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ABSTRACT. Let V be a finite set of order v. A (v,k, A) covering
design of index A and block size k is a collection of k-element
subsets, called blocks, such that every 2-subset of V occurs in
at least A blocks. The covering problem is to determine the
minimum number of blocks, a(v, k, A) in a covering design. It
is well known that a(v,k,2) > [£[3=1A1] = é(v, k,)), where
[z] is the smallest integer satisfying z < [z]. It is shown here
that a(v,5,7) = ¢(v,5,7) for all positive integers v > 5 with
the possible exception of v = 22, 28, 142, 162.

1. Introduction

A (v, k, ) covering design (or respectively packing design) of order v, block
size k and index A is a collection 8 of k-element subsets, called blocks, of a
v-set V such that every 2-subset of V occurs in at least (at most) A blocks.

Let a(v, k, A) denote the minimum number of blocks in a (v, k, A) covering
design; and o(v, k, A) denote the maximum number of blocks in a (v, k, \)
packing design. A (v,k, A) covering design with |8 = a(v, k, )) is called a
minimum covering design. Similarly a (v, k, A) packing design with || =
o(v, k, A) will be called a maximum packing design. It is well known that
[26)

afv, k, ) > [-:- [:—:-},\” = ¢(v, k,A) and

v—-1

o(v, k,\) [[k—l’\]] = (v, k, A)

where [z] is the smallest and [z] is the largest integer satisfying [z] < x <

[z]-
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When a(v, k, X) = ¢(v, k, A) the (v, k, A) covering design is called a min-
imal covering design. SImilarly when o(v,k,A) = ¥(v,k, A) the (v, k, A)
packing design is called an optimal packing design.

Many researchers have been involved in determining the covering num-
bers known to date (see bibliography) most notably W.H. Mills and R.C.
Mullin. In one of their paper they proved the following [24].

Theorem 1.1. Let v be an odd integer greater than 5.

(i) Ifv =1 (mod 4) and X > 1, then a(v,5,)) + e where e =1 if A(v —
1) = 0 (mod 4) and Mvi=} = —1 (mod 5) and e = 0 otherwise with
the exceptions that (9, 5, 2) = ¢(9, 5,2)+1, a(13,5,2) = $(13,5,2)+
1 and the possible exceptions of the pairs (v,)) € {(53,2),(73,2)},
and

(ii) Ifv = 3 (mod 4) and A > 1 then a(v, 5, A) = ¢(v, 5, \)+e wheree is as
in (i) with the exceptions that a(15,5,)) = ¢(15,5,A)+1 for A = 1,2
and the possible exception of the pairs (v, A) € {(63,2),(83,2)}. -

Our interest here is in the case k = 5 and A = 7. Since the case v odd has
been treated by Mills and Mullin we treat v even. Our goal is to prove the
following.

Theorem 1.2. Let v > 5 be an even integer. Then a(v,5,7) = ¢(v,5,7)
with the possible exception of v = 22, 28, 142, 162.

2. Recursive Constructions

In order to describe our recursive constructions we require several other
types of combinatorial designs. A balanced incomplete block design, Blv, k, A],
is a (v, k, \) covering design where every 2-subset of poitns is contained in
precisely X blocks. If a Blv,k, A] exists then it is clear that o(v,k,}) =
M(v — 1)/k(k — 1) = ¢(v, k, \) and Hanani, [16], has proved the following
existence theorem for Bv, 5, A].

Theorem 2.1. Necessary and sufficient conditions for the existence of a
Blv,5, )] are that A(v — 1) = 0 (mod 4) and Av(v —1) = 0 (mod 20) and
(v,2) # (15,2).

The following obvious lemma is most useful to us.
Lemma 2.1. If there exists a Blv,5,)] and a(v,5,X') = ¢(v,5,X) then
a(v,5, A+ X') = ¢(v,5, A+ X).

Corollary Let v = 0 or 16 (mod 20) be a positive integer. Then a(v,5,7) =
¢(v,5,7).
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Proof: If v = 0 or 16 (mod 20) then by Theorem 2.1 there exists a
B[v,5,4]. On the other hand for such v, a(v,5,3) = ¢(v,5,3), [4]. Hence
a(v,5,7) = ¢(v,5,7).

A (v,k, \) covering design (or respectively packing design) with a hole
of size h is a triple (V, H, 8) where V is a v-set, H is a subset of V of
cardinality h, and S is a collection of k-element subsets, called blocks, of V
such that

1. no 2-subset of H appears in any block;

2. every 2-subset {z,y} of V where at least one of z,y does not lie in
H, appears in at least (at most) A blocks;

3. Iﬁl = ¢(’U,k, A) - ¢(h) v, )\)’ (Iﬂl = v[;(v, k: A) - 11[)("'! k: )\))‘

Lemma 2.2. If there exists a (v, k, A) covering design with a hole of size
h > 5 and a(h, k,)) = ¢(h, k, \) then a(v,k, X)) = ¢(v, k, A).

Proof: Form the blocks of an (h, k,A) minimal covering design on the
points of the hole. Adding the blocks of the covering design with the hole
gives a (v, k, A) minimal covering design.

In many places through the paper instead of constructing a (v, 5,7) min-
imal covering design we construct a (v, 5, 7) covering design with a hole of
size h > 5 where a(h,5,7) = ¢(h,5,7) and then apply lemma 2.2.

Let k, A and v be positive integers and M be a set of positive integers. A
group divisible design GD[k, A\, M, v] is a triple (V, 8,v) where V is a set of
points with |V| = v, and v = {G},...,Gr} is a partition of V' into n sets
called groups. The collection g consists of k-subsets of V, called blocks,
with the following properties.

1. |BNG;| <1 forall Be fand G; € v;
2. |Gi| € M for all G; € v;

3. every 2-subset {z, ¥} of V such that z and y belong to distinct groups
is contained in exactly A blocks. .

If M = {m} then the group divisible design is denoted by GD[k, A, m, v].
A GD[k, A\, m, km] is called a transversal design and denoted by T[k, A, m].
It is well known that a Tk, 1, m] is equivalent to k —2 mutually orthogonal
Latin squares of side m.

In the sequel we shall use the following existence theorerﬁ for traversal
designs. The proof of this result may be found in [1], [2], [12], [13], [16],
[25), [27].
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Theorem 2.2. There exists a T[6,1, m] for all positive integers m with
the exception of m € {2, 3, 4, 6} and the possible exception of m € {10,
14, 18, 22, 26, 34, 42}.

