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ABSTRACT. Let g and f be integer-valued functions defined on
V(G) with f(v) > g(v) > 1 for all z € V(G). A graph G is
called a (g, f)-graph if g(v) < do(v) < f(v) for each vertex
v € V(G), and a (g, f)-factor of a graph G is a spanning (g, f)-
subgraph of G. A graph is (g, f)-factorable if its edges can
be decomposed into (g, f)-factors. The purpose of this paper
is to prove the following three theorems: (i) If m > 2, every
((2mg+2m—2)t+(g+1)s, 2mf—2m+2)t+(f —1)s)-graph G
is (g, f)-factorable. (ii) Let g(z) be evenand m > 2. (1) If m is
even, and G is a ((2mg+2)t+(g+1)s, 2mf—-2m+4)t+(f—1)s)-
graph. Then G is (g, f)-factorable; (2) if m is odd, and G is a
((2mg+4)t+(g+1)s, (2mf—2m+2)t+(f—1)s)-graph. Then G
is (g, f)-factorable. (iii) Let f(z) beevenand m > 2. (1) If m is
even, and G is a ((2mg+2m—4)t+(g+1)s, (2mf—2)t+(f—1)s)-
graph, then G is (g, f)-factorable; (2) if m is odd, and G is a
((2mg+2m—2)t+ (g+1)s, (2mf — 4)t + (f — 1)s)-graph, then
G is (g, f)-factorable, where ¢ and m are integers and s is a
nonnegative integer.

1. Introduction

All graphs under consideration are undirected and finite. Multiple edges
are allowed but loops are not.

Let G be a graph with vertex set V(G) and edge set E(G). An edge
joining vertices u and v is denoted by uv. For a vertex v € V(G), we
write dg(v) for the degree of v in G. Let g(x) and f(z) be integer-valued
functions defined on V(G) with f(z) > g(z) > 1 for all z € V(G). A
(g, f)-factor of a graph is a spanning (g, f)-subgraph of G. The graph G
is said to be (g, f)-factorable if E(G) can be partitioned into (g, f)-factors
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F\,F,,....F, of G, and {F\, F>,...,F,} is called a (g, f)-factorization of
G.

Given a subset X C V(G), we denote by G — X the subgraph obtained
from G by deleting the vertices in X together with the edges incident to
vertices in X. For E' C E(G), G— E’ denotes the graph obtained from G by
deleting the edges in E’. If X and Y are disjoint subsets of V(G), we write
E(X,Y)={zy € E(G) :z € X,y € Y} and e(X,Y) = |E(X,Y)|. The
necessary and sufficient condition that a graph has (g, f)-factor was given
by Lovasz [1} in 1970. Then Kano studied some sufficient condition [2] for an
n-edge connected graph to have (g, f)-factor; Akiyama and Kano survived
some results [3] regarding to the factors and factorizations of graphs in
1985. Recently, Cai discussed [a, b]-factorizations [4] of some graphs, Liu
obtained some results [6] on (g, f)-factorizations. The purpose of this paper
is to prove the following three theorems.

Let ¢t and m denote positive integers and s denote a nonnegative integer.
Let g(z) and f(z) be integer-valued functions defined on V(G) with f(z) >
g(z) > 1 for all z € V(G).

Theorem 1. If m > 2, every ((2mg +2m —2)t + (g + 1)s, (2mf — 2m +
2)t + (f — 1)s)-graph G is (g, f)-factorable.

Theorem 2. Let g(z) be even and m > 2. (1) If m is even, every ((2mg+
2)t+(g+1)s, (2mf —2m +4)t+ (f — 1)s)-graph G is (g, f)-factorable; (2)
if m is odd, every ((2mg+4)t+(g+1)s, (2mf —2m+2)t+ (f —1)s)-graph
G is (g, f)-factorable.

Theorem 3. Let f(x) be even and m > 2. (1) If m is even, every ((2mg +
2m —4)t +(g+1)s, (2mf —2)t+ (f —1)s)-graph G is (g, f)-factorable; (2)
if m is odd, every ((2mg+2m —2)t+(g+1)s, (2mf —4)t+ (f —1)s)-graph
G is (g, f)-factorable.

