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ABSTRACT. All Williamson matrices in this Note are symmet-
ric circulants. Eight non-equivalent sets of Williamson matrices
of order 25 are known. They were discovered by Williamson (2
sets), Baumert and Hall (2 sets), and Sawade (4 sets). Sawade
carried out a complete search and reported that there are ex-
actly eight non-equivalent such sets of matrices. Subsequently
this was confirmed by Koukouvinos and Kounias. It is surpris-
ing that we have found two more such sets. Hence there are ten
non-equivalent sets of Williamson matrices of order 25.

Only three non-equivalent sets of Williamson matrices of or-
der 37 were known so far. One of them was discovered by each
of Williamson, Turyn, and Yamada. We have found one more
such set.

1.

Let n = 2k + 1 > 0 be an odd integer and S = {1,2,...,k}. Let S;,S_;
(i = 1,2,3,4) form a partition of S into 8 subsets (possibly void). Denote
by R the group ring ZC,, where C,, = (z) is a cyclic group of order n with
generator z. Set w; = =/ + z"~7 € R. We shall refer to the equation

4
da+2) wi-2 ) w)=4n (1)
i=1

JES: JES~;

as the Williamson equation. Two solutions of this equation are said to be
equivalent if one can be obtained from another by applying an automor-
phism of the group C,, and/or by permuting the indices 7 of the sets Si;.
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By applying the ring homomorphism R — Z, z+ 1, to Eq. (1) we obtain

4
D (1+41S:| - 4I5_])? = 4n. 2)

i=1

While it is well known that 4n is a sum of four odd squares, and so Eq. (2)
has a solution, it was an open question (until recently) whether Eq. (1) has
a solution for every odd = > 0. It appears now that it has none for n = 35

(see [3]).

2.

An m by m matrix A whose entries are +1 and satisfies AAT = ml,,, (AT
is the transpose of A and I, is the identity matrix) is called a Hadamard
matriz. Every solution of Eq. (1) gives rise to a Hadamard matrix W of
size 4n. Indeed, such a solution can be used to construct four symmetric
circulant matrices A, B, C, D of order n satisfying A2+ B2+ C2? 4 D? =
4nly, known as Williamson matrices. For details we refer the reader to [4).
By inserting such four matrices in the Williamson array:

A B C D
B A -D C

- D A -B| 3)
D -C B A

W =

one obtains a Hadamard matrix of order 4n.

R.J. Turyn (8] has found a solution of the Williamson equation when
4n = 2(q + 1) where q is a prime power = 1 (mod 4). Another proof of
the same result was given by A.L. Whiteman [9]. Furthermore Whiteman
discovered another infinite class of solutions of Eq. (1) (10], namely for
n =p(p+1)/2 where p is a prime = 1 (mod 4).

3‘

In this section n = 25. Two non-equivalent sets of Williamson matrices of
order 25 (No. 1 and 8 in Table 1) were found by J. Williamson himself [11].
Two additional such sets (No. 5 and 6 in Table 1) were discovered later by
L. D. Baumert and M. Hall Jr. [1]. Subsequently K. Sawade [7] carried out
a complete search for Williamson matrices of order 25 and found four new
sets (No. 4, 7, 9, 10 in Table 1). C. Koukouvinos and S. Kounias claimed
in (5] that they also carried out an exhaustive search for these matrices
and confirmed the findings of K. Sawade that there are only eight non-
equivalent sets of Williamson matrices of order 25. While testing one of
our programs we found, to our surprise, two additional non-equivalent sets
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of Williamson matrices of order 25. Then we carried out a complete search
for these matrices. Our result is that there are exactly ten non-equivalent
sets of Williamson matrices of order 25. For the sake of completness, we
give in Table 1 below all ten solutions of Eq. (1). The new solutions are
No. 2 and 3.

#18 |S-1]S2 |S—2|Ss |S-s |Ss [S-4
11,9 |6 [7,12]8 |25 |4 10,11 |3

2 (1,9 [6 [712|8 |[35 |11 4,10 |2

3 (1,23 |69 |10 |711 |4 812 |5
4|5 |10 [6,01|2 [4,9,12]|7,8 1,3

5 612 (235789 |1,4,10,11
63 |7 [4 |1 |8 9,10,11|6 2,5,12
713 |9 |4 |12 1,7 |68 [2,5,10,11
8 {6 [11 |3 [1,12 (4 79 |25,10]8

9 [2,10{1,8 5 |91 [347 |6,12

10 1,2 [389]7,11 |46,12 [5,10

Table 1: Solutions of Eq. (1) for n =25

There are four different decompositions of 100 as a sum of four odd
squares. The first three solutions in Table 1 are associated via (2) with the
decomposition 52 452 + 52 + 52, the fourth with 12 + 52 + 52 4 72, the next
three with 12+ 12 472 4+ 72, and the last three with 12 + 32 4 32 + 92,

4.

In this section n = 37. J. Williamson [11] found the first set of Williamson
matrices of order 37 (No. 1 in Table 2). There is also a set of Williamson
matrices of this order (No. 2 in Table 2) that belongs to the infinite series
discovered by Turyn [8]. In 1979, Yamada [12] carried out a complete search -
for a special class of Williamson matrices of order 37 and found one more set
of Williamson matrices of this order (No. 3 in Table 2). We have recently
found a fourth such set (No. 4 in Table 2).

#|5:1|5-1 |52 |S-2  |Ss | S-a |Ss  [S-4

1 5,7 1,2,6,121 4,13 9,10,14,17 |3,18 |8,11,15,16
2 1,3,5,10,17,184,9,12,15,16|11,142,6,7,8,13
3 |16]29,10(513,18|6,8 |15 12,1417 {34,7 | 1,11

4 3,18 |2,15,17|13,14 |9,12,16 4,10 8,11 |1,5,6,7

Table 2: Known solutions of Eq. (1) for n = 37

The first solution is associated with the decomposition 12472472 +72 of
148, the second with 12+124524112, and the last two with 52452 4724-72,
There are two more decompositions of 148 as a sum of four odd squares
namely, 32 + 32 + 32 + 112 and 32 + 32 + 72 4 92, We have carried out a
complete search for the former and did not find any solutions.
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5.

An exhaustive computer search for non-equivalent solutions of Eq. (1) had
been carried out by Baumert and Hall [1] for odd n < 23, by Sawade [7]
for n = 25 and 27, by Koukouvinos and Kounias for n = 9, 15, 21, 25,
27, 33, and 39 [5, 6], and by the author for all the values mentioned above
and for n= 29, 31, and 35 [2, 3]. We have reported elsewhere [3] about the
discrepancies that we encountered in the cases n = 33 and 39.

Our computer program is straightforward : we essentially generate all
possible partitions satisfying Eq. (2), and then test whether we have a so-
lution or not. Some shortcuts are possible due to the fact that two solutions
of Eq. (2) may differ only in the ordering of |Si;|’s. As we have tested our
program on many cases, we are confident that our results are complete as
stated. On the other hand, it is very difficult to claim that any computer
program, consisting of several hundred lines of code, is bug-free, and so
there is still a small probability of error.

6.

We thank the referee for her/his comments, and in particular for the sug-
gestion to conform to the current usage of the term Williamson matrices.
As we have adopted this suggestion, we should point out that in all of our
references, except [6] and the original paper of Williamson [11], this term
is used in the older sense, i.e., it refers to the Hadamard matrix (3).
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