 2 and the
largest is 2p — [fo/2]. Now p+1 — (|fo/2} +2) = p — | Bo/2] — 1 and
2p - [Bo/2] = (p+1) =p—[po/2] =1 < p—|Bo/2] — 1. The upper bound
is achieved by Kg, + K,_g, where Kg, is the empty graph on Sy vertices
and the sum G+ H of graphs G and H is formed by adjoining every vertex
of G to every vertex of H (see Lemma 17). The lower bound is achieved
by K. O
A lower bound in terms of maximum degree A is obtained easily.

Proposition 8. For any graph G, B*(G) > [251] and this bound is
sharp.

Proof: The A edge sums associated with the edges incident to a vertex of
maximum degree may include p + 1, but always leave at least A — 1 others

to be distributed on either side of p+1. The bound is achieved by K} , for
n even [2]. a

131



In [2] it was mentioned without proof that B(G) < 2B*(G). We now
justify that.

Theorem 4. For any graph G with p vertices and B*(G) > 1, B(G) <
2B*(G). Furthermore, this bound is sharp.

Proof: We first show the result is true for G = G}, and p even. In this

case G'*:o is a collection of p/2 independent edges, which we shall call rungs,
labeled as in Figure 3a. Call the two vertices on a single rung mates. Then
Gt xis obtained from G;:o by connecting each vertex to all vertices whose
laf;el differs from the label of its mate by at most k. It is easy to see
that these added edges always connect rungs which are at most k apart,
and, when the rungs are exactly k apart, the edge connects a vertex on
the left side to one on the right. Figures 3b, 3c, and 3d show G;" 1,G;" 2
and G}l 3, respectively. Define a new numbering f of G}, as follows. Label
the vertices of the rungs from the top rung down with successive integers
beginning with 1. The top k rungs are labeled left to right, the next k
right to left, and so on until all rungs have been labeled. This procedure
is illustrated for k = 1,2, and 3 in Figures 4a, 4b, and 4c, respectively.
Consider vertices on all rungs between rung i and rung i + k, inclusive,
when such a difference exists. These are labeled with 2:—1 through 2i +2k.
However, the vertices labeled 2i — 1 and 2k are on the same side, left or
right, and, since the corresponding rungs are exactly k apart, there is no
edge between them. Thus the largest value of | f(u) — f(v)] for any edge uv
is 2k. This numbering then shows B(G},) < 2B*(G},) if pis even. Thus,
if B*(G) = k, G is a subgraph of G;"k so B(G) < B(G;",‘) < 2B+(G:‘,k) =
2k = 2B*(G), and we are done.

Notice that, if p is odd, G’;}', & can be obtained from G;:H.k by contracting
the bottom rung. The labeling f of G}, , described above induces a
labeling of G, by labeling all vertices the same as in G, , , except for the
new combined vertex which is labeled p. Once again assuming B*(G) = k,
it follows that B(G) < B(G},) < B(G},,,) < 2B*(G},,,) = 2k =
2B*(G).

Sharpness is provided by the grid graph Py, x P», for which it is known
that B(Pa; x Pa;) = 2t [7] and Bt (Pa: x Pa:) =1t [2]. a

The next section demonstrates that there are graphs G for which B+(G)
is arbitrarily larger than B(G). In particular, if G is the disjoint union of
n odd cycles, B(G) = 2 but B*(G) =n.

4. Graphs with Odd Cycles

For any numbering f of graph G, define the (additive) diameter d(G, f) by
d(G, ) = max{f(u) + f(v) : wv € E} — min{f(u) + f(v) : wv € E} and
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extend the notion to a subgraph H (labeled with the restriction of f to H)
by simply taking the maximum and minimum over edges in E(H). Note
that for a Bt-numbering f, B*(G) < d(G, f) < 2B*(G). In the following
Cj is the cycle on p > 3 vertices.

Lemma 5. If G contains an odd cycle C and f is a numbering such that
d(C, f) < 2, then the label set f[V(C))] is composed of consecutive integers.

