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ABSTRACT. Let G be a finite graph and z be its vertex. The
neighbourhood of z in G, denoted Ng(z), is a subgraph of G
induced by all vertices adjacent to z. G is a graph with a con-
stant neighbourhood if there exists a graph H such that Ng(z)
is isomorphic to H for every vertex z of G.

We completely characterize graphs with constant neighbour-
hoods isomorphic to complements of regular disconnected graphs.

Let G be a finite connected graph without loops and multiple edges and
z be its vertex. The neighbourhood of z in G (denoted Ng(z)) is the
subgraph of G induced by all vertices adjacent to z. A graph G is a graph
with constant neighbourhood if there exists a graph H such that Ng(z) & H
for any vertex z of G. We also say that G is a locally H graph. A graph H
is realizable if there exists a locally H graph G. The order of a graph G is
the number of its vertices while the size is the number of its edges.

R. Nedela [4] suggested that the structure of graphs with a “dense” con-
stant neighbourhcod might often (but not always) be quite restrictive. Here
“dense” means that the number of edges in the neighbourhood is large.

Brouwer, Cohen and Neumaier [1, pp.12-13] proved that the structure
of a graph with a dense neighbourhood is uniquely determined even under
weaker assumptions. Namely, a regular graph with sufficiently dense regular
neighbourhoods of the same degree must have a constant neighbourhood.

Theorem 1. (Brouwer, Cohen, Neumaier) Let G be an r-regular graph
and let the neighbourhood of any vertex of G be a t-regular graph. If
t >r—+/T—1/2, then G is complete multipartite.

_ A similar result (with a weaker bound) was independently proven by
Soltés [5].
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Another approach to the problem is to prescribe a structure of the “dense”
neighbourhood in a locally H graph G. Results of this type were obtained
by Zelinka [6], Bugata, Horfiék and Jendrol’ [2] and Nedela [4].

Zelinka [6] proved that a locally P, graph exists for any n > 4, where
P, denotes the complement of a path with n vertices, while no locally C,,
graph exists for a cycle C,, with more than 6 vertices. Bugata, Horfidk
and Jendrol’ [2] gave a complete characterization of graphs with constant
neighbourhoods isomorphic to complements of trees.

Theorem 2. (Bugata, Horfidk, Jendrol’) Let T' be a tree. Then a locally
T graph exists if and only if T is a path or a star.

Nedela [4] described a special class of non-realizable graphs.
Theorem 3. (Nedela) Let H be a graph satisfying the following conditions:

(i) there are two adjacent vertices in H whose degrees differ by at least
2,

(ii) each 4-vertex induced subgraph of H contains at least two adjacent
edges.

Then there is no locally H graph.

In this article we examine a modification of the above mentioned struc-
tural approach. In our sense, a “dense” graph means that a neighbourhood
of a vertex can be only “locally thin” in certain bounded areas. More
precisely, we consider graphs with constant neighbourhoods isomorphic to
complements of disjoint graphs.

A vertex z of a graph H is universal if it is adjacent to all other vertices
of H. A composition G[H] (also called a lezicographic product) of graphs
G and H can be defined as follows: V(G[H]) = V(G) x V(H) and two
vertices (z1,%;) and (x2,y2) are adjacent in G[H] if and only if either (i)
z1z3 € E(G) or (ii) z1 = 22 and 112 € E(H). In other words, take a graph
G, put a copy of H to every vertex of G and replace each edge of G by
Knn (n=|V(H)|). A join (or a sum) G+ H of graphs G and H is a graph
with V(G + H) = V(G)UV(H) and E(G+ H) = E(G)U E(H) U {zy|z €
V(G),y e V(H)}.

P. Hell [3] presented a characterization of realizable graphs with universal
vertices.

Theorem 4. (Hell) If H has n universal vertices, then H is not realizable
unless H = K, + H'[K,,] for a realizable graph H' without universal
vertices.