Theorem 2.3. If there exists a GDI[6,7,5,5n] and a (20+ k, 5, 7) covering
design with a hole of size h then there exists a (20(n — 1) + 4u + k,5,7)
covering design with a hole of size 4u + h where 0 < u < 5.

Proof: Take a GD[6, 7,5, 5n] and delete 5 — u points from the last group.
Inflate this design by a factor of 4. On the blocks of size 5 and 6 construct a
GDJ5,1,4,20] and a GD[5, 1,4, 24] respectively. Add h points to the groups
and on the first n — 1 groups construct a (20 + k, 5, 7) covering design with
a hole of size h, and take the h points with the last group to be the hole.
In a similar way we can prove the following:

Theorem 2.4. If there exists a GD[6,7,5,5n], a (20 + h,5,7) covering
design with a hole of size h and a (20 + h,5,7) minimal covering design
then there exists a (20n + h,5,7) minimal covering design.

Proof: Takea GD[6, 7, 5, 5n] and inflate the design by a factor of 4. Replace
the blocks of this design by the blocks of a GD[5,1,4,24]. Add k points to
the groups and on the first (n — 1) groups construct a (20+ k, 5, 7) covering
design with a hole of size h and on the last group construct a (20 + k, 5, 7)
minimal covering design. It is readily checked that this construction yields
a (20n + h, 5,7) minimal covering design.

It is clear that the application of the above theorems require the existence
of a GD[6, 7,5, 5n). Our authority for this is the following lemma of Hanani
(16, p. 286].

Lemma 2.3. There exists a GDI[6,7,5,5n] forn =1.

If in the definition of GD[k, A, m,v] (similarly T[k, A, m]) condition 3 is
changed to be read as (3) every 2-subset {z,y} of V such that z and y are
neither in the same group (column) nor in the same row is contained in
exactly A blocks of 8 and no block contains two elements of the same row.
Then the resultant design is called a modified group divisible design (mod-
ified transversal design) and is denoted by MGDI[k, A, m,v] (MT[k, A, m]).
(We may look at the point set of GD[k, A\, m,v] as a matrix of size m x n,
then the groups of MGD([k, A, m, v] are precisely the columns of the matrix.

A resolvable modified group divisible design, RMGDI[k, A, m, v), is a mod-
ified group divisible design the blocks of which can be partitioned into par-
allel classes. It is clear that a RMGD[5, 1,5, 5m)] is the same as RT[S5, 1, m]
with one parallel class of blocks singled out, and since RT[5, 1, m] is equiv-
alent to T[6, 1, m] we have the following.

Theorem 2.5. There exists a RMGDI[5, 1,5, 5m| for all positive integers
m with the exception of m € {2, 3, 4, 6} and the possible exception of .
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m € {10, 14, 18, 22, 26, 34, 42,}.
The next theorems are in the form most useful to us.

Theorem 2.6. [5] If there exists a RMGD|5, 1,5, 5m] and a GD[5,7, {4, s*},
4m + 8], where x means there is exactly one group of size s, and there exists
a (20 + h,5,7) covering design with a hole of size h then there exists a
(20m +4u+ h +s,5,7) covering design with a hole of size 4u+ h+ s where
0<u<<m-1.

The proof of the following theorem is very similar to the proof of Theorem
2.4 of [5].

Theorem 2.7. If there exists (1) a RMGD{5, 1,5,5m] (2) a GD[5,7, {4,8*},
4m + 4] where * means there is exactly one group of size 8 (3) a (20,5,7)
minimal covering design and a (24,5, 7) covering design with a hole of size
4. Then there exists a (20m + 4u + 4,5,7) covering design with a hole of
sizedu+4 where0<u<m-1.

Proof: Take a RMGD[5, 1, 5, 5m] and inflate it by a factor of 4. To each
of u, 0 < u < m — 1, parallel classes add 4 points and replace their blocks
by the blocks of a GD[5,7,4,24]. On the remaining parallel classes con-
struct a GD[5,7,4,20]. To the parallel class of block size m, after inflat-
ing by 4, add 4 new points {a,b,c,d} to the last group and construct a
GD[5,7,{4,8'},4m + 4]. Finally on the first (m — 1) groups construct a
(20, 5, 7) minimal covering design and on the last group construct a (24, 5, 7)
covering design with a hole of size 4, say, {a,b, ¢,d}. Then it is clear that
this construction yields a (20m + 4u + 4,5,7) covering design with a hole
of size 4u + 4.

Theorem 2.8. (5] If there exists (1) a RMGD[5,1,5,5m] (2) a GDJ5,7,
{4,5*},4(m — 1) + 5] and (3) a (20 + h,5,7) covering design with a hole of
size h. Then there exists a (24(m — 1) + s+ h, 5, 7) covering design with a
hole of size 4(m — 1) + s+ h.

It is clear that the application of the above theorems requires the exis-
tence of a GD[5,7, {4, 5*},4m + s]. We observe that we may choose s = 0
ifm=1 (mod5); s=4if m =0or4 (mod5), and s = ﬁl‘;—l)— ifm=1

(mod 3) (see [5]). We may also apply the following [15].

Theorem 2.9. There exists a GDI[5, 1, {4,8*},4m + 8] where m = 0 or 2
(mod 5)) m > 7 with the possible exception of m = 10.
We close this section with the following notation that will be used later.
A block (k,k+m,k+n,k+y, f(k)) (mod v) where f(k) = aif k is even
and f(k) = b if k is odd is denoted by (0 m n y) U {a, b} (mod v).
Similarly a block (k,k + m,k+n,k +y, f(k)) (mod v) where f(k) = k;
if k =14 (mod 4) is denoted by (0 m » y) U {h;}3,.
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A block of the form ((0,k) (0,k +m) (1,k+n) (1,k+y) f(k)), k€ Z,
where f(k) = h, if k is even and f(k) = hy if k is odd is denoted by
((0,0) (0,m) (1,m) (1,)) U {h1, ha}.

3. The Structure of Packing and Covering Designs

Let (V, 8) be a (v, k, A) packing design, for each 2-subset e = {z,y} of V
define m(e) to be the number of blocks in # which contain e. Note that by
the definition of a packing design we have m(e) < A for all e.

