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ABSTRACT. In this paper we consider a permutation o € Sn, as
acting on an arbitrary tree with n vertices (labeled 1,2,3,...,n).
Each edge [a, b] of T corresponds to a transposition (a,b) € Sa,
and such a “tree of transpositions” forms a minimal generating
set for Sp. If o € Sn, then o may be written as a product of
transpositions from T,0 = lxtk—1...tat1. We will refer such
a product as a T-factorization of o of length k. The primary
purpose of this paper is to describe an algorithm for produe-
ing T-factorizations of o. Although the algorithm does not
guarantee minimal factorizations, both empirical and theoreti-
cal results indicate that the factorizations produced are “nearly
minimal”. In particular, the algorithm produces factorizations
that never exceed the known upper bounds.

1. Introduction.

In this paper we consider a permutation o € S, as acting on an arbitrary
tree with n vertices (labeled 1,2,3, ..., n). Each edge [a,b] of T corresponds
to a transposition (a,b) € S,, and such a “tree of transpositions” forms a
minimal generating set for S, [1] (this result goes back as far as Cayley). It
is convenient to abuse notation somewhat and use the letter T to represent
both the set of transpositions generating S, and the set of edges of the
corresponding tree. To introduce the topic, we make some brief definitions
here; the full details may be found in Section 2.
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If 0 € Sp, then o may be written as a product of transpositions from
T,0 = tgtg_y ... tat;. We will refer such a product as a T-factorization of
o of length k. The minimum value for k is called the T-rank of 0. The
primary purpose of this paper is to describe an algorithm for producing
T-factorizations of o. Although the algorithm does not guarantee mini-
mal factorizations, both empirical and theoretical results indicate that the
factorizations produced are “nearly minimal”. In particular, the algorithm
produces factorizations that never exceed the known upper bounds (due to
Vaughan [7]). In two special cases, there are known methods for finding
T-factorizations of minimal length; the case when T is a path is probably
the better known, and serves as a good illustration of the general problem.

Special Case: The Path

A path, T, has edges {[i,i + 1] | ¢ = 1...n — 1}. This special case has
been extensively studied and a great deal is known about it. The T-rank
of a permutation o is the number of “inversions” in o, and a minimal T-
factorization may be found by successively applying transpositions which
reduce the number of inversions. Riordan [6] and Knuth [4] are standard
references. Edelman [3] recently studied the relationship between the T-
rank of o and its cycle structure.

In this case, the geometry of T is that of a straight line. An inversion pair
of o is a pair {%,j} such that {o(¢),o(j)} is “out of order”, i.e., i < j and
a(i) > o(j). We may imagine the tree, T, with n labels attached where
a factorization causes each label i to “travel” from the vertex originally
labeled by i, to the vertex labeled by o(i). Each label can move only one
edge at a time and this is done by trading places with the label on the
opposite end of the edge. The geometry of T insures that each label i
trades places with every label j for which {3, ;} is an inversion pair. For
example, for n = 5, if (1) = 3, and 0(3) = 2, we have that {3,2} is an
inversion pair (see Figure 1). After the transposition (2, 3) is applied, the
labels 2 and 3 change places. This can all be made precise and leads to the
characterization of the T-rank of o as the number of inversion pairs.

1 2 3 4 5
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Figure 1: Path with labels attached.
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Special Case: The Star.

A star represents the other extreme case among the set of all trees on n
vertices. This tree has one central vertex of degree n — 1 and a collection
of n — 1 vertices of degree 1 (see Figure 2). In Portier and Vaughan [5],
this case is studied in detail and, among other things, a simple algorithm
for minimal T-factorizations is described. In some ways, this case is the
simplest of all since no label has to travel over more than two edges. In
particular, the T-rank of o is the sum of the T-ranks of the disjoint cycles
of a. Furthermore, a cycle, C, of length m has T-rank m — 1 if the center
vertex is moved by C and m + 1 if it is not. There is, seemingly, no good
way to define a notion analogous to inversion pair when T is a star. The
difficulty stems from the fact that, for any choice of labels i and j, there
are factorizations in which ¢ and j trade places over a given edge and others
where they do not.

O
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Figure 2: A star.

The General Case.

For a general tree T, some upper and lower bounds for the T-rank of o
are found in [7], but the problem of finding the exact T-rank of o (other
than by an exhaustive search) remains open, as does the related problem
of finding useful necessary and sufficient conditions for a T-factorization of
o to have minimal length.

