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ABSTRACT. A graph G is called k-critical if x(G) = k and
x(G - €) < x(G) for each edge e of G, where x denotes the
chromatic number. It was conjectured in [4] that any k-critical
graph G of order greater than k has an edge which is contained
in at most one complete (k — 1)-subgraph (¥ > 4). In this
paper, we prove the conjecture for k < 7. Consequently we
obtain that the number of complete (k — 1)-subgraphs of any
k-critical graph G of order n > kisat most n —k+3if k< 7.

1 Introduction

We use standard notation. All graphs considered are finite, undirected and
have neither loops nor multiple edges. A graph G is called k-critical if
x(G) = k and x(G — e) < x(G) for each edge e of G, where x denotes the
chromatic number. For any graph G, we use Tx—1(G) to denote the set
of all complete (k — 1)-subgraphs of G and ¢x_1(G) to denote the number
of complete (k — 1)-subgraphs of G; namely, tx—1(G) = |Tk—1(G)|. Gallai
conjectured that tx_1(G) < n for any k-critical graph G of order n. The
case k = 3 is trivial. The case k = 4 was proved by Stiebitz [3]. In 1992,
Abbott and Zhou [1] proved Gallai’s conjecture for all k > 5. In fact, they
proved the following stronger result. The case k = 4 for planar graphs was
also obtained by Koester [2].

Theorem A. (Abbott and Zhou [1]) Let G be a k-critical graph of order
n (k > 4). Then tx_1(G) < n and the equality holds if and only if k=n
and G = Kk.

At end of their paper, Abbott and Zhou posed the following conjecture.

Conjecture 1: For any k-critical graph G of order n > k, tx-1(G) <
n—k+3 (k>4).
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In trying to solve this conjecture, the present author raised a stronger
conjecture in [4].
Conjecture 2: Any k-critical graph G of order greater than k has an edge
which is contained in at most one complete (k — 1)-subgraph (k > 4).
Conjecture 2 is stronger than Conjecture 1 because we have

Theorem B. (Su [4]) Let G be any k-critical graph of order n > k (k 2 4).
If G has an edge that is contained in at most one complete (k—1)-subgraph
of G, then the number of complete (k — 1)-subgraphs of G is at most
n—k+3,ie,t_1(G)<n-k+3.

The main result of this paper is the following theorem that provides a
positive answer to Conjecture 2 for k < 7.

Theorem 1. Let G be any k-critical graph of order n > k andlet 4 < k <
7. Then there exists an edge e of G such that e is contained in at most one

complete (k — 1)-subgraph of G. Consequently, the number of complete
(k — 1)-subgraphs of G is at most n —k + 3, ie., t,1(G) <n—k+3.

2 Proofs

Lemma 2. Let G be a r-chromatic graph satisfying the following condi-
tions:

(i) every vertex of G is contained in at least two complete r-subgraphs,
and

(ii) G has at most r complete r-subgraphs.

If r < 5, then there exists an edge e = zy such that any proper r;coloring
of G — e assigns different colors to = and y. (We call such edge e a required
edge).

Proof: If r < 3, there is nothing to prove since no such graph G exists.
The case r = 4 is easy. So here we consider only the case r = 5.

Let r = 5 and let G be a 5-chromatic graph satisfying (i) and (ii). Let
|G| = n. Then by (i) and (ii),

2n < E number of complete 5-subgraphs containing v < 52,
veG

Hence n < 12. Suppose that the lemma is false and that G is a counterex-
ample.

Claim 1. G contains no two complete 5-subgroups Hy and Hz such that
H, N H, is a complete 4-subgraph.
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Suppose |H, N Hz| = 4. Let V(H,) — V(Hy N Ha) = {z} and V(H;) -
V(H N H3) = {y}. Then c(z) = c(y) for any proper 5-coloring c of HyUH,.
Hence, for any u € V(G) — V(H;) UV (Hz), ux and uy cannot be both in
E(G) (otherwise both uz and uy are required edges of G). Since z is
contained in two complete 5-subgraphs, there exists a complete 5-subgraph
Hs # H; such that z € Hj. Similarly, there exists a complete 5-subgraph
H, # H; such that y € Hy. Let W, = V(H3) - V(H]) and W) = V(H4) -
V(Ha2). Then Wy N W = @ (w € W; N W, would imply that both wz and
wy are in E(G)). Now, since every vertex of W) U W5 is contained in two
complete 5-subgraphs and since G has at most five complete 5-subgraphs,
Wi U W, is contained in a complete 5-subgraph Hg. Clearly z,y ¢ Hs.
Let c be a proper 5-coloring of G. Then there exists z € Hg such that
c(2) = e(z) = c(y). So 2 ¢ W UWL,UV (H,)UV(H,). It follows z ¢ H; for
each i € {1,...,4}. However, by (i) 2 is contained in at least two complete
5-subgraphs. Hence there exists Hg ¢ {H\, ..., Hg} such that v € Hg. This
implies that G has six complete 5-subgraphs, contrary to (ii). Claim 1 is
proved.