The complement of (V, 8), denoted by C(V, 8) is defined to be the graph
with vertex set V and edges e occurring with multiplicity A-m(e) for all
e. The number of edges (counting multiplicities) in C(V, B) is given by
A(3) = 181(5). The degree of the vertex z in C(V, B) is A(v —1) —r (k—1)
where r; is the number of blocks containing z.

In a similar way we define the excess graph of a (V, 8) covering design
denoted by E(V, ), to be the graph with vertex set V' and edges e occurring
with multiplicity m(e) — A for all e. The number of edges in E(V, B) is given
by |81(5) — A(3); and the degree of each vertex is rz(k—1) — A(v —1) where
rz is as before.

Lemma 3.1. Let (V,B) be a (v,5,4) packing design with ¥(v,5,4) — e
blocks where e = 1 if v = 3 (mod 5) and 0 otherwise. Then the degree
of each vertex of C(V, B) is divisible by 4 and the number of edges in the
graph is 0, 4 or 12 when v mod 5 € {0,1}, {2,4}, or {3}.

The only graph with 4 edges and every vertex of a degree divisible by
4 is the graph with four parallel edges connecting two vertices and v — 2
isolated vertices. Therefore, when v = 2 or 4 (mod 5) a (v, 5,4) optimal
packing design is the same as, a (v, 5,4) packing design with a hole of size
2.
Lemma 3.2. Let (V, ) be a (v, 5,2) optimal packing design where v =13
(mod 10). Then the degree of each vertex of C(V, B) is divisible by 4 and
the number of edges in the graph is 6. Hence, C(V,f) consists of v — 3
isolated vertices and 3 other vertices the pairs of which are connected by 2
edges.

Lemma 3.3. Let (V,8) be a (v, 5,4) minimal covering design. Then the
degree of each vertex of E(V, ) is divisible by 4 and the number of edge in
the graph is 0, 6 or 8 when v mod 5 € {0,1}, {2,4}, or {3} respectively.

The only graph with 6 edges and every vertex of a degree divisible by 4
is the graph with v — 3 isolated vertices and 3 other vertices the pairs of
which are connected by two edges.

The following is very simple but most useful to us.
Theorem 3.1. If there exists
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1. A (v,5,)) covering design with ¢(v,5, A) blocks
2. A (v,5,)') packing design with ¥(v,5,)’) blocks
3. ¢(v,5,)) +¥(v,5,X) = (v, 5, A+ X)

4. The complement graph C(V, 3) of the packing design is isomorphic
to a subgraph G of the excess graph, E(V, ), of the covering design.

Then there exists a (v, 5, \+\’) covering design with ¢(v, 5, \+2’) blocks,
that is, a (v,5, A + A\’) minimal covering design.

4. Constructions

In this section we distinguish the following cases.

4.1 v =4 (mod 20)

Lemma 4.1. (a) Let v = 4 (mod 20) be a positive integer greater than
4. Then o(v,5,7) = ¢(v,5,7). (b) There exists a (24,5,7) covering design
with a hole of size 4.

Proof: (a) For v =4 (mod 20), v # 64, 84, the construction is as follows:

1. take a (v — 1,5,2) minimal covering design, [24]. In this design each
pair appears in precisely two blocks except one pair, say, (v—2,v—1)
that appears in six blocks. ,

2. take a (v,5,4) optimal packing design, [8]. In this design each pair
appear in precisely four blocks except one pair, say, (v —2,v—1) that
appear in zero block. Furthermore, assume in this design we have the
following two blocks:

(12379  {(abc810)

where {1,2,3,q,b,¢,7,...,10} are arbitrary numbers, {a,b,c} and
{1,2,3,7} are not necessarily disjoint. In the first block change 9
to v and in the second change 10 to v.

3. take a (v+2,5,1) minimal covering design. This design is constructed
by taking the blocks of B[v + 1,5,1] and then partioning the » + 1
points into a set of quadruples, and to each quadruple adjoin the
point v + 2. Since v +1 = 1 (mod 4) there is a block of size 2,
say, (v + 1,v + 2) which we delete. We also assume that the pairs
(7,9), (8,10), (v — 2,v — 1) appear at least twice while the pairs
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(v,v + 1), (v,v + 2) appear exactly once in the blocks of this design.
Furthermore, assume we have the following two blocks

123vv+2) {abcvv+1)

In the first block change v + 2 to 9 and in the second block change
v+ 1 to 10.

In all other blocks change v+ 1 and v + 2 to v.

Now it is readily checked that the above three steps yield the blocks of a
(v,5,7) minimal covering design for all v =4 (mod 20), v # 64, 84.

For v = 64, 84 the constructions are given in the next table. In general,
the construction in this table and other tables to follow is as follows. Let
X=2y_nqUH,or X =25x Z_g;_n_ U Hy, where H, = {hy,...,hs} is the
hole. The blocks are constructed by taking the orbits of the tabulated base
blocks.

v | Point Set Base Blocks

4| Zge U Hg|On Zge construct a B[56, 5, 4] and take the following blocks:
012 28 hy) (0 2 14 38 hg) (0 7 22 32 hg) (09 20 26 hy)
038 43 hg) (04 10 34 hg) (0317 21 hy) (07 16 44 hg)

05 21 34) U {h1, haJ {0 11 23 38) U {ha, he} (0 5 13 36) U {hp, Re ¥
(0411 19) U {hy,hg} (013 10) U{hs};_, (062337)U {hs}; e
84| 276 U Hg|On Zq¢ construct a B[76, 5, 4] and take the following blocks:
{0149 24) (072642 54) {010 21 46 59) (0318 37) U {h,-}gsl
(0 63133) U {h;}7 « (015 12) U{hy,ho}(09 23 48) U {h3,he}
0 13 20 56) U {hs, he}{0 14 31 U{h7,hg}{0 6 32 64 h;

0 8 30 44 hy) (0 10 31 33 h3) (0139 hy)

{0416 38 hg) (051541 hg) (07 9 hy 11 29 57 hg

(b) For a (24, 5, 7) covering design with a hole of size 4 proceed as follows:
1. take a (23,5,2) packing design on Zzo U H3 with a hole of size 3, say
Hs [9).

2. take two copies of a B[25,5,1] on ZyU Hs. Assume in both copies we
have the block (hy, ho, hs, ks, hs). Delete this block and in all other
blocks change hs to hy. The above two steps yield a (24, 5,4) covering
design with a hole of size 4.