Proof: Suppose the vertices of C are labeled successively by a3, a2, ..., a2k—1.
We may assume a; = 1. Then |(a2+a3)—(a1+a2)| <2,0r1 <a3—-1<2.
Similarly, 1 < agk—2—1 < 2. Thus ag =2 or 3 and azx-2 = 2 or 3. Without
loss of generality let ag = 3 and agx—2 = 2. With these choices, the following
values are forced, using similar reasoning: ag;j;) = 25 +1 and agk—2; = 2j
for j =1,2,...,k — 1. Thus the label set of C is {1,2,...,2k — 1}. O

It follows that, if the actual minimum label of such a C is “a”, its label
set is {a,a+1,...,a+2k —2} and the three edge sums generated by C are
2k + 2a — 3, 2k + 2a — 2, and 2k + 2a — 1. Also, note that the “middle”
label of sucha Cisa+k—1.

Corollary 6. If a graph G with an even number of vertices contains an
odd cycle, then B*(G) > 2.

Proof: If B(G) < 1, then d(G, f) < 2 for some B*-numbering f. Thus
the odd cycle must be labeled with consecutive integers, producing edge
sums as indicated above. Since the middle sum must be p 4 1, we have
2k — 2a — 2 =p+ 1, where p = |V(G)|. Thus p is odd, a contradiction. O

Proposition 7. If G contains two odd cycles, each of which contains a
vertex not in the other, then B*(G) > 2.

Proof: Let C and C’ be two such odd cycles where C has 2k—1 vertices and
minimum label a, and C’ has 2k’ — 1 vertices and minimum label a’. Now
assume B*(G) <1 and let f be a B*-numbering of G. Then d(C, f) < 2
and d(C’, f) € 2. By Lemma 5 each label set must consist of consecutive
integers. Since C and C’ produce edge sums 2k+2a—3, 2k+2a—2, 2k+2a—1
and 2k’+2a’ -3, 2k’ +2a’ —2, 2k’ +2a’ —1, respectively, we have 2k+2a—2 =
p+1=2k"+2a"—20rk+a—-1=Fk +a'—1. Thus the “middle label”
is the same for both C and C’ and so the label set for the smaller cycle is
a subset of the label set for the larger cycle. But then every vertex of the
smaller cycle is in the larger cycle which contradicts the assumed vertex
properties of C and C". O

Note that the above result does not extend directly to three cycles, as is
seen by the graph G of Figure 5 for which B¥(G) =2 <3.

Lemma 8. B*(Cp) =1 for all p.

Proof: Clearly Bt(Cp) > 1. Thus it suffices to display a numbering f
such that B¥(Cp, f) = 1. Such a numbering depends on the parity of
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p. If p = 2k — 1, denote the labels 1,2,...,p in order as follows: 1 =
Ce1y..., 8,k uy,...,u5-1 = p, that is, =k—-ianduyy=k+i,1<i<
k — 1. Label one vertex of the cycle with k and continue alternately left
and right according to the following pattern:

... uglsuglikuylougly. .. (1)

Identifying vertices by their labels, we have edges ¢, k with edge sum (k—1)+
k = 2k—1, ku, with edge sum 2k+1, €u;_; with edge sum (k—1)+ (k+{—
1) =2k-1for 2 < i < k—1, &uyyy with edge sum (k—i)+(k+i+1) = 2k+1
for 1 <i< k-2, and €;_jux_; with edge sum 2k. Thus all edge sums
are one of p, p+ 1 or p+2, so B¥(Cy, f) = 1. If p is even, an analogous
construction works with the set 1 = €,_1,...,41,81,...,Ux—1 =P. o

Lemma 9. If G contains a disjoint union of n odd cycles, then B*(G) > n.