In order to prove these theorems, we need the following Lemmas:

Lemma A. [2] Let G be an n-edge-connected graph (n > 0), 8 be a real
number such that 0 < 0 <1, and g and f be two integer-valued functions
defined on V(G) such that g(v) < f(v) for all v € V(G). If one of (Ia),
(Ib), (II) and one of (IIla), (IIIb), (Ilic), (I11d), (I1le), (IIIf) hold, then G
has a (g, f)-factor.

(Ia) g(v) £ 8dg(v) < f(x) for all v € V(G).
(Ib) 3 .cv(gylmax0,g(v) — Odg(v) + max 0, bdg(v) — f(v)] < 1.

(II) G has at least one vertex v such that g(v) < f(v); or g(v) = f(v)
for all v € V(G) and ZzEV(G) f(v) =0 (mod 2).

(Illa) nf >1andn(l —0)>1.
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(IlIb) {dc(v) : g(v) = f(v), v € V(G)} and {f(v) : g(v) = f(v), v €

V(G)} both consist of even numbers.

(IIlc) {dg(v) : g(v) = f(v), v € V(G)} consist of even numbers, n is
odd, (n+1)0 > 1, and (n+1)(1 —8) > 1.

(IIId) {f(») : g(v) = f(v), v € V(G)} consist of even numbers and
I(1-0)>1, wherel € {n,n+1} and I =1 (mod 2).

(Ille) {dc(v) : g(v) = f(v), v € V(G)}, and {f(v) : g(v) = f(v), v €
V(G)} both consist of odd numbers and In. > 1, wherel € {n,n+1}
and ! =1 (mod 2).

(IIIf) g(v) < f(v) for every v € V(G).

Lemma B. [2] Let a(z) and b(z) be integer-valued functions defined on
V(G), and n is a positive integer. Then graph G is (2a(z), 2b(x))-factorable
if and only if G is a (2a(z)n, 2b(z)n)-graph.

In the following proofs we always assume that the graphs concerned are
connected, for otherwise we consider each of its complements.

2. Proofs of the Theorems

Lemma 1.1. If m > 2, every (mg + m — 2,mf — m + 2)-graph G with at
most one vertex u of degree mg(u) + m — 2 and with at most one vertex w
of degree mf(w) — m + 2 is (g, f)-factorable.

Proof: We may assume that g(z) < f(z) for some » € V(G). Since if
g(x) = f(z) for all z € V(G), then m =2, G is a (2f,2f)-graph with two
vertices, which implies that the lemma holds. We apply induction on m.

When m = 2, G is a (2g,2f)-graph with at most one vertex u of degree
2g and with at most one vertex w of degree 2f. Obviously, the vertex
set {z : 29 < dg(z) < 2f} is not empty because G is loopless. For each
z € V(G), define

p(z) = max{g(z), de(z) — f(=)}
q(z) = min{f(z), dc(z) — 9()}

Then

2p(z) < do(z) < 29(x) (1.1)
p(z) = q(x) if and only if dg(z) = 29(z) or 2f(z) (1.2)

By takingn=1and 8 = -;-, then (Ta), (II), and (IIlc) of Lemma A hold.
Hence G contains a (p, q)-factor F. F is a (g, f)-factor. Set F' = G—E(F).
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Then F’ also is a (g, f)-factor. Therefore, Lemma 1.1 is proved when m = 2.
Suppose that m > 3 and that the assertion is true for all smaller values of
m. For each z € V(G), put

?(z) = max{g(2), de(z) ~ [(m — 1) f(z) - m + 2]}
q'(z) = min{f(z), dg(z) — [(m — 1)g(z) + m - 2]}

If G has vertex u with degree mg(u) + m — 2, we modify ¢'(u) = ¢'(u) + 1;
if G has vertex w with degree m f(w) —m+2, we modify p’(w) = p’(w) — 1.
Then

mp'(z) < dg(z) < mq'(z) (1.3)
?'(z) # ¢'(z) for each z € V(G) (14)