3. take a (24, 5, 3) covering design with a hole of size 4 on X = ZocUHy

(04812 16) +14,i€ Z4
(01310)U {h}L, (mod 20) (03 813)U{hy,hs} (mod 20)
(03 9 14) U {h3, hs} (mod 20) (0124 8) (mod 20)
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4.2 v =8 (mod 20)

Lemma 4.2. Let v = 8 (mod 20) be a positive integer. If there exist (1)
a (v,5,3) covering design with a hole of size 8 (2) a (v — 1,5,2) covering
design with a hole of size 7 (3) a (v + 1,5,2) optimal packing design with
a hole of size 9 then there exists a (v,5,7) minimal covering design.

Proof: Assume the above three conditions hold. Then a (v,5,7) minimal
covering design can be constructed as follows:

1. take a (v, 5, 3) covering design with a hole of size 8. On the hole of
size 8 construct an (8, 5, 3) minimal covering design as follow: X = Zg
and blocks are (0 1 24 5) mod8, (024 6)+1i, i € Z5. Careful
inspection of this design shows that its excess graph contains the
following subgraph on the vertices {0,2,4,6,v} where v € Zg is an
arbitrary number different from {0,2,4, 6}. Now by lemma 2.2 follows
that the (v,5,3) minimal covering design, v = 8 (mod 20), has a
subgraph as the above.

v

2. take a (v — 1,5,2) covering design with a hole of size 7. But the
excess graph of the (7,5,2) minimal covering design, [23], consists
of 3 isolated vertices and the following graph on the remaining four
vertices, say, {1,2,3,4}. Hence the excess graph of the (v —1,5,2)
minimal covering design, (v = 8 (mod 20)), consists of v — 5 isolated
vertices and the same graph as the above on the remaining 4 vertices.

1
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3. take a (v + 1,5, 2) packing design with a hole of size 9. The comple-
ment graph of the (9,5,2) packing design, [9] consists of v — 5 iso-
lated vertices and the following graph on the remaining 6 vertices say,
{1,2,3,4,v,v + 1}. Hence, the complement graph of the (v + 1,5,2)
packing design Consist of v — 5 isolated vertices and the following
graph as the above on the remaining 6 vertices.

In this design change v + 1 to v. Since we changed v + 1 to v it is easy
to see that the complement graph of the design in (3) is isomorphic to a
subgraph of the excess graphs of the designs in (1) and (2). Now apply
theorem 3.1 and the result follows.

v+]

Lemma 4.3.

1. There exists a (v, 5,3) covering design with a hole of size 8 for v =
48,68, 88.

2. There exists a (v, 5,2) covering design with a hole of size 7 for v =
47,67,87.

3. There exists a (v,5,2) packing design with a hole of size 9 for v =
49,69, 89.

Proof: (1) For a (v,5,3) covering with a hole of size 8, v = 48, 68,88
see the next table. For a (v,5,2) covering design with a hole of size 7,
v = 47,67,87, see [9]. For a (v,5,2) packing design with a hole of size 9,
v = 49, 69, 89, see [9].



v | Point Set Base Blocks
48] Z40 U Hg [{0 8 16 24 32) ¥ 3,1 € Zg twice.
{0 110 23) u{h s}i_1(0 3 14 21) U {h}o

5(0 1413) U{M.hn}
{0 5 14 29)

68| Zgo U Hg | (0 12 24 36 48) + 3, & € 2132, twice
05 14 47) U {h;} 1 (0 5 22 39) U {;} £ (0 102541)u{h1.h3}

05 11 46) U {ha, ha {0 7 24 30) U {hs, hg} (0 30
0139ﬂ7(04u1932)(04183444)(0137 0] 73

88| Zgo U Hg [On Zgg U Hs construct a B[85, 5, 1 1] such that Hg is a block which we
delete, and take the following blocks
016 32 48 64) +14,1 € Z1¢
0 20 40 60 hg) + 3,3 € 220
13 40 53) U {h7, hg] half orbit
013753) 22 19 42 68)(01 3 7 19,

0 8 22 32 45){0 5 29 44) U {h1, ho 17 35 60) U {h3, h
05 U {hs, 0 11 26 47) U {hv, hg

Corollary. a(v,5,7) = ¢(»,5,7) for v = 8,48, 68, 88.

Proof: The proof follows from lemmas 4.2 and 4.3.

Lemma 4.4. Let v =8 (mod 20) be a positive integer. Then o(v,5,7) =
¢(v,5,7) with the possible exception of v = 28.

Proof: For v = 8,48,68,88 the result follows from the corollary. For
v > 108, v # 128, 168, 208, 268, simple calculations show that v can be
written in the form v = 20m 4 4u + h + s where m,u, h and s are chosen
so that

1. there exists a RMGD[5, 1,5, 5m)];

2. du+h+s=8 (mod 20), 8 <4u+ h+ s <88, du+h+ s # 28;
3. 0fu<m-—1,5=0 (mod 4), h=0or 4;

4. there exists a GD[5,7, {4, s*},4m + s].

Now apply theorem 2.6 to give the result.

For v = 128 apply theorem 2.3 with n = 7, h = 0 and » = 2. For
v = 168 apply theorem 2.7 with m = 8 and u = 1. For v = 208, take a
T[5,7,40], [16]. Add 8 points to the groups and on the first group construct
a (48,5,7) minimal covering design and on the other groups construct a
(48, 5, 7) covering design with a hole of size 8. Such design can be contracted
on X = Z4UHj as follows: On X construct a (48, 5,4) covering design with
a hole of size 8, say, Hg, [10], and take the following blocks: (0 8 16 24 32)+-3,
i € Zg, twice (01 3 18) U {h;}{_; (mod 40) (06 17 27) U {h;}5_5 (mod 40)
(0512 31)U{hy, ha} (mod 40) (04 11 21) U{ks, hs} (mod 40) (0 3 9 16)U
{hs, e} (mod 40) (0 5 20 25) U {h7, hg} (mod 40) (0 1 2 4 13) (mod 40)
(04 10 18 32) (mod 40).
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For v = 268 take a RGD|5, 1, 5, 65] [14] and inflate the design by a factor
of 4. Add 4 points to each of two parallel classes and replace their blocks by
the blocks of GD([5, 7, 4, 24] and on the remaining parallel classes construct a
GD[5,7,4, 20]. Finally, on the groups construct a (20, 5, 7) minimal covering
design. This construction gives a (268,5,7) covering design with a hole of
size 8. But «(8,5,7) = ¢(8, 5, 7) hence, a(268,5,7) = ¢(268, 5, 7).