Proof: Let p = |V(G)|; C1,C3,...,Cn be n disjoint odd cycles contained
in G with C; having length 25; +1; and j = j1i +j2+ -+ + jn. Let C
be the subgraph induced by |Ji., Ci and s = |V(C)| = 2j + n. Note,
Bo(C) < j. For any numbering f : V — {1,2,...,p} let f[V(C)] =
{a1,a2,...,a,} with a; < a;y;. Because Bp(C) < j, at least two ver-
tices with labels in {a;, as, ...,a;,a;41} are adjacent, as are two vertices in
{as—j, @5_j+1,...,a,}. Thus there are edges uv and wz with f(u)+ f(v) <
aj + ajy1 and f(w) 4 f(z) 2 @s—j + Gs—j41 = Gjin + Gjtnt1. Now
@j4n—a; 2 nand Gjint1—Gj41 2 180 (G54n+8Gjint1) —(a5+a541) 220
which implies 8+(C) > n. 0

Lemma 10. If G is a disjoint union of n odd cycles, then B*(G) = n.

Proof: By Lemma 9 we need only show a numbering f such that B+ (G, f) =
n. Let C,C,,...,Cy be the n odd cycles arranged so that |V(C})| >

[V(C2)| = -++ 2 |V(Cn)|. We will represent f as an n x q array where

q = |V(C))| and where the nonzero entries in row i of the array will give

the consecutive labels around the cycle C;. Figure 6 presents an exam-

ple of the technique described in this proof. The columns of the array

(K, L;, and U;), described below, will be arranged as in (1) of the proof of
Lemma 8: ... L3Us L1 KU LoUs.... The columns are constructed as fol-

lows, with the understanding that any undefined entry will be 0 and thus

not used as a label. Let m; be the number of cycles of length at least 2i+1,

i=1,2,...,%, and p= [V(G)]. Let the set {1,2,...,p} be partitioned in

order as B(g_1)/2U-+-UB1USUA; U---U A(4_1)/2, where |S| = n and, for

each i, |A;| = | Bi| = m;. Observe that 22&;‘11)/ 2 ;i +n = p, by definition

of the m;. The columns are now created with values entered from top to

bottom:

(i) K-elements of S in decreasing order
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(i) Us-elements of A; in decreasing order if 1 is even, increasing order if i
is odd

(iii) L;-elements of B; in decreasing order if i is even, increasing order if ¢
is odd

Verification that B¥(G, f) = n involves a straightforward examination of
four types of edge sums:

(i) b+ s, wherebe By, 3€ S

(ii) s+ a, where s€ S, a € Ay

(iii) a + b, where a € A;, b € Bixa

(iv) a+ b, where a € A;, b € B;. (]

Lemma 11. If B*(G) > 0, then B*(G U Cy) < B*(G).

Proof: Suppose |V(G)| = p and let f be a Bt-numbering of G and g be
the Bt-numbering on Cy; from Lemma 8. Define a labeling h on G U Co;
as follows:

g(v) ifv e V(Cy) and g(v) < k
h(v) ={ gv)+p ifv € V(Cyx%)and g(v) >k
f@)+k ifveV(G)

It is easily verified that h is a numbering and B*(G U Ca, k) < B*(G).O
The next theorem combines the previous results.

Theorem 12. If G is a disjoint union of cycles, exactly n of which are odd,
then B*(G) = max{1,n}.

5. Trees

We have seen that determining B*(G) even for simple graphs G can be
difficult, a fact which remains true for trees. Here we confine ourselves to
determining bounds for the additive bandwidth of a special but important
class of trees. Define T}, 4 to be the rooted tree of depth d > 2 where all
leaf vertices are on level d (the root is level 0), the root has degree r 2 2,
and all other non-leaf vertices have degree m > 3.

Observe that |V(Trma)l =p =1 +rym 1)y =1+ Fm=1¢-1

m-—2
so the target ist =2+ r-""—’l)—_— This class of trees includes full binary
trees by setting r =2 and m = 3 For integers z and y with z < y let [z, 3]
represent the set {z,z+1,...,y—1,y}.
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Lemma 13. In any B*-numbering of Tr,m,a Where the root is labeled a,
the vertices at level £ must be labeled with members of [t — ¢éB* — a,t +
€B* —a]N|1,p] if € is odd and [a — €B*,a + ¢B*|N[1,p] if € is even.

