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ABSTRACT. An explicit recurrence is obtained for the clique
polynomial of a short ladder in which the two diagonals are
drawn in each cell. From this result, an explicit formula for
the number of decompositions of the ladder into triangles and
4-cliques is obtained. The recurrence is then used to obtain
results for the matching polynomial of the ladder. Finally, an
association is made with a particular tiling problem.

1. Introduction

The graphs considered here are finite and contain no loops nor multiple
edges. Let G be such a graph. We define an n-clique in G to be a subgraph
of G which is isomorphic to the complete graph with n nodes. For n > 2,
the clique will be called proper. A clique cover (or vertez-clique covering)
of G, is spanning subgraph of G in which all components are cliques. We
will use the word ‘cover’ to mean clique cover. A proper clique coveris a
cover in which all the components are proper cliques, whereas a matching
Is a cover in which none of the components is proper.

Let us associate with each clique a in G, an indeterminate or weight
- wq, and with every clique cover C, the weight w(C) = [], wa, where the
product is taken over all the components of C. Then the clique polynomial

of Gis
K(G;w) =) w(C),

where the summation is taken over all the (clique) covers in G, and w is a
vector of indeterminates. In this paper, we will assign the same weight w,
to each r-clique in G. Therefore we will have w = (w;,w,,ws,...). Some
basic results on clique polynomials have been given in the introductory
paper [1]. The proper cliqgue polynomial of G is the clique polynomial in
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which only proper covers are considered. The matching polynomial of G is
analogously defined.

The short ladder s,, is the graph obtained by joining the corresponding
nodes of two equal paths with n + 1 nodes. The n squares so formed will
be called cells. If in each cell we now draw the two diagonals, then the
resulting graph will be called the strong short ladder A,. We will take
Ao to be an edge. It can be easily confirmed that A, will contain 2n + 2
nodes and 5n + 1 edges. We note that A, is a simple version of the graph
associated with a two-dimensional lattice graph in the Ising problem with
magnetic field (see Harary [5]).

In this paper, we obtain an explicit recurrence for the clique polyno-
mial of A,. From this, we deduce the parallel result for the proper clique
polynomial of A,. We then obtain an explicit formula for the number of
decompositions of A,, into triangles and 4-cliques. Results for the matching
polynomial of A, are then obtained. This yields results for the number of
decompositions of A,, into matchings. Finally, an association is made with
the clique covers of A,, and a particular tiling problem.

2. Some Basic Result

Let G be a graph containing an edge e. Then either a clique cover contains
e or it does not. We can therefore partition the covers into two classes:
(i) those containing e and (ii) those not containing e. The covers which
contain e will be covers of the graph G* obtained from G by incorporating
e, i.e. e is required to belong to every cover of G*. The covers in class (ii)
will be covers of the graph G’ obtained from G by deleting e. Hence we
obtain the following result.

Theorem 1. (The Fundamental Edge Theorem) Let G be a graph con-
taining an (unincorporated) edge e. Then

K (G w) = K(G';w) + K(G*; w).

Let us denote the node set of G by V(G). Let S C V(G). Then G - S
will denote the graph obtained from G by removing the nodes in S.

Theorem 2. (The Fundamental Node Theorem) Let G be a graph with
node set V(G) = {v1,v2,...,vp}. Then

K(Gw) =wiK(G - {v;}w) + D> wr > K(C — {viy,v5,..., 0, }s ),
r=2

where {vi,,vi,,...,%,} is the node set of an r-clique (r > 1) containing
node vj; and the second summation is taken over all such r-cliques in G.
Also, if no such r-clique exists, then K(G — {vi,,vig,...,vi. };w) =0.
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Proof: We can partition the covers of G into two classes: (i) those in which
node v; is isolated and (ii) those in which it is not. If v; is isolated, then
it will have a weight of w; and the remaining components of the cover will
be a cover of the graph G — {v;}. If v; belongs to an r-clique, for » > 1,
then the clique will have weight w, and the remaining elements of the cover
will be a cover of the graph obtained from G by removing the nodes of the
r-clique to which v; belong. Hence the result follows. a

It is clear that the above theorems can be used recursively to obtain clique
polynomials of graphs. These algorithms are called the fundamental edge
algorithm and fundamental node algorithm respectively. Both algorithms
are suitable for computer implementation, and have been programmed in
PASCAL. The ‘built in’ recursive feature of PASCAL seems ideal for algo-
rithms of this type.