4.3 v =12 (mod 20)
Lemma 4.5. a(v,5,7) = ¢(v,5,7) for v =12, 32, 52, 72, 92.

Proof: The required constructions are given in the following table.

v | Point Set Base Blocks
12| Zy9 {01469) twice (0123 5){0126 8) _
32| Z32 {0124 24) 3 times {03815 21) twice {0 4 9 19 25) twice

(0511 1520)(0 1714 18){(0 2 5 14 18){0 3 10 16 24)

[B2|Z40 U H12|On Z40 U Hi; construct a B[51,5,2] with a hole of size 11. Such
design can be constructed by taking a TS, 2, 10], [16], adjoin a
point to the groups and on the first four groups construct a
B[11,5,2] and take the last group with the point to be the hole.
Take a!so the following blocks:

{08 162432) +1i,1€ Zg, 3 times (0 7 20 27 hy2) half orbit

016 15) U{hs}i (0313 22) U{h;}s (027 17) U {hg} 2
01321 h){04 “‘mb_{m—fzﬁ'lo T ha)(0 4 11 3 5'_17—28'+h=9'h4 —
0136 hs5)(04 12 26 hg){0 4 1320 h7)(0 7 17 28 hg)
(01211 hg){026 18 hy0)})(038 23 hy11){0 6 13 27 hy2)

72| Zgo U H12|On Zgg U Hyy construct a B[71,5,4] with a hole of size 11. Such
design can be constructed by taking a T[6, 1, 12]. Delete 3 points
from last group and replace all its blocks by the blocks of

B[6, 5,4) and B[5,5,4]. Adjoin two points to the groups and on the
first five groups construct a (14, 5, 4) covering design with a hole
of size 2, [8}, and take these 2 points with the last group to be

the hole of size 11. Take also the following blocks:

01310)U{h;}i_,(051934) U {h;}: (0617 39) U {h;} ]2
0412 28 h19){0 lg 2541y U!hl,ﬂngo 1333 42U ]E:;,TZJ
01324)U{hs,h6}{041133)UThy, hg}{05 13

076 15 25) U {hy1, h1pJ{0 13 13 43)(0 4 12 26 40){0 5 16 31 3:7;}:
92| Zgo U H12|On Zgg U H)) construct a B[91,5,4] with a hole of size 11. Such
designs can be constructed by taking a T[6, 1,16]. Delete 10 point
from the last group, and replace all its blocks by the blocks of a
B[6, 5, 4] and B[S5, 5,4]. Adjoin five points to the groups and on the
first five groups construct a B{21,5, 4] such that these five points
are a block, which we delete, and take these five points with the
last group to be the hole of size 11. Take also the blocks of a
(80,5, 1) covering design, (18], and take the following blocks:

(0 2 14 40 503 (0 4 20 28 62)(0 17 39 50 h12)(0 1 7 26) U {hs}2_,
(0223 37) U {h;}5_-{0 13 31 46) U {h;}12(0 1 4 7) U {hq, Ao}
{05 10 20) U {h3,hq {08 31 5} U {135,;;6"‘?('0 Qﬁ)_!_{l a8y U {hy, ha] |

{092536) U {Ro, h10}{0 13 28 63) U {h1y, h12}

Lemma 4.6. Let v = 12 (mod 20) be a positive integer. Then a(v,5,7) =
#(v,5,7).

Proof: For v = 12, 32, 52, 72, 92 the result follows from lemma 4.5. For
v > 112, v # 132, write v = 20m + 4u+ h + s where m,u,h and e are
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chosen as in lemma 4.4 with the difference that 4u+ h+ s = 12 (mod 20),
12 < 4u+h + s < 92. Now apply theorem 2.6 to get the result.

For v = 132 apply theorem 2.3 withn =7, u =2 and h = 4.
4.4 v=2 (mod 20)
Lemma 4.7.
() a(v,5,7) = ¢(v,5,7) for v = 42, 62, 82, 102, 122.
(b) There exists a (22,5, 7) covering design with a hole of size 2.
(c¢) There exists a (26,5, 7) covering design with a hole of size 6.
Proof: (a) The required constructions are given in the following table. The

first construction is a (22,5,7) covering design with a hole of size 2, and
the second one is a (26,5,7) covering design with a hole of size 6.

v | Point Set Base Blocks

22 |ZogUHy |(04812716) +14,1 € 24, 3 times

0 3 10 13) U {h;,ha} half orbit (015 11 hy)

03 10 13 h2){04 9 15) U {hy,h2}{01 23 8)
0251113){(01237)(0269 14),

26 | 220U Hg [{0481216) +1; i € Z4, twice {0 3 10 13) U {hs, hg} half orbit
(01314)U{h;}:_,(04915)U{hy,ha}(0 17 10) U {h3, kg}
(0138) U{h5.h6ﬁ0 123 h1){0137 ho){0 2 7 12 hz)

(02812 hy){0 3814 hg){0 49 13 hg)

42 |Z36 U Hg |On Z3g U Hs construct a B[41, 5, 4] with a hole of size 5, say, Hg and
take the following blocks:

(0 7 18 25) U {hs, hg} half orbit {0 3 13 22) U {h,-}:-'=1
{01526) U{hy,h2}(01 13 20) U {hg, hg}{0 2 5 27) U {hs5, hg}
{02817 hg)(0 1 324 31){(0 4 8 18 24)

62| Zs6 U Hg |On Z56 U H5 construct a B[61, 5, 5] such that Hg is a block which we
delete and take the following blocks:

(0142842 hg) + 1,1 € Z14, (0 13 10) U {h1,ho}

(05 13 32) U {h3, hg}(0 5 17 28) U {hg, he}(0 6 21 37 hg)

{0137 255{0 4 17 26 40){0 8 18 20 44)

82 [Z76 UHg |On 276 U Hs construct a B[81, 5, 5] with a hole of size 5, say, Hs and
take the following blocks:

{0 19 38 57 hg) + 1,1 € 219

(013731){0 516 39 49){0 8 17 38 58){0 12 25 40 54)