Proof: Employ induction on £ All labels 2z on level £ = 1 must obey
z+a€ [t —Bt,t+ B*]. When ¢ > 2 is even any label z at level £—1 is
in [t — (¢ — 1)B* — a,t + (£ — 1)B* — a] by the inductive hypothesis and
any label z at level £ must obey z+ z € [t — Bt,t + B*]. It follows that
2€t—Bt —(t+(¢—1)B* —a),t+ Bt — (t - (£—1)B* —a)]. A similar
argument establishes the case for £ > 3 odd. ()

Note that the root label a can be taken to be a < t/2 since, if it is not,
the complement numbering defined by replacing each label z by p+1—=x
can be employed. This revised labeling produces the same edge weights as
the original. We first determine a lower bound on the additive bandwidth
of Trm,a. With normal bandwidth a lower bound can be obtained using
the relation B(G) > [52==] [4], a relation which is invalid in general
for additive bandwidth, as the cycle shows. Surprisingly, though, the value
produced by this formula does yield a valid lower bound for the additive
bandwidth of Ty 4.

Lemma 14. B* (T m ) = f"%"ﬁf,—:.);z_yl']-

Proof: In light of the paragraph preceding this theorem, we will assume
throughout this proof that a < ¢/2.

Case 1: d is odd. It follows from Lemma 13 that even level labels are
selected from [a — (d — 1)B*,a + (d — 1)B*]| N [1,p] and odd level labels
from [t — dB* —a,t +dB* —a] N [1,p]. If /2 —dB* < 1 we have Bt >
t—2 _ . (m-1)3-1 + -+

5 = riGrSl. Suppose then that t/2 — dBt > 1. Now t —dB* —a >
t/2—dB* > 1 so the smallest possible label on an odd level is greater than
1, that is, the label “1” must appear at an even level. This can happen
only if a—(d—1)B* < 1. Thus the smallest possible label that can appear
on an odd level is greater than or equal to ¢ — dBt - [(d — 1)Bt +1] =
t — 2dB* + Bt — 1. It follows that labels 1 through t —2dB* 4+ Bt -2
must occur on even levels. Assuming none of these labels is assigned to the
root, each vertex so labeled has m — 1 children on an odd level. Thus by
the pigeon hole principle at least one of these children has a label no larger
than ¢ — (m — 1)(t — 2dB* + B* —2). The child with this label is adjacent
to a vertex having label at most ¢ —2dB* + B+ — 2 to give an edge sum of
at most 2¢ — (m — 1)t + 2(m — 2)dB* — (m — 2)B* + 2(m — 2). Since this
sum must be at least £ — B, we can solve the resultant inequality to see

Bt > rm;(,‘mfﬁ'l;(;%ss which is never smaller than the bound found when

t/2—dB* < 1. If one of the vertices labeled 1 through ¢ —2dB* + Bt —2
is the root, the number of children on odd levels is r + (m —1)(t — 2dBt +
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Bt —3). By modifying the preceding analysis only slightly, it can be shown
that this forces a value for B which is also always at least as much as the
bound of the theorem.

Case 2: d is even. Now odd level labels are in [t — (d — 1)B* —a,t + (d -
1)B* —a]N[1,p] and even level labels are in [a —dB*,a+dB*|N[1,p]. If
t/2+dBt >t—-1,Bt > ri',"w‘,—,‘ég)l. Ift/2+dB* < t—1, label ¢t — 1 must
appear on an odd level, which is possible only if t + (d—1)Bt —a >t -1,
that is, a < (d —1)B* + 1. Thus even levels can have labels up to at
most (d — 1)B* +1 4+ dBt = 2dB* — Bt + 1. This means odd levels
must include all labels from 2dB* — Bt + 2 to ¢t — 1 of which there are
t — 2dB* + Bt — 2. Each vertex so labeled has m — 1 children on even
levels and the ones on the smallest level must also have at least one even
level father, so the entire collection of even level neighbors has at least
(m—1)(t—2dB* + BT —2)+1 members. This means there is an edge sum
of at least (m—1)t-2(m—1)dB*+(m—1)B* -2(m—1)+1+2dB+*-B+42
which can be at most ¢ + B+. Solving for B yields B+ > gi{m=} =1l
which exceeds previous bounds. o
Lemma 15. B*(Trma) < [§(m —1)¢71).