3. The Clique Polynomial of A,

For brevity, we will write G for K(G;w), when it would lead to no confusion
and especially in recurrences. G(t) will denote the generating function of
K(G;w) with the indicator function ¢.

The graph A,, and one of its subgraphs B,_, are shown below in Figure 1.
B,,_, is obtained from A, by removing a node of valence 3.

(1) (11)

Figure 1

Let us apply the node algorithm to A,, using node z (i.e. v; = z). Then
from Theorem 2 we get

K(Aniw) = wiK(An—{zhw)+Y_wr 3 K(G—{z,vigy ..., v Jiw) (1)
r=2

Now A,, —{z} is the graph B,,_1. For r = 2, we obtain the following graphs:
A, — {z,y}, An — {z,w} and A, — {z,z} (see Figure 1(i)). An — {z,y}
consists of B,_p with the twig wz attached to it. By applying the edge
algorithm to this graph, using wz, we get

A—{z,y} =w1Bn_2+wsAn_s. (2)
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Similarly, we get
An — {z,2} = w1 Bn_2 + w2An—2 (3)

Clearly
Ap — {z,w} = An_y. 4)

For r = 3, £ must belong to a triangle. In this case we obtain the graphs
A, - {z,9,2}, An — {z,w,2} and A, — {z,y,w}. Hence we obtain the
following relationships between the polynomials;

An - {zs Y, z} = wlA‘n—21 (5)
Ap — {z,w,2} = B,_,, (6)
and A, — {z,y,w} = Bn_a. ()

For r = 4, z belongs to a 4-clique. The only possible 4-clique is the cell
containing z. Hence we get

Ap = {w,z,y,2} = Ap_a. (8)

By substituting the results of Equations (2), (3), (4), (5), (6) and (7) into
Equation (1), we obtain the following lemma.

Lemma 1.

Ap = wy By 14+ (2wiwo+2ws3) By 2+ (2wi+w wa+wy) Ap—a+we An—y (n > 1).

Let us apply the node algorithm to B, using node a (see Figure 1 (ii)).
This yields

B, =uw 1 K(Bp — {a};_’u_)_)-}-Zw,-ZK(B,. — {a,viyy..., v, };w).

By, — {a} is the graph A,. For r = 2, the graphs are B, — {a,b} and
By, — {a,c}. These graphs are isomorphic to Bn—;. For r = 3, the only
graph is B —{a, b, c}; which is A,_;. Hence we obtain the following lemma.
Lemma 2.

Bp = w1 Ap + 2weBp—1 + w3A,._1('n. > 0).

The following relations between A(t) and B(t), the generating functions
for A, and B, respectively, can be immediately obtained from the above
lemmas.

(1 —wot — 2w§t2 — wywst? — 'w4t2)A(t) = (Ag + Ait — w1 Bot — wa Aot)
+ (unt + 2wy wat? + 2wst?) B(t) (9)
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and
(1 — 2wat) B(t) = (w1 + wst)A(t) + Bo — w1 Ao, (10)
where Ay = w? 4+ w; and B + 0 = w} 4 3wyws + ws.
Equations (8) and (9) can be solved simultaneously to obtain an explicit
generating function for A,. This is given in the following lemma.

Lemma 3.

w}+wo+ (2w? + 4w wa+wg )t — (dwd + 2wows — 2w3)t2

At)= .
®) [1—(w? +3ws)t — (Qwiwy +4w w3 +wg )12+ (2wows +4w3 —2w?)t3)

From this lemma, we obtain the explicit recurrence for A, given in the
following theorem.