Claim 2. G contains no two complete 5-subgraphs H, and Hs such that
H; N H, is a triangle.

Suppose that Hy N Hj is a triangle. Let V(H, N Hp) = {21, 20,23}
V(Hy) - V(H,N Hp) = {z1,22}, and V(Hz) - V(H, N Hp) = {y1,2}. We
distinguish two cases.

Case 1. Both z; and z; (or both y; and y;) are contained in a complete
5-subgraph Hs # Hy (or Hy # H5).

W.lo.g. we suppose z;,z2 € Hs. Clearly y;,y2 ¢ Hs. (otherwise
G would contain a Kg). Hence |V(H3) — V(H,) UV (H)| = |V(Hs) —
V(Hl)l 2> 2 by Claim 1. Say {ul,ug} Cc V(Ha) - V(Hl) U V(Hz). Since
{c(31), c(y2)} = {c(z1), c(z2)} for any proper 5-coloring ¢ of Hy U Hy, we
have uiy; ¢ E(G) for 1 < i, j < 2 (otherwise u;y; would be a required
edge of G). By (i), y1 € Hy and u; € Hj for some complete 5-subgraphs
Hy and Hj of G with Hy, Hs ¢ {H, H2, H3}. Since uyy; ¢ E(G), we have
H, # Hs. By (ii) Hy, Hs,...,Hs are all the complete 5-subgraphs of G.
Hence y> € Hy and w; € Hy (by (i)). So |V(H4) — V(H) U V(H,)| =
|V(Hs) — V(Hz)| > 2 by Claim 1. Say {v1,v2} C V(Has) ~ V(H,)UV(H2).
Since both v; and v, are contained in two complete §-subgraphs, it follows
that v1,v2 € Hs. Let c be any proper 5-coloring of G. W.l.o.g. we as-
sume {c(z1),c(22), ¢(23)} = {1,2,3} and {c(z1), ¢(z2)} = {c(3),c(22)} =
{4,5}. Then {c(u1), c(uz), c{v1),c{v2)} € {1,2,3}, contrary to the fact
{u1,u2, ”1)”2} C V(HS)-

Case 2. z) and z3 are contained in distinct complete subgraphs Hs and
Hy with H3 # H,, Hy # H,, and similarly for 3, and y,.
Since G has at most five complete 5-subgraphs, we may assume w.l.o.g.
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that z,71 € Hs. Then zoy1, 32z ¢ E(G) since G is 5-colorable. Also,
z2y2 ¢ E(G); otherwise it would be a required edge of G. Let Hy (# H3) be
a complete 5-subgraph containing y2. Then Hjy,..., Hg are all the complete
5-subgraphs of G by (ii). Suppose V(Hs) — V(H)UV(H3) # 0. Let u €
V(H3)-V (H,)UV(H;). Thenu € Hy oru € Hp by (i). So uza, uy; € E(G)
or uys, uzr; € E(G). Hence uzy or uy; is a required edge of G. Therefore
we have V(Ha) c V(Hl) u V(HZ)' Hence V(H3) = {zl! Y1, 21, 22, z3} so
that Hs N H, is a complete 4-subgraph of G. This is impossible by Claim
1 and so Claim 2 is proved.

Claim 3. G contains no two vertex-disjoint complete 5-subgraphs.