As stated earlier, the main purpose of this paper is to present an algo-
rithm which produces T-factorizations for a general tree T. At each step of
the algorithm a transposition from T is applied until the composition results
in the identity. The algorithm has a number of appealing properties:

e an easily computed number related to the rank of o is reduced by 2
at every step

e it satisfies a provable necessary condition for minimality

e geometric intuition and all of our data so far, suggests strongly that
every minimal T-factorization could be produced by it
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o the T-factorizations produced by it are (in all our data so far) nearly
minimal

o the algorithm always produces a minimal T-factorization if T is a
path or a star

At any given step, the algorithm may identify several possible transposi-
tions, only one of which may be applied. At present, there is no theoretical
basis for identifying which, if any, of the possible transpositions will insure
a reduction in rank. Geometrical considerations suggest several heuristics.

After a few preliminaries, we define the VPA algorithm in Section 3, and
prove that it can be applied to every permutation in Sy, and that it always
terminates in the identity. As a consequence, we find rough upper and lower
bounds for the T-rank of o. In Section 4, we discuss some of the detailed
geometric aspects of o acting on T, and prove a necessary condition for a
T-factorization of ¢ to be of minimal length. In Section 5, we prove that
all the T-factorizations produced by the algorithm satisfy this necessary
condition. We also prove that they satisfy another condition which seems
to be desirable for minimality, though we have not been able to prove that
it is necessary. Finally, in Section 6, several heuristics are defined and their
performance on small permutations is described.

We shall be using the elementary theory and terminology of finite graphs
and trees (see [1,2]) and finite permutation groups (see [1,6,8]).

2. Preliminaries.

If n is a positive integer, S, denotes the symmetric group on the set
{1,2,...,n}. It is well-known that a set of transpositions of S, say

T={(a,~,bg)|i=l,2,...,k}

is a minimal generating set for the group S, if and only if k =n — 1, and
the graph with vertex set {1,2,...,n} and edge set T is a tree.

We assume throughout that T = {(ai, &) | i = 1,2,...,n — 1} is a
minimal generating set of transpositions for S,,. The degree of a vertex v of
T is the number of edges containing v, and an outer vertex of T is a vertex
of degree one. If o € S,,, then the least number m such that o is equal to a
product of m transpositions from T, is called the rank of o with respect to
T, or the T-rank of o, or just the rank of o if T is understood. If we have

0 =1trlp—1...l4 (tieTfori=1,...,k)

we say that the right-hand side is a T-factorization of o, of length k. If the
length of a T-factorization of o is the rank of o, then we will say that the
T-factorization is minimal.
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Since T is a tree, given any two vertices z,y of T there is a unique path
in T connecting z and y, denoted [z — y]. If the vertices on this path are,
in order from z to y: £ = a,, as, ..., akx =y, we may also write this path as

[z — y] = [a1,02,...,ak]

The number of edges in [z — y] is called the T'-distance from z to y, or just
the distance from z to y if T is understood. If o € S,,, and if i € {1,...,n},
the o-path of i is P(i,0) = [t — o(%)], and the length of this path is denoted
by L(i,0). The sum of all the lengths of these paths is denoted by PL(co),
and called the path-length of o:

PL(c) =) _ L(i,0).
i=1

The minimal disjoint connected components of T generated by the o-paths,
are called the a-components of T, and the subtree of T’ spanned by the union
of all these components is called the span of o, denoted Sp(o).

Lemma 2.1. Let ¢ € S,.. If (a,b) € T, then the number of o-paths
containing the edge (a,b) is even. Furthermore, PL(c) is even.

Proof: If the edge (a,b) is removed from T, the resulting configuration
consists of two disjoint trees X and Y. Define the sets A and B by:

A={zeX|o(zx)eY},B={yeY |o(y) € X}.

Since o is a permutation, these sets must have the same cardinality. Clearly,
the edge [a, b] is contained in the o-path P(i,0) ifand only ifi € Aori € B,
so the number N(a,b) of o-paths containing [a,b] is [A U B|, which is an
even number. Since PL(c) is the total number of edges contained in the
o-paths (an edge is counted once for each path containing it) it is clear that

PL(c)= )_ N(a,b)

(a,b)eT

and so PL(c) must be an even number also. O

Lemma 2.2. Let o € S, and t € T. Define T = ot. Then PL{c) — PL(T)
is either 2, 0 or —2.

Proof: Write ¢t = (a,b). Then if i # a,b, P(i,0) = P(i,7). We consider
three cases.