Theorem 3. 7
Ap= ('w'f+3w2 ) Ap_ 1+(2wf+4w 1w3twy ) An_z—(Z'tU2W4-|-4wg—2w§ )An—3 (n > 2) ’

where
Ap= wf+w2, Ay =w‘f +6w¥w2 +4wiws +3'w§+w4

and
A= wf-{-l 1w§w24-8w?u13+23wfw§+2wfw4+16w1 w2w3+5w§+2w2w4+2w§.
The following table gives values of K(An;w) forn=0, 1, 2, 3 and 4.
Clique Polynomials of Strong Short Ladders

K(An;w)

wi + w2

wf + 6wiws + 4w ws + 3wd + wy

w? + 11wiws + 8wiws + 23wiw? + 2wiw? + 16wy waws + 5w

+2waws + 2wd

3w+ 16wws + 12wdws + 68wiws + Swiw, + 7T2wiwows + 7T6wiug
+14wdwows + 20wiw? + 60w wiws + 8wy waws + 11wh + 11w}
+Twiws + 8wawd + w3

4 wi® 4+ 21w, + 16wIws + 138wiws + dww, + 168wiwows

+322uwiwd + 36wiwows + Sdwiw? + 400wdwiws + 24wdwstw,

+225wiwd + 6dwiwiws + 148wiwow? + 3wiw? + 184w wiws

+40w wowswy + 16w w3 + +21wh + 16wiw, + 30wiw3

+3waw? + 4w§w4

o - o3
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4. The Proper Polynomial of A,

It is interesting to consider only the proper covers of A,. These will be
covers,in which each component is either a triangle or a 4-clique. A recur-
rence for the proper polynomial of A, can be immediately obtained from
Theorem 3, by putting w; = wp = 0.. ie. w= (0,0,w3,w,,...) =w'. We
will denote K'(A,;w’) by A.,. Hence we get

Corollary 3.1.
Ay = wihy_ o+ 234, _5(n > 2),
where
Ay =0,A] =w, and A} = 2w§.
By using standard techniques, we can obtain the generating function
A'(t) for Al given below.

Lemma 4.
wat + 2wit?

— wyt? — 2wit3’

A'(t) = 5

After some calculations, we obtain the following theorem.
Theorem 4.
A = l(n—1)/2] <(n —a+ 1)/2) Pue{r-Ie N2
Za:O a
where (¥) = 0, when k < 0.

From this theorem, we can deduce the number of ways of covering A,
with a given number of triangles and 4-cliques. The result is given in the
following theorem.

Theorem 5. A, can be covered with r triangles and s 4-cliques if and
only if r is even and 3r + 4s = 2n + 2. In this case, the number of ways of
covering Ay, is ((2"—"7;2)/ or/2,

The following corollary is immediate.

Corollary 5.1.

(i) An can be covered with r triangles if and only ifr = 2k and n = 3k—1,
for some positive integer k; and in this case, the number of ways of
covering A, is 2F.

(ii) A, can be covered with s 4-cliques if and only if s = k + 1 and
n = 2k + 1, for some non-negative even integer k; and in this case,
there is only one way of covering A,.

We note that Theorem 5 (and its corollary) can be obtained by direct
combinatorial arguments.
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5. The Matching Polynomial of A,

In this section we will consider decompositions of A, into nodes and edges
only. As mentioned above, such a decomposition is called a matching, and
the resulting polynomial—a matching polynomial. The basic properties of
matching polynomials are given in Farrell [2] and Godsil and Gutman [4).
Formally, the matching polynomial of G; denoted by M(G;w), and the
clique polynomial of G are related as given in the following lemma. (Note:
Some authors define ‘matching’ differently.)

Lemma 5.
M(G;w) = K(G; (w1, w2,0,0,...)).

