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ABSTRACT. In this paper we derive and present some neces-
sary conditions for the existence of certain combinatorial ar-
rays (called balanced arrays (B-arrays)) with two elements by
making use of some classical inequalities. We discuss briefly
the usefulness of these arrays in combinatorics, and statistical
design of experiments.

1 Introduction and Preliminaries

The concept of balanced arrays (B-arrays) has served to unify various com-
binatorial areas of experimental designs. For example, orthogonal arrays
and incidence matrices of incomplete block designs are B-arrays with suit-
able values of the parameters. Furthermore, B-arrays play a very important
role in the construction and existence of balanced fractional factorial de-
signs (BFF designs) for symmetrical as well as asymmetrical situations.
For ease of reference, we recall the definition of a B-array with two levels
(say, 0 and 1). A B-array T of strength ¢t with two symbols (or levels),
N columns (runs, or treatment combinations), m rows (constraints) and
index set {uo, 11, 42, ..., pe} is merely a matrix T of Size (m x N) whose
elements are the two levels (or symbols 0 and 1) such that in every (t x N)
submatrix Ty (clearly, ¢ < m) of T, each t-vector (i.e., a vector with ¢
symbols in it) o of weight i (the weight of o is the number of 1’s in it; 0 <
i < t) appears as a column of Tp precisely p; times. The constants p;(i =
0,1,2,...,t), m, N, and t are called the parameters of the B-array T, and
sometimes we denote T by BA{m, N, 2,¢; o, ps1, ..., }. This definition
can be easily generalized to a B-array with s symbols. Given the index set
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&' = {po, pu1,. .., pe} of a B-array, we can easily find N by using:

v (e

The existence and construction of B-arrays for an arbitrary index set y' =
{pos 13-+ +» m}, and m is clearly nontrivial for m > t. To construct such
arrays, for a given y’ (and hence N), with arbitrary maximum possible
value of m, is an important problem both in combinatorial mathematics
and statistical design of experiments. Such a problem for Orthogonal arrays
(O-arrays) and B-arrays has been investigated, among others, by Rao [13],
Bose and Bush [3], Seiden and Zemach [18], Rafter and Seiden [12], Saha
and Mukerjee and Kageyama [15], Chopra and Dio$ [8], etc. The necessary
conditions presented in the form of inequalities in this paper should prove
useful in the existence of B-arrays for arbitrary values of m and y’, and also
in obtaining an upper bound on m for a given y'. The readers interested to
gain further insight into B-arrays and their importance to statistical design
of experiments and combinatorics may consult the list of references given
at the end, and also consult further references given therein.

2 Main Results and Applications

In this paper, for the sake of simplicity, we confine ourselves to B-arrays
with ¢ = 4, but the results presented can be extended to general ‘¢’ with
notations and symbols becoming messy and cumbersome. Next, we state
some results which are easy to prove.

Lemma 2.1. Consider a B-array T with t =4 and p' = pg, p1, B2, B3pa)-
Then T is also of strength t’ where 0 < t' < 4.

Remark: Considered as an array of strength ¢’ = 3,2, and 1, its index sets
are (Ao, A1, Az, A3), (Bo, By, B2), and (Co, Cy) respectively, where A; =
B+ pi1(E = 0,1,2,8); B = Aj + Aja1(i = 0,1,2); and G, = B +
Bit1(k=0,1).

Lemma 2.2. Let X; denote the number of (m x 1) columns of weight j
(j =0,1,2,...,m) in a B-array T(m, N, 4, '), then the following results
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must hold:

m
Y X;=N , (2.1)
3=0
Zij = m1C1 (2.2)
Y i2X; = Mz By + miCy (2.3)
D" J3X; = m3As + 3me Bz + miCy (2.4)
D3 X; = mapa + 6maAs + Tma Bz + miCy (2.5)

where m,. is defined to be m(m —1)(m —2)...(m —r 4+ 1).

Note: Clearly results (2.1)-(2.5) express the moments of the weights of the
columns of T in terms of the parameters m and '’ of T..

Theorem 2.1. Consider a B-array T(m x N) witht = 4 and y' =
(10, 141, B2, B3, psa). Then the following holds:
m1 C1 (ma Batmi C1) }
in [(mgA;—l-aszz-HnI‘a’ )?vzrtz ‘Tc‘}gr}taAﬁ-’fma B:r*mlcl)]
mepctTms As+HlOmg Bat2mi Ch
< In(m3Az+3maB2+2m, Cy) +in(maps+6mg Az+8me B2 +2m,C))

— In(myps+Tm3As+11me By +4m,Cy) (2.6)

Proof: In order to obtain (2.6), we consider the following inequality (See
Mitrinovié, [11]):-2182 4 eass < (mtasdaatas) ', 0 for all k. We

a1+az as+aq — a3toatasta,?
replace each ax(k = 1,2,3,4) by 3_ j*X; from (2.2)-(2.5), and taking logs
on both sides of the inequality we obtain (2.6).