Case 1: P(a,0) = [a,b...,0(a)] and P(b,0) = [b,a,...,0(b)]. Then
since 7(a) = o(b), and 7(b) = o(a), we have P(b,7) = [b,...,0(a)] and
P(a,tau) = [a,...,0(b)], and then PL(o) — PL(7) = 2.
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Case 2: The edge [a,}] is contained in one of P(a,0), P(b,0), and is
not contained in the other; say P(a,0) = [a,b,...,0(a)] and P(b,0) =
[b,c,...,a(b)] where ¢ # a. Then

P(a,7) = [a,b,c,...,0(b)] and P(b,7) = [b,...,0(a)]

and PL(¢) — PL(7) = 0.

Case 3: P(a,0) = [a,z,...,0(a)] and P(b,0) = [b,y,...,0(b)], and (a,b)
is not contained in either P(e, o) or in P(b, o). Then we have

P(a,7) =[a,b,y,...,0(b)] and P(b,0) = [b,a,z,...,0(a)),

and PL(o) — PL(7) = -2.
These three cases are mutually exclusive and exhaustive. ]

Corollary 2.3. If o € Sy, then rank o > PL(c)/2.

3. The algorithm

In this section we describe an algorithm, VPA, that results in a T-factorization
of any given permutation 4. The underlying idea is that of a “greedy algo-
rithm”; we attempt to reduce the total path-length as much as possible. In
its basic form, VPA allows a certain amount of choice of what to do at any
stage. We have some conjectures about certain restrictions on the choice
of steps which might produce shorter T-factorizations. We describe these
briefly at the end of this section, and more fully in Section 6.

VPA consists of a finite sequence of “steps”, of three different types: each
step adds to the result of the preceding step by one or two specially chosen
transpositions of T. The algorithm terminates when the result of some
step is the identity permutation, which we denote by e. Upon termination,
we have an equation of the form ¢ = Be, where « and § are products of
T-transpositions, and this gives the corresponding T-factorization of o.

We first describe the algorithm, and then prove the results necessary to
show that it works: i.e., at any stage, at least one of the steps is possible,
and the algorithm must always terminate in the identity, denoted by e.

Definition 3.1: Let (z,y) be an edge of T, and suppose P(z,0) = [z,y,
z...w] and P(y,0) = [y,z,t...r]. Then (z,y) is an A-transposition for o.
Note that if (z,y) is an A-transposition, then o(zy) = 7 satisfies P(y,7) =
[v,z...w]and P(x,7) = [z,7...,7]. Also,if uis not z or y, then P(u,7) =
P(u,o).

Definition 3.2: Let (z,y) be an edge of T, and suppose P(z,0) = [z, ... 2,
t,w] and P(y,0) = [y,...,n,w,t]. Then (t,w) is a B-transposition for
o. Note that if (t,w) is a B-transposition, then ({,w)c = 7 satisfies
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P(z,7) = [z,...,2,t] and P(y,7) = [y,...,7,w]. Also, if u is not = or
y, then P(u,7) = P(u,0).

Definition 3.3: Let (z, y) be an edge of T, and suppose the following hold:
e z,y are adjacent vertices of T',
e a(y)=y
eo(z)=x#z2
e P(z,0) = [z,y,...,w]
o P(z,0)=|z,...,y,7]

Then (z,y) is a C-transposition for o. Note that 7 = (z, y)o(zx,y) satisfies
the following: 7(x) =z, P(y,7) = [y,...,w], and P(2,7) = [2,...,y]. Also,
if u is not z or y, then P(u,7) = P(u,0).

Lemma 3.4 is an obvious consequence of the above definitions.

Lemma 3.4. Let 0 € S,,, where o # e.
e Ift is an A-transposition for o, then PL(ot) = PL(c) — 2.
e Ift is a B-transposition for o, then PL(tc) = PL{c) — 2.
e Ift is a C-transposition for o, then PL(tot) = PL(c) — 2.

Algorithm 3.5. (VPA): Given 0 € S,. We define sequences of permu-
tations in Sy, {o0:}, {ai}, {B:} as follows: oo =0, ap = ¢, fo = e. If, for
some value of i, o; = e, the algorithm terminates; otherwise perform the
first of the following three steps that applies:

A-step: If there exists an A-transposition (z,y) for o;, put
Oiy1 = 05(93» Y), Qip1 = (-77, y)a,-, Bi+1 = Pi.

B-Step: If there is no A-transposition for o;, and there exists some B-
transposition (z,y) for o, then put

Oi10; = 05(T,Y), Qi1 = o4, Biy1 = Bi(z,y).
C-Step: If there is no A-transposition for o;, and no B-transposition (z,y)
for o;, then there must be a C-transposition (z,y) for o; (we prove this

later) and then put

Oi+10; = (I,y)di(-"»‘,y).aHl = (x, y)ai,ﬂiﬂ = Bi(z,y)-
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Note that at the ith step, we have ¢ = B;0;0;, and if the algorithm
terminates at the mth step, then o = f,a,, is a T-factorization of o,
which will be called a VPA-factorization of o.