0 2 14 20 25)(0 7 15 31 he}{0 1 10 37) U {hy, ha}

032335)U {h3,hqa}(0421 47) U {hs,hg}

102| Zge U Hg n Zgg U Hy construct a B[101,5,5] with a hole of size 5, say, Hg and
take the following blocks:

0244872 hg) +1,1 € 2240 212 2842)(0 149 38)

0 6 21 48 64){0 7 20 44 56550 11 20 57 74){0 1 3 7 18)

05 14 37 67){0 8 33 55 hg) (0 10 35 85) U {Ay, haJ

{0 13736 57) U {h3, ks J{0 19 38 65} U {hs, he}

1221 Z116 U Hg|On Z;16 U H5 construct a B[112, 5, 5] with a hole of size 5, say, Hy
and take the following blocks:

0 20 58 87 hg) + 1, i € Z29(0 4 16 34 58)(0 1 3 8 21)

0 6 30 53 78)(0 10.36 5i 11 43 65 82){0 9 3

0 137 12){0 8 3356 84){0 14 41 63 80){0 15 35 61 hg)

{0 10 31 69) U {hy, h2]{0 13 29 72) U {hg, haJ{0 15 52 71) U {hs, he]
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Lemma 4.8. Let v = 2 (mod 20) be a positive integer greater than 2.
Then a(v,5,7) = ¢(v,5,7) with the possible exception of v = 22, 142, 162.

Proof: For v = 42,62,82,102,122 see lemma 4.7. For v > 222, v # 242,
write v = 20m + 4u + h + s where m, u, h and s are chosen as follows:

1. there exists a RMGDJ[5, 1, 5, 5m];

2. du+ h+ s = 42,62, 82;
3.0<u<m-1,58=0 (mod 4), h=2or 6
4. there except a GD[5,7, {4, s*},4m + s].

Now apply theorem 2.6 to get the result. For v = 182 apply theorem
2.8 with m = s = 8 and h = 6. For v = 202,242 take a T[6,7,10] and
delete s points from the last group where s = 10 or 0 respectively. In-
flate the resultant design by a factor of 4. Replace the blocks of size 5
by the blocks of GD[5,1,4,20}; and the blocks of size 6 by the blocks of
GD[5,1,4, 24]. Finally, add two points to the groups and on the first group
construct a (42, 5, 7) minimal covering design, and on each other group con-
struct a (42,5,7) covering design with a hole of size 2. Such design can be
constructed as follows on X = Z4o U {hy, ho}.

1. take a (42, 5,4) covering design with a hole of size 2, say, {h1, h2}, [8].
2. take the following blocks:

(08 20 28 hy) half orbit (013 14) (mod 40) U {hy, ko, ha, ho}
(0410 15 22) (mod 40) (04 12 23 31) (mod 40)

(0124 18) (mod 40) (03916 33) (mod 40)

(0510 19 25) (mod 40)

4.5 v=6,10 or 14 (mod 20)

In this section we first show that a(v,5,3) = ¢(v,5,3) for few values of
v =2 (mod 4).

Lemma 4.9. Let v = 6,10, 14 or 18 (mod 20) be a positive integer less
than 100, v # 18,26. Then a(v,5, 3) = ¢(v, 5, 3).

Proof: For v = 10 let X = {1,...,10} then the required blocks are
(12389)(234810)(12456)(125910)(12678)(134709)
(135610)(147810) (23457) (267910) (346910) (35867 8)
(45689) (57889 10).



For v = 50,70 take a T[5,3,10] and a TJ[5,3,14] [16] and replace their
groups by the blocks of a (v, 5, 3) minimal covering design where v = 10, 14
respectively.

For v = 90 take a GD[5,1,5,45] [11] and inflate it by a factor of two,
that is, replace each of its blocks by the blocks of a GD[5, 3,2, 10], [16] and
on the groups construct a (10, 5,3) minimal covering design.

For all other values see the following table. In this table, in case the
point set is Z3 x Z, then a block of the form {(0,0) (0, k) (1, r) (1,s) (1,2))
means the block ((0,0) (0,k) (1,7) (1,s) (1,t)) (mod —,n).

v | Point Set Base Blocks

6|25 UH, 0123 hy)

14123 X 27 9,9) (0,1) (0,2) (0,5) (1,3)){(0,0) (0,1) (1,0) (1,1) (1,3)
0,0) (0, 2) (1,1) (1,5) (1, 6)){(0, 0) (0,3) (1,0) (1,4) (1,5)

3023 x 215 a,0) (o, 3) (a,6) («,9) (o, 2)) + (=, 1)t € Z3, twice, a = , 1

1(0,0) (0, 1) (0,5) {0,7) (1, 9))((0 0) (0,1) (6,5) (1, 6) (T, 11))

(6, 0) (0,2) (0,10) (1,3) (1,14))((0,0) (0,1) (1,0) (1,1) (1,3

0,0) (0,3) (1,0) (i,2) (1,10)){{0,0) (0,2) (1,6) (1, 10) (1,11))
0,0) (0,4) (1,7) (1,11) (1,13))((6,0) (0, 7) (1,5) (1,12) (1, 13

34| Z34 341117)(01012152"51‘—%)‘(6‘TQT)'(—4—£F6 01261 18 21)(0 4 9 17
38]Z32 U Hg {(01249){02614 22){03 7 18) U {hp,he}

{0 3 13 22) U {hg, hg4}{0 5 11 20) U {hy,hp}{0 5 11 18) U {h.}
(0 116 17) U {hs5, hg} half orbit