Suppose that H; and H, are two complete 5-subgraphs of G such that
V(Hi)NV(Hy) =0. Let V(H,) = {z1,...,z5} and V(H2) = {31,...,35}.
Note that G has at most five complete 5-subgraphs. Hence, by (i) and
Claims 1 and 2, there exists a complete 5-subgraph Hz of G such that
|V(Hs) N V(H))| = 2 = |V(H3) N V(H2)|, say V(H3) = {21, 22, 1,32, u}.
Since u is contained in two complete 5-subgraphs, there exists a complete
5-subgraph Hj such that v € Hy and Hy ¢ {H,, Ha, H3}. By (i) and by
Claims 1 and 2, V(Hy) N {z3,z4,75} # @ and V(Hs) N {y3, 94,95} # @
(otherwise, by (i) {zs,z4,z5} or {y3,¥4,%s5} is contained in a complete
5-subgraph H’ so that |V(H’)NV(H;)| 2 3 or [V(H') NV (Hz)| = 3, con-
trary to Claim 1 or Claim 2). W.l.0.g. we assume that z3,y3 € H;. If
|V (Ha) N {23, z4,z5}] 2 2 or [V(Hs) N {ys, 44,95} 2 2, say x3,z4 € Hy,
then c(u) = c(x5) for any proper 5-coloring ¢ of G. Hence {c(y1), c(y2)} =
{c(z3),c(z4)} and so z3ys is a required edge of G, a contradiction. There-
fore we have V(H,) N {z3,z4,z5} = {z3} and V(Hyg) N {y3, ¥2, 35} = {13}
Then, there exists a complete 5-subgraph Hg ¢ {H,,...,Hs} such that
V(Hs)n(V(Hl)UV(Hg)) = {34,.’125,514, y5}. Let V(Hs) —V(H1)UV(H2) =
{v}. Then v # u since G is 5-colorable. Since |G| < 12 and since
both u and v are contained in two complete 5-subgraphs, we must have
u,v € Hy. Assume w.lo.g. that V(Hs) = {z3,ys,u,v,z2}. Then vz; €
E@G), 7 = 2,...,5. Hence c{v) = c(z;) for any proper 5-coloring c
of G. So {c(ys),c(ys)} = {c(z2),c(zs)}. Then {c(y1),c(y2), c(ys)} =
{c(z1), c(z4),c(zs)} and hence c(u) = ¢(z2) or c(u) = c(z3), contrary to
uzg, urg € E(G). This completes the proof of Claim 3.

Claim 4. G has two complete 5-subgraphs Hy and Hj such that |V (H; N
Hj)|=2.

Suppose it is not so. Then by Claims 1-3. |V(H'n H"”)| = 1 for any
distinct complete 5-subgraphs H’ and H” of G. Let Hp be a complete
5-subgraph of G and let V(Hp) = {z1,...,25}. By (i), for every vertex
x;, there exists a complete 5-subgraph H; # Hjy such that z; € H;. Then
Hy, H,,..., Hy are six distinct complete 5-subgraphs of G, contrary to (ii).
Claim 4 is proved.

Now let H; and H; be any two complete 5-subgraphs of G with |H; N
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Hzl = 2. Let V(H1 n Hz) = {21,22}, V(Hl) - V(H1 an) = {21,32,23}
and V(Hz) — V(Hy N Ha) = {y1,¥2,¥3}-

Claim 5. For any complete 5-subgraph H' with H' ¢ {H,, H.}, |[V(H')Nn
{z1, 22,23} <1 and [V(H') N {y1,32,53}| < 1.

Suppose that there is a complete 5-subgraph Hg ¢ {H;, Ha} such that
either |V(H3)ﬂ{21,$2,23}| >2o0r |V(H3)ﬂ{y1,y2,y3}| > 2, say |V(H3)n
{z1,z2,z3}| = 2 (it is impossible that both |V (H3) N {z1,z2, z3}| > 2 and
|[V(H3) N {y1,y2,¥3}| = 2). By Claims 1 and 2 |V (Hs) N {z1,z2,z3}| = 2,
and by Claim 3 |V(Hg) N {y1,¥2,%3}] = 1. W.lo.g. we may assume that
V(H3) = {z1, %2, ys,u,v}. Then, for any proper 5-coloring ¢ of G, ¢(y3) =
c(z3). So z3 cannot be adjacent to y; for each j € {1,2,3} (otherwise we
would have a required edge) and z; cannot be adjacent to both y; and yg,
i = 1,2. Note that G has at most five complete 5-subgraphs and that z3
and y; cannot be in the same complete 5-subgraph, j = 1,2. By (i) we
have z3 € Hy and y,,y2 € Hs, where Hy, H», ..., Hs are all the complete
5-subgraphs of G. Hence V(Hgs) N V(H;) = 0, contrary to Claim 3. This
completes the proof of Claim 5.

Now by (i), there exist three distinct complete 5-subgraphs Hs, Hy, Hy ¢
{H1, Hz} such that {.'l:1,.’.c2,.'l.‘3} n V(H,'.:,.z) = {z,-}, 1 =123. By (ii),
H,,..., Hy are all the complete 5-subgraphs of G. So, w.l.o.g. we may
assume that {y1,¥2,33} N V(Hit2) = {x:}, i = 1,2,3. Suppose V(H;) N
{z1,22} = 0 for each j € {3,4,5}. Then, since |G| < 12, we have |V(G) —
V(Hy)UV (Hy)| = 4 by Claim 2, say V(G) - V(H:)UV(Hy) = {u1, ..., ug}.
Assume V(H3) = {z1, 31, w1, u2,u3} and V(Hy) = {z2, y2, u2, u3, us}. Then
{z3,y3,u1,u4} C V(Hs) and also up € V(Hs) or uz € V(Hg). Replacing
Hls H, by H31H4 and {271, z2)x3}’ {yl’yzr y3} by {ul!zhyl}: {"-M,zzayz},
we then have that V (Hs)N(V(Hs)-V(H3NHy4)) = {u1}, V(Hs)N(V(Hs)—
V(Hy)) = {u4}, and V(Hg) NV (Hs N Hy) # 0. Therefore, we may assume
that V(H;)N{z1, 22} # 0 for some j € {3,4,5}, say V(H3)N{z1, 22} = {1}
(note that, by Claim 2, {z1,22} € V(H;)). Let H = Hy N Ha U H3. Then
H is a subgraph of G with