It should be observed that an A-transposition for ¢ is a B-transposition
for o~! and vice versa; and that a C-transposition for ¢ is also a C-
transposition for o~!, and vice versa. Thus, if 0 = t,,...¢; is a VPA
factorization, then 0! = t,...t,, is also a VPA factorization. Several of
the following proofs make use of this duality. If the rank of o is 1, 2, or 3,
it is easy to check that the VPA-factorization is minimal. If ¢ has rank 1,
then o “is” an A-step for o; if s has rank 2, there are two A-steps. If o has
rank 3 an examination of the small number of possibilities for Sp(c) yields
the desired result. For example, if o is a 4-cycle of rank 3, Sp(o) is either a
path on 4 vertices or a star on 4 vertices, and o will be minimally factored
with 3 A-steps.

We must first prove that for any o # e, there is always an A-step or a
B-step or a C-step. We begin with the following definition.

Definition 3.6: Let v be a vertex of T and a be any vertex adjacent
to v. Removal of the edge (a,v) disconnects T into two components, one
containing a (denoted C(a)), and one containing v. Let F(v,a) be the
subtree of T' consisting of C(a) together with v and the edge (a,v). Then
F(v, a) is called the fan of T determined by v and a. If every path in F(v, a)
from v to an outer vertex has length < k, where k is some positive integer,
then we say that F'(v,a) is a k-fan.

4 F(v, a)\
v a
rest of T
I\ J

Theorem 3.7. Let o € S,, and suppose that if x is an outer vertex of T
then o(z) # z. Now suppose that there are no possible A- or B- or C-steps
for . Then for every positive integer k, every k-fan F(v,a) in T has the
following properties:

(i) ifz € F(v,a), then o(z) #v
(ii) o(v) ¢ F(v,a).

Proof: By induction on k. When k& = 1, a 1-fan F(v, a) is an interval of
length 1; F(v,a) = [a,v], where a is an outer vertex of T'. Since o(a) # a,
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then [a,v] is contained in P(a,o). Since there are no A-transpositions,
then [v, a] cannot be contained in P(v, o), that is, o(v) # a. Suppose that
o(z) = a; then P(z,0) = [2,...,v,a] and has length at least 2. Since there
are no B-transpositions, then P(a,0) cannot be [a,?], that is, o(a) # v.
Then we have P(a,0) = [a,v,...,z] and P(z,0) = [2,...,v,a] (where
z,z # v). Since there are no C-transpositions, then it must be the case
that o(v) # v. Thus, (i) and (ii) are true when k= 1.

Now fix & > 1, and suppose that (i) and (ii) are true for all j-fans, where
J < k. Let F(v,a) be a k-fan which is not a (k — 1)-fan. Then there
exists some z € F(v,a) such that z is adjacent to @ and = # v, and for
. this z, F(a,z) is a j-fan for some j < k. For each such z, since (i) and
(ii) are true for F(a,z), then o(a) is not in F(a,z), and if y € F(a,z),
then o(y) # a; and if 6(2) = a, then z is not in F(a,z). It follows that
P(a) = [a,v,...,0(a)] and P(2) = [2,...,v,a] (z # a).

Since there are no A-transpositions, then P(v) cannot contain the edge
(a,v). Since every path between v and an element of F(a,z) must con-
tain the edge (a,v), then P(v) = [v,...,0(v)] cannot contain elements of
F(a,z), and in particular, o(v) is not in F(a, z), and z # v. This holds for
every z € F(v,a) which is adjacent to a and with z # v, and so o(v) is not
in F(v,a) — {v}.

Similarly, since there are no B-transpositions, then o(y) # v for any y in
F(v,a) — {v}. Finally, comparing P(a) and P(z) above, it must be the case
that o(v) # v, since there are no C-transpositions. Thus o(v), 0~}(v) are
not in F(v,a). Now the conditions (i) and (ii) are true for F(v,a). This
completes the induction. a

Corollary 3.8. Let 0 € Sy, and suppose that o # e. Then o has either
an A-transposition, a B-transposition, or a C-transposition.

Proof: Let T* be the subtree of T spanned by the set {z | o(z) # z}. Then
T* satisfies the hypothesis of Theorem 3.7. Since 7™ has finite diameter,
we can pick any outer vertex v, and regard T* as a k-fan F(v,a) where
a is the unique vertex adjacent to v, and k is some positive integer not
exceeding the diameter of T*. If o had no A- or B- or C-transpositions,
then by Theorem 3.7, o(v) would not be in T*, contradicting the fact that
T* contains all the vertices z such that o(z) # z. The result follows. O

Theorem 3.9. Let o € S,,, and suppose that o has no fixed points. Then
o has an A-transposition.