Set n=1, and @ = L, then (Ia), (II) and (IIIf) of Lemma A holds. So G
contains a (p’, ¢')-factor H. Clearly, H is a (g, f)-factor. It is easy to prove
that remaining subgraph G- E(H) isa ((m—1)g+m—3, (m—1)f —m+3)-
graph with at most one vertex u of degree (m — 1)g +m — 3 and with at
most one vertex w of degree (m — 1)f — m + 3. Therefore, by induction

hypothesis, G — E(H) is (g, f)-factorable. The proof is completed.

The following result is proved in [5):
Lemma C. [5]: Let G be a graph, and m be a positive integer, then every
(mg+m —1,mf —m + 1)-graph is (g, f)-factorable.

Lemma 1.2. Every (2mg + 2m — 2,2mf — 2m + 2)-graph G is (g, f)-
factorable.

Proof: For each z € V(G), define

p(z) = max{mg +m — 1,dg(z) — (mf —m+1)}
g(z) = min{mf —m +1,dg(z) — (mg+m—1)}

If G has vertices with degre 2mg + 2m — 2, then we choose one such vertex
z; and modify p(z;) = p(z;)—1; if G has vertices with degree 2m f —2m+2,
then we choose one such vertex z2 and modify ¢(z2) = g(z2) + 1. Then

2p(x) < de(z) < 2¢(z) for each z € V(G)

p(z) = q(z) if and only if dg(z) = 2mg + 2m — 2 or 2mf — 2m + 2 but
z # z1,z2. By a similar argument used in the proof of Lemma 1.1, we can
show that G has a (p, g)-factor F. Clearly, F is a (mg+m—2,mf —m+2)-
factor with at most one vertex z; of degree mg(z;) + m — 2 and with at
most one vertex zz of degree mf(z2) —m+2. Set G' =G - E(F),Gisa
(mg+m —1,mf —m +1)-graph, then both F and G’ are (g, f)-factorable
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by Lemma 1.1 and Lemma C. Therefore G is (g, f)-factorable. The Lemma
is proved.

Now we prove Theorem 1 by induction on s.

If s =0, then G is (2mg+2m -2, 2m f —2m+ 2)-factorably by Lemma B.
According to Lemma 1.2, every (2mg+2m —2, 2m f —2m+ 2)-graph is also
(g, f)-factorable. Therefore, Theorem 1 is proved when s = 0. Suppose the
assertion is true for all smaller values of s. For each v € V(G), define

9'(x) = max{g(z),de(z) - [(2mf(z) — 2m + 2)t + (f(z) — 1)(s — 1)]}
f'(z) = min{f(z), do(z) — [(2mg(z) + 2m — 2)t + (f(z) + 1)(s - 1))}

Let b
b= mex @A Gt —om T 2 b

Then it follows easily from the inequality (2mg + 2m — 2)t 4 (g + 1)s <
(2mf—2m+2)t+(f—1)sthat g+1 < f, we prove g'(z) < Mdg(z) < f'(z)
for every z € V(G).

We first show that g'(z) < Adg(z).

1. Assume that g’(z) = g(z), we need only to prove A > (2m9+2m_~q2)‘+(g+ VG
which is equivalent to

b g
> :
(2mb—2m +2)t +bs = (2mg+2m —2)t + (g + 1)s

Simplify the form mentioned above, we have
2bt(m — 1) + bs > 2gt(1 — m).
Clearly, the above mentioned form is right as m > 2. Then

g
(2mg+2m —2)t + (g + 1)s

= 9(z) = ¢'(a).

rg(z) > x [(2mg + 2m — 2)t + (g +1)s]

2. Assume that g'(z) = dg(z) - [(2mf(z) — 2m+2)t+ (f(z) — 1)(s—1)],
we can easily prove that

f-1
Az @mf-2m+2)t+ (f-1)s’
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by b > mf. Therefore

f-1

Az @mf-2m+2)t+(f—-1)s

@mf-2m+2)t+(f —1)(s—1)