Theorem 2.2. Let T be a B-array (m, N,t = 4, 4’). Then we have

ln[N +4m;Cy + 11ma By + TmzAs + M4p4] -nb5
m,Cy Inm,Cy + (m1Cy + m2Bg) ln (mC) + maBa)+
(m3As + 3m2 By + m;Cy) In(m3As + 3me By + m1Ch )+
(maps + 6maAs + Tma B2 + mC) In (mypq + 6maAs+
TmaBs + m1C1)

+ [N +4m1Cy + 11m2B + Tm3 A3 + mapus) (2.7)

Proof: In order to obtain the above result, we make use of the following
inequality (See Mitrinovié, [11]):



where each a; > 0. We specialize above to n = 5, and set ax = 3_ 75 X;(k =
0,1,2,3, and 4). Next we make use of results (2.1)-(2.5), and then take logs
on both sides to obtain (2.7).

Theorem 2.3. For a B-array T(m, N,t =4, 1) to exist, we must have

(m3As+3mzB2+miCy)in miCy+

(mapa+6mgAs+TmaBa+m,Cy) In (m2 B2+mC1)+
(mapa+TmaA3+10my By +2m, Cy) In (mypg+7m)3A3+10me By +2m, Cy)
< (m3As+6mgAz+TmaBa+myC1) In (m3As+3meBa+m Ch)+
(maps+6mgAg+TmaBa+m C)) In (maps+6maAs+Tma B2 +my Cr)+
(maps+7Tm3 A3z +10my Ba+2my Cy) In (me B2 +-2m, C)y) (2.8)

Proof: The above result can be easily proved by using (from Mitrinovié,
(11]) the mequahty aag(ag + ag)®3t™ < aFtag(ay + a2)®+%, a; > 0,
we set a, = 3 75 X; (k= 1,2,3,4). Next, we use (2.2)-(2.5), and take logs
on both sides.

Theorem 2.4. Consider a B-array T with m > 5, t = 4, and with index
set p' = (po, p41, B2, 43, #4). Then we must have

[mapa+7Tm3A3+11meBr+4m,Cy) e

m) C1(maBa+mC)(maps+TmzAz+10ma By +2mCi H-
In |(m3A3+3maBy+miC1)(mapq+6msAs+TmeBy+miCy)
(m2B2+2m,Cy)
> (maps+TmsAs+11maBa+4m,Cy) iIn (m4p4+7n3A3+11'szz+4m;C1)+
(mypq+Tm3As+11meBy+4m,Cy) e
InmC +ln(m232+m101)+
In(maAs+3ma B2 +m,C1)+ In(maps+6mz A3 +7me Ba+m 1 Cy)

—2[m,Cy Inm,Cy+(meB2+myCy) In (maBa+m1Ci H+
(m3As+3m2By+m,C1) In(m3As+3me B2 +m1Ch)+(mapg +6ms Ast
TmaBa+m)Cy) In (myps+6maAs+TmeBa+my Cy )] (2.9)

Proof: In order to derive (2.9), we consider the following inequality (See
Mitrinovié, [11])

‘ a
(ajaza3 + a1aza4 +aya304 + 020304)Z‘=' *> (Z ai)z: .
(a¢1u+aa+a4—al )(a;“"'“""“‘ —aa )(agx +na+¢u—aa)(aan +az+aa—¢u)
where each a; > 0. In this inequality set ax = E " 0J*X;, k=1,2,3, and

4. Using (2.2)-(2.5), taking logs on both sides we obtain (2.9) after some
simplification.
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Some observations

1. It must be noted that the inequalities (2.6) through (2.9) are necessary
conditions for the existence of B-arrays for given values of m and y’. If one
or more of these conditions are contradicted for a certain value of m (say,
m = k + 1), then k is an upper bound for the number of constraints for
the array T'. Since (2.6)-(2.9) are merely necessary existence conditions,
the array T with the given ' and m = k may or may not exist. In this
sense, the results presented here could be interpreted as results on the non-
existence of arrays. Nonetheless, the results given here provide us with
useful information on an upper bound for the number of constraints of T'.

2. The inequalities (2.6)-(2.9) are merely polynomial functions and/or log-
arithms of the polynomial functions of m and (ue, ss1, p2, p3, and p4). For
a given y/, the above inequalities (2.6)-(2.9) merely involve the number of
constraints m. It is not difficult to prepare a computer program to check if
(2.6) through (2.9) are satisfied for a given # = (uo, p1, 42, p3, pa) and for
every m > 5. The program is terminated as soon as we get a contradiction
for a value of m. If a B-array T with a given value of the index set ' does
not exist for a certain value of m = k (say), it is quite obvious T' will not
exist for any m > k+ 1.
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