.4

46| Z430 U Hg 08162432)+:',:eza
01248)(04 1120 26){0 1 19 24){0 3 14 25) U {hs,
05 15 28) U {h3, haJ (0 8 17 27) U {A1, ha
{0 3 20 23) U {hs, hg} half orbit (0 1 6 19){h;}3 ,
54|23 X Zo7 (0,0) (0, 3) (0,4) (0, 9) (0, 16)}{(0,0) (0, 2) (0, 10) (0, 14) (1, 0))
0,0) (0, 1) (1,2) (1,3) (1,5)){(0,0) (0,11) (1,5) (1,9) (1, 17}
0,0) (1,7) (1,13) {1, 16) (1, 24)}((0,0) (1, 12) (1, 19) (1,21) (1,26
{(0,0) {6,2) (0,11) (1, 10) (1, 22)}{(0,0) (0,4) (1, 12) (1, 18) (1, 23))
0,0) (0,1) {0,7) (1, 0) (T, D0, ) (0,3) (0,12) (1,1) (1, 14))
0,0) (0,5) (0, 13) (1, 10y (1, 23))((0 0) (0,2) (0,10) (1, 14) (1, 18))
0,0) (0,3) (0,10) (1, 6) (1, 7))((0,0) (0,5) (1,11) (1, 20) (I, 22))
0,0) (0, 6) (1,9) (1,14) (1,22))((0,0) (1,7) (1, 12) (1, 15) (1, 19))
582> X Z26 U He[{(1,0) (1,2) (1,9 (1.14 1,2 (1.0 1,2) (1, 12) (1, 13) 1.22)
0,0) (0, 4) (0,16) (1, 18} (1, 25))((0, 0) (0, 2) (0,8) (1,8) (1, 18)
0, 0) (0,5) (0,13) (1,7) (1,8)}{(0,0) (0, 2) (1, 12) (1, 17) (1, 20)
9,0) (0, 21) {1,11) (1, 19) (T, 22))({0,0) (0, 7} (0, 16) (0,20) (1,5
0,0) (0,3) (0,11) (0, 12) (1, 25)){(0, 0} (0, 1) (0,7) (0, 11) (1,4))
9,0) (0, 1) (1,23) (1, 25) h13{(0, 0) (0,2) (1,19) (1, 23) ha)
0,0) (0,3) (1,8) (1, 17) 43)((0, 0) (0, 3) (1,3) (lvg) hy)
0,0) (0,5) (1,11) (1, 12) k5){(0,0) (0, 12) (1, 1) (1, 16) he)
oiOJ 0,7 1'7) (1'12))U hli"?}
{(0,0 0, 9) 1,10) (1,13))U{h3,h4
(0,0 (0, 1T) (1, 13) (1,20)) U {hs, he
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Point Set

Base Blocks

Zo X Z3p U Hg

[~

0, 12) (0, 18) (0, 24)) + (1), 1 € Zg

1,12) (3, 18) (1, 29)) + (=, 1), 1 € Z¢

e |«

0,6) (0,14) (0, 21)){(0.

[~
|~
2

004
s

1,22) (1,27

1,7) (1,10) (1,18) T.13) (1. 26) (1. 98))

-

(1,2) (1,5) (1,6))((0,0) (9,8) (1,7) (1,17) (1,29))

B

{0,13) (0, 14) (1, 18)}{{0, 0) (0, 10) (0, 18) (0, 24)

6
6
2
1
1
1
1

1
0
0

(0, 12) (0,17) (1, 28)){(0, 0) (1, 13) (1, 15) (1, 23) (1, 29)}

ol Ol B

(1,3) (1, 4) (1, 18){(0, 0) (1,7) (1,12) (1, 16) (T,

(1,22) (1, 27)) U {h1, A2} ((0,0) (0,2) U1, 24) (4, 27))11)

5

£

)
i)

(1,5) (1,6)) U {hs, he 0,0) (0,7) (1, 13) (1, 24) hg)

0
1
3) (1,4) (1,11)) U {h3, h4}((0,0) (0,4) (1, 11) (1,20) hg)
5
9

,9) (1,12) (1, 19) he)((0,0) (0,11) (1, 14) (1, 20) hs)

Ol O] ©| O] O] O] &} O O} O] O | O]

0
1
0
0
0
0
0
1
0
0,
0
0
0,

13) (1,2) (1,15) he) _

74

Ze4 X Hyo

3l 21,94 L] 4 1. 9] 9.9 S S| SO O

I B ol St o o ol o S Sl S S AU B

P e N e N NP N

(
(
2 35) U {hg, h10] half orbit

{0911 50) U {h;};_,(0 510 31) U {h}S .

{013 28 47) U {h1, ho 1 {0 11 27 46) U {ha, hq)

{0922733) U [hs, he} (0 7 30 39) U {hy, ha}

(017 18 21} U {hg,hmg(o 2 24 31 47)
(01222838)(05132549)(0137 4101 )

78

Z79 U Hg

(k k46 k436 k+ 42 f(k)) where k=0,...,35 and f(k) =
if k = 0 or 1 (mod 4) otherwise f(k) = hg

{0311 23 37)(0 4 13 29 31)(0 10 15 22 39){0 1 3 9 24)

{0 516 36 50)(0 7 19 37 47){0 1 5 15 45) {0 2 8 21 46)

(0 7 16 39) U {hy, hoJ (0 4 17 43) U {hg, ha}

{0 11 31 48) U {hs, he}(0 1 19 22) U {h;}]

86

Zgo U Hg

Take a block (80,5, 1) covering design on Zso, [18], and take the
following blocks:

(0163248 64) + ¢, € Z16(k k+ 12 £+ 40 &k + 52 f(k))
where £k =0,...,39
and f(k) = hs if k=0,1,2 or 3 (mod 8) otherwise f(k) =

(01372 13721 17 29 47)(0 8 24 34 63

0 11 24 46 60)(0 5 15 42) U {h;}3_,(0 5 33 48) U {hy, ho}

94

Zgo U Hyg4

98

Zo X Z4g U Hg

-

B Byl Bag Bag Rag By Bagd M4
Bagf Panf Bt g Pam By

5

B

5
1
~
—
-]

05 14 35) U {h;}3_<(0 11 33 50) U {h; }}dg(o 31368)U éhhhzrl
ha, ha}{0 12 25 43) U {hg, hg}{0 3 7 66) U {hy,
and f(k) = h;13 if k =0,1,2 or 3 (mod 8) otherwise
1,10) 1,30))((0,0) (9, 1) (0,3) (1,9) (1, 17))
0,24) 3140, 0) (0, 10) (1,2) (1, 6) (1,14))
,13) ( (0,0 7 (1, 21)
1
1

0031 43) U [ha, kg ] {0 11 30 53) U [z, he)
053140y U
hg,h1p}(0 11 38) U{hi11,h12}(0 16 25) U {hy3, h14
1, 0) (0, 1) {0, 3) (0, 14) (0, 23)){(0,0) (0.5) (0, 12)
0,8) ( »45)1((0,9) (0,5) (0,11) (1,4) (1, 37))
0, 26) 1, 44)){(0, 0) (0,12) (1, 20) (1, 33) (1,39)
)
(1.7 (0,0) (0, 13) (1, 19) (1, 29) hq)
)