@2mf -2m+2)t+ (f—1)s

_(@mf-2m+2)t+(f-1)(s—1)
dg(z)

_ de(z) — [(2mf —2m+2)t + (f - 1)(s - 1)]

da(z)

=1-

>1

g'(z)
2 4a(@)’

Then g'(x) < Adg(z). So g'(z) < Adg(z) for every z € V(G) by 1 and 2.
It follows that Adg(z) < f'(z) with similar method.
Thus

g'(z) < f'(z) for every z € V(G) and
g'(z) < Ade(z) < f'(z)

Taking » = 1; and @ = ), then (Ia), (II), and (IIIf) of Lemma B hold. So
G contains (g, f’)-factor F, F is a (g, f)-factor. The remaining subgraph
G-E(F)isa ((2mg+2m—2)t+(g+1)(s-1), @mf=2m+2)t+(f—-1)(s—1))-
graph. By induction hypothesis G — E(F) if (g, f)-factorably. Thus G is
(g, f)-factorable.

Proof of Theorem 2: Since the proof is very similar to that of Theorem
1, we only give an outline of the proof and leave the details to the reader.

Lemma D. [5] Let m be a positive integer. (1) If g(x) is even, and G is

a (mg, mf — m + 1)-graph, then G is (g, f)-factorable; (2) If f(z) is even,
and G is a (mg +m — 1, mf)-graph, then G is (g, f)-factorable.

Lemma 2.1. Let g(x) be even and m > 2. (1) If m is even, and G is
(mg, mf — m + 2)-graph with at most one vertex of degree mg, then G is
(g, f)-factorable. (2) If m is odd, and G is a (mg + 1, mf — m + 2)-graph
with at most one vertex u of degree mg(u) +1 and with at most one vertex
w of degree mf(w) — 2m + 2, then G is (g, f)-factorable.

Proof: (1) Let m = 2r, where r is a positive integer. Put

p(z) = max{rg,dg(z) — (rf —r + 1)}
4(z) = min{rf — r +1,da(z) - rg}
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Case 1: If the vertex set {x € V(G) : mg < dg(z) < mf —m +2} # 0,
then we have

2p(z) < dg(z) < 29(x) (2.1)
p(z) = q(z) if and only if dg(z) = mg or mf —m+2 (2.2)

By a similar argument used in thé proof of Lemma 1.1, we can show that
G has a (p, g)-factor F. Clearly, both F and G — E(F) are (rg,vf —r+1)-
graph. So G is (g, f)-factorable by Lemma D.

Case 2: If the vertex set {z € V(G) : mg < dg(z) < mf—-m+2} =0,
we can choose one such vertex zo with degree mf (z0) — m+ 2, and modify
P(zo) = p(zo) — 1. Then for each z € V(G), we have

2p(z) < de(z) < 2q(z)

p(z) = q(z) if and only if dg(z) = mg or mf — m + 2 but = # zo.

So G has a (rg, rf —r+1)-factor F using a similar method of Lemma 1.1,
and F is (g, f)-factorably by Lemma D. Define G' = G — E(F), then G’ is
a (rg,rf —r +2)-graph with at most one vertex u of degree rg(u) and with
at most one vertex zp of degree rf(zo) — r + 2. Moreover, the vertex set
{re V(@) :rg<de(z) <rf-r+2} ={z € V(GC’) : dg/(z) =rf—r+1}.
Now we prove that G’ is (g, f)-factorable by induction on r as follows.

When » = 2, G’ is a (2g, 2f)-graph with at most one vertex u of degree
2g(u) and with at most one vertex xo of degree 2f. Clearly, the assertion
is right by the Lemma 1.1. Suppose that » > 3 and that the assertion is
true for all smaller values of r, for each z € V(G’), set

P'(z) =max{g(z),do/(z) - [(r - 1)f(z) -7 + 21}
¢'(z) = min{f(z), de'(z) - (r — 1)g(x)}.