By applying the result of this lemma to Theorem 3, we obtain the follow-
ing analogous result for matching polynomials in which M(G) is written
for M(G; w).

Theorem 6.
M(Ap) = (w? + 3wa)M(An—1) + 20wiwaM(An—2) — 4wi M(An_3)(n > 2)
with

M (Ao) = w? + we, M(A1) = wi] + 6w?wy + 3w? and
M(A2) = v + 1wiws + 28wiw? + 5uwd.
\
Definition: A defect-d matching is a matching with d isolated nodes.

We shall denote the number of defect-d matchings in G by Ng(G). We
can obtain a recurrence for Ng(Ay) directly from Theorem 6. It is given in
the following corollary.

Corollary 6.1. A, has a defect-d matching if and only if d is even, and in
this case,

Na(An) = Na—2(An-1)+3N4(An-1) +2N4-2(An_2) —4Ng(An_3)(n > 2).

Corollary 6.1 is a useful result. It can be used to obtain explicit formulae
for the coefficients of M(A,), by using appropriate values of d (see Farrell
and Wahid [3]). For example, by putting d = 0, we obtain the following
recurrence for the number of perfect matchings in A,,.

Corollary 6.2.
NO(An) = 3N0(An—l) - 4NO(An—3)(n > 2):
with
No(Ao) =1, No(Ay) =3 and No(Az2) =5.
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Theorem 7.

No(An) = 5 [ — (-1)"**] (2 0).

W =

Proof: Multiply the recurrence by " and sum from n = 3 to infinity. This
yields

> No(An)t™ =3 No(An_1)t" =4 No(An_s)t™.
n=3 n=3 n=3

By simplifying, using the boundary conditions, and writing Np(t) for the
generating function of No(A,), we get

1 —442 1+2t
No)=—g72 = (T+6)(1 —2t)
1 4
—__13 3
T 14t + 1-2¢°
The result follows by extracting the coefficient of {* on the RHS. (m]

The following result was proved in [3] .

Lemma 6. Let G be a graph with p nodes and q edges. Then
() Np(©) =1
(i) Np-2(G) = g, and
(iii) Np_4(G) = (§) — €, where € is the number of paths of length 2 in G.

That is, .
i) -56)

i=1

where v; is the valency of node i in G.

Theorem 8.
(i) Nany2(An) =1
(ii)) Non(A,) =5n+1
(iii) Nan—2(An) =32(5n+1) —20n+ 8 (n > 0).
Proof: A, has 2n 4+ 2 nodes and 5n + 1 edges. Also for n > 0, A, has 4

nodes of valencey 3 and 2n — 2 nodes of valence 5. Hence the result follows
from Lemma 6. m|

Corollary 6.1 can be used to extend the results given in Theorem 8, by
putting d = 2n — 4, 2n — 6, etc.
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6. An Equivalent Tiling Problem

Consider a tiling of the 2 x n rectangle Rz, shown below in Figure 2,

Figure 2

with tiles of the form shown below in Figure 3.

(1) (ii) (1ii) €8] )

Figure 3

We can associate with %3 , a graph G constructed as follows: The nodes of
G will represent the 2n squares in Rz ,. Two nodes u and v will be joined
by an edge if and only if the correspondmg squares have a common corner.

It can be seen that G will be the graph A,,. Also, the graphs associated (in
the same way) with the tiles in Figure 3 will be a node, an edge, an edge,
a triangle and a 4-clique respectively.

It is easy to see that the problem of tiling Ry, with the tiles in Figure 3
is equivalent to that of covering A, with cliques. Thus our earlier results
give the answers to questions about the number of ways of tiling Ry ,, with
different numbers of tiles of the given type. Notice that the tiles represent
all the possible tiles that can be formed by removing cells from Rz 2 (Figure
3(v)).

We note that the tiles in Figure 3 have also been called animals (see
Harary and Palmer [6]). Also, a connection between Ry, and A, was
established by Harary ([5] page 28), in a discussion of the Ising problem.
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