The graphs described above are (if H’ is not an empty graph) comple-
ments of disconnected graphs with = isolated vertices and at least one non-
trivial component. In contrast to Hell’s result [3] we study graphs which
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are complements either of disconnected regular graphs or of disconnected
graphs with all components of the same order or the same size. We denote
a subgraph of G induced by a vertex set X by (X)¢.

Lemma 5. Let H be a disconnected graph whose all components are of
the same order q and H be a realizable graph. Then every component of
H is a regular graph.

Proof: If ¢ = 1 then H is indeed regular. Suppose that v is a vertex
of a locally H graph G, H is a disjoint union of connected components
H,, H,,...,H, of order ¢ > 2 each and m is a minimum degree of H. We
first prove that if a component H; contains a vertex of degree m, then all
other components are regular of degree m.

Let Ng(v) = H, H = (X)y = (x1,%2,..., %), H — H; = Yy =
{(y1,%2, ..+ ¥r—q)u (Where r = sq) and degyx) = m. Suppose, to the
contrary, that acomponent H; contains a vertex, say y1, such that deggy: >
m. Since degyzri = m, and z; is in G adjacent to all r — q vertices of Y,
g—m~1 vertices of X and to v, z; must be adjacent to m vertices of G not
belonging to the set X UY U, say 21,2,...,2m. Because degyy; > m,
¥ is adjacent to at most r —m — 1 vertices of the set X UY Uv. On the
other hand, G is regular of degree = and then y; must have at least one
other neighbour different from zi,22,...,2m. Let this vertex be ». Since
the only vertices in V(G) — {vU X UY} adjacent to x; are 21, 22,..., Zm,
the vertex u is in G not adjacent to ;. Then H contains the edge uzx;
and (u,z1,%2,...,%4)n is a connected component of Ng(y) with g + 1
vertices. Therefore Ne¢ () is not isomorphic to H, which is the desired
contradiction.

Thus all the components of H — H; are regular of degree m and we can
apply our assertion once more to show that H; is also regular of degree m,
which completes the proof. a

The converse of Lemma 5, i.e., the regularity of H implies that all com-
ponents of H have the same order, is also true. However, before proving it
(even in a stronger form) we examine disconnected graphs with all compo-
nents of the same size. The methods are quite similar to those used in the
proof of the previous lemma.

Suppose that a disconnected graph H has order r and all its components
have size k > 1 (if k = 0 then H is clearly regular). G is again a locally
H H graph, v is a vertex of G and z; is a vertex of minimum degree, m, in
Na(v) = H. Let x; belong to a component Hy = (X)y = (z1,Z2,...,Z¢t)H
of Hand Y = {y1,¥2,..-,¥-—:} be a set of all vertices of Ng(v) not be-
longing to X. Since degyz; = m, there must be again m neighbours of
z; not belonging to X UY U v, say 21, 22,...2m. Suppose that there is a
vertex y; € Y such that degyy; > m. Then there is a vertex u ¢ XUY Uv
which is a neighbour of y; in G. Clearly, u is not adjacent to z; in G.
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Then N¢(y;) contains a connected component {z;, z, ..., zZ;, u)g, because
y; is in G adjacent to all vertices of X. But this component contains at
least k + 1 edges: k edges induced by the set X and the edge uz;, which
is a contradiction. Hence all vertices y1,¥2,...,¥r—¢ are of degree m in H.
Repeating the arguments once more, we can see that the component Hj is
also regular of degree m and therefore the following lemma holds.

Lemma 6. Let H be a disconnected graph with all components of the
same size k and H be a realizable graph. Then H is regular.

Applying the arguments once again, we now prove the converse of Lemma
5 and determine a structure of a realizable complement of a disconnected

regular graph.
Lemma 7. Let H be a disconnected, p-regular graph of order r. Let G be

a locally H graph. Then H is a disjoint union of r/(p+ 1) complete graphs
Kpi1and G = Ky pya,..p41 Withr/(p+ 1)+ 1 > 3 parts.