Proof: Case 1: r is even. Figure 7(a) illustrates the numbering scheme
which shows the bound. The scheme is:

(i) Label half the leaves left to right with 1 to §(m — 1)%~1. Label the
other half right to left with £ — 1 down to ¢ — §(m —1)9-1,

(ii) On level d—1 label half the vertices left to right with t—5(m—1)4-1-1
down to t — §(m — 1)4~! — Z(m — 1)4~2. Label the other half from
right to left with F(m —1)4~! + 1 to §(m — 1)4~! 4+ §(m —1)%-2

(iii) Continue in this manner to successively smaller numbered levels, al-
ternating which half gets increasinT labels and decreasing labels. The

labels used at level £ are those in |5 Y0 f(m —1)4~ + 1,530y

(m = 14Ut - § T m - )45t - § T (m - 1 -]

i=1
(iv) Label the root with ¢/2.
It is easily seen that the largest deviation from ¢ occurs for edges between
levels d — 1 and d, and its value is §(m —1)3-1.
Case 2: r is odd.

Case 2a: m is odd. Then every subtree rooted at a level 1 vertex has an
even number of subtrees rooted at level 2. This allows us to use the same
scheme as in Case 1 for level ¢, 2 < £ < d. Figure 7(b) illustrates the entire
scheme, which for levels 0 and 1 is:
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(i) Level 1 uses labels [2 Z‘_l (m-1)%"+1,3 i_l (m 14 4 —"‘—]U

[t D DAy (T ) Loy B S )t (R ) Lo l] with the left-
right direction opposite to that used on level 2.

(if) The root is labeled 1.

Again the largest deviation from ¢ occurs for edges between levels d— 1 and
d, and its value is §(m — 1)4-1,

Case 2b: m is even. Now every level has an odd number of vertices. The
center vertices on each level are temporarily left unlabeled, while the other
vertices on levels 1 and higher are labeled by a technique paralleling that
of previous cases. Figure 7(c) illustrates the scheme, which involves the
following:

(i) The non-center vertices of level ¢, 1 < £ < d, use labels in

2 2

[t_rzz-’;f+‘(m—1>d—‘-(d+1—e> t_g:';ﬂm-l)d-"-(d-e)_l]
2 ’ 2

[ Cim-1)-d-g 2“‘+‘(m-1)4-‘-(d-z+1)] U

(ii) The middle vertex on level £, 0 < £ < d, is labeled with {32 + ¢.

Yet again the largest deviation from ¢ occurs for edges between levels d — 1

and d, and its value is ﬁm—_%ﬂ. This maximum edge weight does not
involve an edge incident to a center vertex. Checking such edge weights
and showing they don’t exceed the bound is a tedious but straightforward
computation. a

Combining Lemmas 14 and 15 gives the following.
Theorem 16. [r%{,}.—)—:)l.l < B*(Trma) < [5(m —1)%1].

For full binary trees the theorem becomes L“‘] < B+ (Ty3,4) < 291
The numberings of Figure 8 show the lower bound is correct for d < 5. We
believe the lower bound of Theorem 16 is closer to the true value. If so, it
would parallel the recently reported fact [8] that the ordinary bandwidth

(T, . . b k(k3—1
of Ti,k+1,d is given by | 5om—

6. B*(G+ K,)
As a first step in determining the additive bandwidth of combinations of
graphs we compute B*(G + K,,) in terms of B*(G), where G is a graph
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on p vertices and G + K,, is obtained from disjoint copies of G and K, by
connecting every vertex of G to every vertex of K,. A series of lemmas
paves the way. The first gives the result when G = K,, the empty graph
on p vertices.