V(H)={u; |1=0,1,2,3} U {v,w; | i=1,2,3}
and
E(H) = {uu; |0<i<j <3}V {yw; |i=1,2,3}
U (U3 (mvj, wiw; | 0 < i < 3,4 #5)).

By (i) and (ii), we may assume w.l.o.g. that {vj,vz,v3} C V(H4) and
{wy, w2, w3} C V(Hg) (note that, by Claim 5, v; and w; cannot be con-
tained in the same H; for i = 1,2,3 and j = 4,5). Let c be any proper
5-coloring of G, say c(u;) =1, i =1,2,3, and c(ug) =4. Then ¢(v;) =5 or
c(w;) = 5 for each i € {1,2,3}. Hence c(v;) = ¢(v;) =5 or c(w;) = c(w;) =
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5 for some pair 4,5 (i # 7). This contradicts the fact that {v;,v;} C V(H4)
and {w;,w;} C V(Hs). Lemma 2 is proved.

Proof of Theorem 1: We use induction on k. The case k = 4 was settled
by Abbott and Zhou (see [1, p.227]). Actually that t3(G) <n—1forn >4
follows from Theorem A. (The cases k = 5 and k = 6 have been proved
in [4], but we will give a unified treatment for all k with 4 < k < 7.) Let
4 < k £ 7. Assume the theorem is true for all (k — 1)-critical graphs. Let
G be a k-critical graph of order n > k. By Theorem A, tx_1(G) < n. Let
i(v; G) denote the number of complete (k — 1)-subgraphs of G containing
the vertex v. Then

Y t;G) = (k- Dte—1(G) < (k- )n.

veEV(G)

Hence there exists a vertex u of G such that t(u;G) < k- 2.

Suppose that Theorem 1 is false and suppose that G is a counterexample.
Then every edge of G is contained in at least two complete (k—1)-subgraphs.
Let H be the subgraph of G induced by the neighbor set N(u;G) of u in
G. Then every vertex of H is contained in at least two complete (k — 2)-
subgraphs of H and H has at most k — 2 complete (k — 2)-subgraphs. We
claim that H is (k —2)-chromatic. To prove the claim, it is enough to show
that d(u; G) < n — 1 since G is k-critical. In fact, if d(u; G) =n — 1, then
G —uis (k—1)-critical and so by mduct.lon hypothesis, there exists an edge
e of G —u such that e is contained in at tost one complete (k —2)-subgraph
of G — u. Hence e is contained in at most one complete (k — 1)-subgraph
of G, contrary to the choice of G. Therefore, d(u;G) < n — 1 and so the
subgraph of G induced by N(u;G)U {u} is (k — 1)-colorable since G is k-
critical. It follows that H is (k—2)-colorable. Hence H is (k — 2)-chromatic
since it contains complete (k —2)-subgraphs. Now by Lemma 2, there exists
an edge e = zy of H such that any proper (k — 2)-coloring of H — e assigns
different colors to z and y. However, since G is k-critical, there is a proper
(k — 1)-coloring ¢ of G — e such that ¢(z) = c(y). Then c induces a proper
(k—2)-coloring ¢’ of H —e such that ¢/(z) = ¢/(y), a contradiction. Theorem
1 is proved. a

Remark. Lemma 2 might still hold for r = 6 or even »r = 7 or 8. But it
does not hold for r > 9. For example, let G;, G2 and G3 be three copies of
the graph K + P,. Let G’ = G;UG2UG3 such that G;NG2NGs = P and
such that, for each pair i,j, 1 < ¢ < j < 3, the intersection G; NG} consists
of a single vertex which is of degree 2 in both G; and G;. Clearly G’ is
3-chromatic and contains precisely 9 triangles. Moreover, every vertex of
G’ is contained in at least two triangles. Let G = G’ + K,_3. Then, for
any r > 9, G is a r-chromatic graph satisfying the conditions (i) and (ii) of
Lemma 2. However, it is easy to verify that, for every edge e = zy of G,
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there exists a proper r-coloring ¢ of G — e such that é(z) = ¢(y). Therefore,
to solve Conjecture 2, we need to develop more effective techniques.
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