Proof: Let H = HiU HaU... H, with |Hy| < |Hp| < --- < |H,|. Let v
be any vertex of a locally H graph G. Then Ng(v) = H; U---U H, where
Hy=(X)n = (z1,%2,-..,Zg)n, HU- - UH, = ()i = (y1, %2, ..., Yr—g)H-
Consider a neighbourhood of z; in G. Since z; is adjacent to v, all vertices
Y1,...,Yr—q and g—p—1 vertices of X, say Z,49,..., Zq, it must be adjacent
to p other vertices, say z,...,2,. Every vertex y; € H;,2 <j<sis
adjacent in Ng(z1) to r —q —p — 1 vertices of the set Y, ¢ — p — 1 vertices
Zp42,---,Zq, the vertex v and to no other vertex of {vU X UY}. Because
Ng(z1) is (r—p—1)-regular, it follows that y; has to be adjacent, in addition
to the r —2p — 1 vertices of {sUX UY}, to p other vertices. Since the only
vertices of Ng(z,) ~{vUXUY} are 2, 2y, .. ., 2, clearly y; is adjacent to
all vertices of Z = {21, 29, ...,2p}.

Let z; # z; be another vertex of X and suppose that Ng(z;) contains,
besides the vertices y1,...,yr—q and g—p—1 vertices of X, a vertex u ¢ Z.
This vertex is then adjacent to all vertices of Y, but in this case any yY; €Y
is adjacent to r —p — 1 vertices of X UY, p vertices of Z and the vertices u
and v. Hence degcy; > r + 1, which contradicts the regularity of G. Thus

any vertex z; € X is adjacent to all vertices zy,.. ., z,. Because now every
vertex of Z is adjacent to all vertices z,...,z4 and y1,..., Yr—q, thereis no
edge in (Z)¢ and Ng(z;) contains K1y = (2,...,,2p,v)g. Therefore H

contains K1, and the minimality of H, immediatelly yields H; = Kpi1.

Now suppose that there is at least one component of H which is not
isomorphic to Kp+1. Let m + 1 be the smallest number such that H,,,; %
Kpy1. Then Ng(v) = H contains exactly m copies of Ky, since p +
1 < |Hmy1| £ -++ < |Hs|. Obviously, if y; is a vertex of Hpyyy, it is
adjacent in G to all vertices of Hy U---U H,,. Furthermore, as we have
seen above, it is adjacent to all vertices 21,...,2p and, of course, to v.
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But (z1,...,2p)y = K, and no vertex of Z is adjacent to v in G. Then
(v,21,...,,2p)5 = Kp+1 and Ng(y;) contains m+1 disjoint copies of Kp41,
namely Hj, ..., Hn, (v U Z)5, which contradicts the fact that H contains
exactly m disjoint copies of Kp;1. Hence m = s and G is a complete
(s + 1)-partite graph Kpi1,.. pt1- : O

Combining.Lemmas 5, 6 and 7, we immediatelly have the following.

Theorem 8. Let H be a disconnected graph and H be a realizable graph.
Then the following are equivalent:

(i) all components of H have the same size,
(ii) H is regular,

(iii) all components of H have the same order.

Proof:

(i) = (ii) follows from Lemma 6.
(ii) = (iii) follows from Lemma 7.

(iii) = (i). From Lemmas 5 and 7 it follows that (ii) and (iii) are equiv-
alent, thus, H is regular and has all components of the same order.
Then, obviously, all components of H are of the same size. d

Our main result now easily follows from Lemma 7 and Theorem 8 and
from the well-known fact (see, e.g., [3]) that every regular complete s-partite
graph is uniquely realizable by a complete (s + 1)-partite graph.

Theorem 9. The complement H of a disconnected graph H which satisfies
one of the following equivalent conditions:

(i) all components of H have the same size, or
(ii) H is regular, or

(iii) all components of H have the same order,
is realizable if and only if H is regular complete multipartite graph.

An equivalent rephrasing of Theorem 9 may be of some interest:

Theorem 9°. Let H be a disconnected graph satisfying one of the condi-
tions (i)—(iii) above and let G be a locally H graph. Then G is a regular
complete multipartite graph with at least three parts.
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