Lemma 17. Forp > 2, B*(K, + Kn) =n+ [p/2] - 1.

Proof: Label the vertices of K, by [p/2]+1, ..., |p/2]+n and the vertices
of K, with the remaining labels between 1 a.nd p + n. Since no vertices
of K are adjacent, the smallest edge sum is |p/2] + 2 and the largest is
Lp/2_| + 2n + p which implies B*(K, + K,) < n + [p/2] — 1. For the
reverse inequality consider any numbering where zg is the smallest label
assigned to any vertex of K,, and z, is the largest. Since z, > zs+n—1
it follows that one of zg < |p/2] + 1 and z1, > n + |p/2| + 1 holds. Let
zg < |p/2] +1. Ifzg # 1,1+ 23 < |p/2| + 2 is an edge sum and
B+(Kp + Ka) > n+ [p/2] — 1. If z3 = 1, the vertices labeled 1 and 2 are
adjacent so B+(R',,+Kn) >n+p+1-32n+p—|p/2|/—-1forp>2. A
similar argument holds when z;, > n+ Lp/2_| +1 where the case z;, = p+n
must be treated specially. O

The next two lemmas deal with the n =1 case.
Lemma 18. For any graph G, Bt(G + K,) > B*(G).

Proof: Let g be a Bt-numbering of G + K}, G having p vertices and with
u being the vertex corresponding to Kj. Define a (not necessarily B*-)
numbering f of G by

o J9®)  ifg(v) <g(w)
f(@) {g(‘v)—l if g(v) > g(u).

Let z and y be vertices such that | f(z)+ f(y) —(p+1)| > B*(G) for edge zy.
Without loss of generality assume f(z) < f(y) so that g(z) < g(y). Suppose
9(z) < g(y) < g(u). If f(z)+f(y) > p+1, then f(z)+f(y)—p—1 = B¥(G).
In G + K we have for edge uy that |g(u) + g(¥) — (p+2)| = lg(z) + 2+
f@)—p—-2|=|f(z)+ f(¥) - (p+1)+1| > B*(G)+1. On the other hand,
if f(z)+ f(y) <p+Lp+1-f(z) - f(y) 2 BY(G). Thus, in G+ K),
(e +2) - 9(z) - 9(¥)| = |(p+ 1) — (=) — f(¥) + 1| 2 B*(G) + 1. Similar
arguments for the cases g(z) < g(u) < g(y) and g(u) < g(z) < g(v) always
show the existence of an edge ab such that |g(a)+g(b)—(p+2)| = B*(G)+1
so the result follows. a

Lemma 19. Let G be a graph on p vertices. If BY*(G) > [p/2] — 1, then
B*(G+ K,) < B¥*(G) +1.

Proof: Let f be a B-numbering of G and define numbering g on G+ K3,
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where u is the vertex corresponding to K3, by

f(v) if f(v) < [p/2] +1
gv) ={[p/2]+1 ifv=1wu .
f)+1 if f(v) 2 [p/2] +1

The largest edge weights involving u are at most g(u) + (p+1) - (p+2) =
[p/2] and (p+2) — [g(u) + 1] < [p/2]. Furthermore, the edge weight of an
edge in G increases by at most one in G + Kj. O

Theorem 20. For any graph G on p 2> 2 vertices, BY*(G + K,) =
n+[p/2] -1 if B¥*(G) < [p/2] -1
n+BY(G) ifB*(G)2[p/2]1 -1