If G’ has vertex zo with degree rf(xo) — 7 + 2, then we modify p'(xo) =
p'(zo) — 1. Thus we have

p'(z) < dgi(x) < 7¢'() (2.3)
and p’(z) = ¢’(x) if and only if dg/(z) = rg(z)
(2.4)

Taking n = 1, and 6 = 2, then (Ia), (II) and (IIIb) of Lemma A hold.
Therefore G’ has a (p/, ¢’)-factor F’, F’ if a (g, f)-factor. Set F" = G’ —
E(F'). Then F” is a [(r — 1)g, (r — 1)f — r + 3]-graph with at most one
vertex u of degree (r — 1)g(u) and with at most one vertex xo of degree
(r = 1)f(x0) — r + 3. Thus F” is (g, f)-factorable by induction hypothesis.
So G is (g, f)-factorable.
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Proof: (2). Define

p(z) = max{g(z),do(z) — [(m — 1)f(z) —m + 3]},
q(z) = min{f(z), do(z) - [(m — Dg(z) - )]}

If G has vertex z; with degree of mg + 1, we modify q(z,) = g(z1) + 1.
Then for each =z € V(G) we have

p(z) # q(z)
mp(z)Sda(z) < me(z)

The rest of the proof is very similar to the proof of Lemma 1.1. Here
we omit it. SO G has a (g, f)-factor F. Set G’ — G — E(F), then G’ is
a [(m — 1)g,(m — 1)f — m + 3]-graph with at most one vertex of degree
(m — 1)g, and m — 1 is even, therefore G’ is (g, f)-factorable by Case 1.
Thus G is (g, f)-factorable.

Lemma 2.2. Let g(z) be even and m > 2. (1) If m is even, every (2mg +
2,2mf —2m+4)-graph G is (g, f)-factorable; (2) if m is odd, every (2mg+
4,2mf — 2m + 2)-graph G is (g, f)-factorable.

Proof: Here we omit the proof of being similar to that of Lemma 1.2.

We still use the method of induction to prove Theorem 2. If s = 0, then
Theorem 2 holds by Lemma B and Lemma 2.2. Suppose that s > 1 and
that the assertion is true for all smaller values of s. For each z € V(G),
put

9'(z) = max{g(z), dg(z) - [(2mf(z) - 2m + 4)t + (f(=) — 1)(s - 1)} },
f'(z) = min{f(z), de(z) — [(2mg(z) + 2)t + (9(=) — 1)(s — 1)}}.

Let

b
b= zg\lla()é) mf(z), A= (2mb —2m +4)t + bs”

Then it follows easily from the inequality (2mg+ 2)t + (g + 1)s < (2mf —
2m +4)t + (f — 1)s that g+ 1 < f, we can derive ¢'(z) < Adg(z) < f'(z)
using the similar method of Theorem 1. Here we omit the detailed proof.

Therefore G contains a (g’, f’)-factor F, F is a (g, f)-factor, and also,
G—-E(F)isa[(2mg+2)t+(g+1)(s—1), Cmf—-2m+4)t+(f —1)(s—1)}
graph. So Theorem 2 (1) is proved by induction hypothesis. Theorem 2 (2)
can be proved by the same method. We omit it.

Finally, we give a brief proof of Theorem 3.

At first, we give two lemmas whose proof is omitted being very similar
to that of Lemma 2.1 and Lemma 2.2, respectively.
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Lemma 3.1. Let f(z) be even and m > 2. (1) If m is even, every
(mg + m — 2, mf)-graph G with at most one vertex u of degree mf(u) G
is (g, f)-factorable; (2) If m is odd, every (mg + m — 2, mf — 1)-graph G
with at most one vertex w of degree mg{w) + m — 2 and with at most one
vertex z of degree mf(z) — 1 is (g, f)-factorable.

Lemma 3.2. Let f(z) be even and m > 2. (1) If m is even, every
(2mg+2m —4,2mf —2)-graph G is (g, f)-factorable; (2) If m is odd, every
(2mg + 2m — 2,2mf — 4)-graph G is (g, f)-factorable.

The proof of Theorem 3 is similar to that of Theorem 2. here we omit it.
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