B

0 16 32 48 64) + 1,1 € Z16 3 times (0 120 24 38){0 2 8 20 36)
(0 137 27)(0 8 23 42 52)(0 2 10 36 49)(0 11 33 50) U {h;}1_
0 15 35 58) U
kk+ 12 k+ 40 k + 52 f(k)) where k= 0,...,39
J(k) = h14q
0, » 30))
1,6) (1,10) (1,30)){(1,0) (1,2) (1,14) (1, 1,
0,21) 1, 2)Y((0,0) (1,0) (1, 1) (1, 3) (1,70
0,19) (1, 39) {1, 44)) ({0, 0) (0,2) {1, 15) (1, 38) (1, 43))
0,24) (1, 1, 42)){(0, 0) (0, 8) (1,19) {1, 30) (1,39))
1
0, 0)
0, 28) 1, 41)){(0, 0) (0,19) (1,9) (1, 16) (1, 30))
D, 28) 1, 40)7{(0, 0) (0, 21) (1,31) (—"f'(—j)_hm 1,45
0, Y (1, 43) hg)
0,
Y (1,3) (1, 32 (0,0) (0,17) (1, 28) (1, 35) ka)
(1’2) (],5) U {hlv h2}

~A O s ] 9] O

<

) (1,12) (1,27)) U {ha, hy}

OO O 9] | O 9| S| | L Ll L Ll e L
O] O O O O O O] O] O] O O] O ©} S| S

[= =N =S = = = = = TS = = R = e B
0] 03 | ] o e8] ] = ] 0] ] ) ] ] ] !

[~~~

[~~~

) (1,31) (1,32)) U{hs, he}
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Lemma 4.10. Let v = 6,10 or 14 (mod 20), v < 100 be a positive integer.
Then a(v,5,7) = ¢(v,5,7).

Proof: Forv = 6,100r 14 (mod 20) v < 100, v # 26 the blocks of a (v, 5, 7)
minimal covering design are the blocks of a (v, 5,4) [10] and (v, 5, 3) minimal
covering design. For a (26,5, 7) minimal covering design see lemma 4.7.

Lemma 4.11. Let v = 6,10 or 14 (mod 20) be a positive integer. Then
a(v,5,7) = ¢(v,5,7).

Proof: For v = 6,10 or 14 (mod 20), v < 100 the result follows from the
previous lemma. For v > 100, v # 126, 130, 134, 146 simple calculation

" shows that v can be written in the form v = 20m +4u+ h+ s where m,u, h

and s are chosen so that

1. there exist a RMGD{5, 1, 5, 5m)|;
2.0<u<m—1, s=0 (mod 4) and h =2 or 6;
3. 4u+h+5s=6,100r 14 (mod 20) and 6 < 4u+ h + s < 90;

4. there exists a GD[5,7, {4, s*},4m + s].
Now apply theorem 2.6 to get the result.
For v = 126, 130, 134 apply theorem 23 withn =7, h=6and v =0,1,2

respectively.
For v = 146 apply theorem 2.4 withn =7 and h = 6.

4.6 v =18 (mod 20)

Lemma 4.12. Let v = 18 (mod 20) be a positive integer and assume

1. there exists a (v, 5,3) covering design with a hole of size 6.

2. there exists a (v,5,4) minimal covering design such that its excess
graph consists of v — 4 isolated vertices and the following graph on
the remaining 4 vertices, say, {1,2, 3,4}.

Then there exists a (v,5,7) minimal covering design.

Proof: Let v = 18 (mod 20) be a positive integer such that conditions (1)
and (2) hold. Then a (v,5,7) minimal covering design can be constructed
as follows:

1. take a (v,5,3) covering design with a hole of size 6. On the hole

construct a (6,5, 3) minimal covering design as follow: X = Z5 U {h}
and blocks (0 1 2 3 h) (mod 5). It is clear that the excess graph of
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the (v, 5, 3) minimal covering design contains the following subgraph.
From this design delete the block (1 2 3 4 k).

1 2

3

2. take a (v,5,4) minimal covering design on Z,_; U {h} such that its
excess graph is the same as described in (2). It is easy to check that
the above two steps yield the blocks of a (v,5,7) minimal covering
design.

Lemma 4.13.

1. There exists a (v, 5, 3) covering design with a hole of size 6 for v = 38,
58, 78, 98.

2. There exists a (v,5,4) minimal covering design for v = 38, 58, 78,
98 such that its excees graph is the same as in condition (2) of the
previous lemma.

Proof:

1. For a (v,5,3), v = 38, 58, 78, 98, covering design with a hole of size
6 see lemma 4.9.

2. To show that there exists a (v, 5,4), v = 38, 58, 78, 98, minimal cov-
ering design such that its excess graph satisfies the constraint of the
lemma we show that for v = 38, 58, 78, 98, there exists a (v, 5,4) cov-
ering design with a hole of size 8 or 13. But the excess graph of both
(8,5,4) and (13, 5,4) minimal covering designs satisfy this constraint,
[10]. Hence, the excess graph of a (v, 5,4) minimal covering design,
for v = 38, 58, 78, 98, satisfies this constraint.

For v = 38, 58 see [10], and for v = 78, 98 see [7].
Corollary. a(v,5,7) = ¢(v,5,7) for v = 38,58, 78, 98.

Proof: The result follows from lemma 4.12 and 4.13.
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Lemma 4.14. Letv = 18 (mod 20) be a positive integer. Then a(v,5,7) =
$(v,5,7).
Proof: For v = 18 let X = Zg then the blocks are

(0131115) (mod18) (01237 (mod 18)
(015913) (mod18) (02510 17) (mod 18)
(013912) (mod18) (02611 13) (mod 18).

For v = 38, 58, 78, 98 the result follows from the corollary.

For v > 118, v # 138 write v = 20m 4+ 4u+ h + s where m,u, h and s are
chosen so that

1. there except a RMGDJ5, 1,5, 5m];

2. 4u+h+s=18 (mod 20), 18 <4u-+h + s < 98;
3.0<u<m—1,s=0 (mod 4) and h = 6;

4. there exists a GD[5,7, {4,5*},4m + s].

‘Now apply theorem 2.6 to get the result.
For v = 138 apply theorem 2.3 withn =7, u=3 and h = 6.

5. Conclusion

. We have shown that a(v,5,7) = ¢(v,5,7) for all positive integers » > 5
with the possible exception of v = 22, 28,142, 162.
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