Proof: Suppose first that n = 1 and B*(G) > [p/2] — 1. Then B*(G +
K,) = B*(G)+1 by Lemmas 18 and 19. Observe now that B*(G+ K,) >
[p/2] = [(p +1)/2] — 1 so the second condition is satisfied for G + K.
Repeating the argument for this graph gives BT [(G+ K1)+ K] = BT (G +
K;) = 1+ B*(G + K,) = 2+ B*(G) and repeating n — 2 additional times
yields the second result. Now assume B*(G) < [p/2] —1 and label G+ K;
as in the proof to Lemma 19. Then the edge weight in G+ K of any edge not
involving u is at most [p/2] —1 and of any edge involving u is at most [p/2].
Since Bt can only increase as edges are added, it follows from Lemma 17,
by adding edges to K to obtain G, that B¥(G + K,) > [p/2], yielding
the result when n = 1. As before [p/2] > [(p +1)/2] — 1 so the second
condition holds for G + K and B*(G + K,,) = B*[(G + K1) + Kn—1]) =
n—14+BH G+ Ki1)=n-1+[p/2]. 0O

References

(1] G.G. Alway and D.W. Martin, An algorithm for reducing the bandwidth
of a matrix of symmetrical configuration. Computer J. 8 (1965), 264
272.

[2] M. E. Bascufifn, S. Ruiz, and P.J. Slater, The additive bandwidth
of grids and complete bipartite graphs. Congressus Numerantium 88
(1992), 245-254.

[3] R.C. Brigham and R.D. Dutton, On the size of graphs of given band-
width. Discrete Math. 76 (1989), 191-195.

[4] P.Z. Chinn, J. Chvétalové, A K. Dewdney, and N.E. Gibbs, The band-
width problem for graphs and matrices: a survey. J. Graph Theory 6
(1982), 223-254.

140



[5] F.R.K. Chung and P.D. Seymour, Graphs with small bandwidth and
cutwidth. Discrete Math. 75 (1989), 113-119.

[6] E. Cuthill, Several strategies for reducing the bandwidth of matrices. In:
“Sparce Matrices and Their Applications”, D. Rose and R. Willoughby,
Eds. Plenum, New York (1972), 157-166.

[7] E.O. Hare, W.R. Hare, and S.T. Hedetniemi, Bandwidth of grid graphs,
Congressus Numerantium 50 (1985), 67-76.

(8] L. Smithline, Bandwidth of the complete k-ary tree is known, submitted.

k
p

4
=9

&
¢ 9@

Figure 1: Gp . for small values of p and k

0
—e
—o

°
—o
—so
—o

5| e—e

.
-—e
—e
—e
*—ao
—se
—o

.

<D M A M| <
<o | D3| < | X

i
Ul [
[\

Figure 2: Graph whose additive bandwidth increases
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Figure 8: B*-labeling of G;" i for even p and £k =0,1,2,3
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Figure 4: B-labelings of the graphs of Figure 3 for k =1,2,3
(only the rungs are shown)

Figure 5: Graph with three odd cycles each of which contains a vertex
not in the others and for which B+ =2
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G=CUCUC UCyandp=22
3 9

L 23, 45 6,7,8,9, 10,11,12,13, 14,1516,17, 1819, 2021, 2
v v Vv vV \'% \ v A2 "4

Co | 2221961314521
C, 3187 1215421

Amay: (Undefined entries are zero)
Cs 8 11 16

G 910 17

Figure 6: Example of the labeling procedure used
in the proof of Lemma 10

1234567 891011121314151617 18 3637383940 4142 4344 45 4647 48 39 50 51 5253

1.3 5 7.9 15 17 19 31 23 41 43 45 47 53 55,5759 61 63
27476 78101204 6 18102070 24 0 s P16 Tas 050 5™ 5175 5 5860 ko s

b
30 31 ® 3% 37
Wy g 1Yy dig 0g 390y 38 3

1.3 5 7_9 17 19 21 36,.98,50 _52_5% 60 62 63 66
2747678 %10M 1211016 180 :25 477190 51 53755 %57 %8 559061 6

[+

Figure 7: Examples of tree labelings which demonstrate upper bounds
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1 23 51 BKWB
d=3, B*=3

1 23 48 9101716 2212527293 31

d=4, B*=4

1 23 47 9101H1617B502H3 7730 RHPITBI NS FTOOIRS

d=5, B*=7

Figure 8: B* labelings of full binary trees to depth 5§
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