Proof: Let zo be an outer vertex of T and define inductively a path in
T, S= [xo, T1,T2y.. .], by: P(zo,a) = [:x:o,:cl, .o .], P(J:1,0’) = [:1:1,32, .. .],
and in general, P(z;,0) = [zi,Zi+1,...|. Since o has no fixed points,
then z; # z;4,, for : = 0,1,.... Since S is a path in T, then any two
successive members of S are adjacent in T'. Finally, since T is finite, there
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must be some least index i such that z;4, = zx, where 0 < k < ¢, and
from the preceding observations z;,, can only be z;_;. That is, we have
P(z;-1,0) = [2i-1, %4, ...] and P(z;,0) = [zi,%i—1,...] Then (zi,zi—y) is
an A-transposition for o.

Corollary 3.10. Let o € Sy, and suppose that some o-component of T
contains no fixed points of o. Then o has an A-transposition.

Theorem 3.11. Let o € Sy, where o # e. (a) Then Algorithm 3.5 applied
to o, terminates in finitely many steps. (b) Let r, s,t (respectively) be the
numbers of A- , B- , C-steps used in the algorithm. Then the number of
transpositions in the resulting T-factorization of o is given by m = r+s+2¢,
and we have

PL(c)/2 < m < PL(c) — 1.

Proof: (a) The identity, e, is the only permutation with path-length 0.
By Lemma 3.4, each step of the algorithm reduces path-length by 2, and
when path-length has been reduced to 0, the algorithm terminates. (b) An
A- or B- step contributes one transposition to the resulting T-factorization
of o, while a C-step contributes two transpositions. So the total number
is m = r + s+ 2t. Since each step reduces path-length by 2, we have
r+ s+t =PL(0)/2, and so m <PL(c)/2. Consider the next-to-last step
of the algorithm, oy,_;. Since o;n—; must have path-length 2, the only
possibility is that o1 = (z,y) where (z,y) is an edge of T. Then the last
step of the algorithm must be an A-step, since (z,y) is an A-transposition
for o;n—1. Then r > 1, and it follows that

m=r+5+20<2(r+s+t)—1=PL(0) - 1.

This completes the proof. a

Corollary 3.12. Let 0 € S,. Then PL{0)/2 < rank o < PL(o) - 1.

We are interested in reducing the path-length as quickly as possible (to
produce a T-factorization of & which is reasonably close to minimal). That
is, the sequence of steps used should ideally have as many A-steps and
B-steps as possible. It is easy to find examples (see below) to show, that
different choices of C-steps can lead to differences in the total number of
A-steps and B-steps used.

Example 3.13: Let T = {(u,¢), (v,¢), (c,a), (e,d), (a,b)} and let o be the
permutation (with PL(o) = 12):
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Then o has no A-transpositions or B-transpositions, and it has two C-
transpositions: (a, b) and (a, d). If we use (a, b) first, we get the factorization

o = (a,b)(a, c)(a, d)(c, u)(c, v)(a, c)(a, b)
of length 7 (the T-rank of o). However, if we use (a, d) first, we get
o = (a,d)(v,c)(a, b)(a,c)(a, b)(u, c)(v,c)(a, c)(a, d)

of length 9. Using (a, b) first, then all the remaining “steps” are A-steps;
using (a, d) first, this is not the case.

In general, in seeking to maximize the total number of A- and B-steps
used, our examples suggest that it is a good idea, when choosing C-steps,
(i) to choose a C-step (a, b) (with o(b) = b) such that (if possible) o(a) is
an outer vertex of T and (ii) it is also a good idea to try to reduce path-
length in a “balanced” way, i.e. choosing always to reduce the length of
some longest path among all the paths of s which are affected by C-steps.
We discuss some other possibilities in Section 6.

Interestingly enough, no special arrangements are necessary in the case
when the tree T is a path or a star. a

Theorem 3.14. VPA produces minimal factorizations for the cases where
T is a path or a star.

Proof: For the case of the path, it is easy to prove that an A or B step
reduces the inversion number by one, and a C-step reduces it by two. The
result follows from the fact that the inversion number of o is the rank
of o. If T is a star, the steps of the VPA are (up to rearrangement of
commuting factors) precisely the steps of the algorithm given in [3], which
gives a minimal factorization.

4. Trajectories and minimality

In this section, T and o are fixed. We first prove a theorem and corollary
which give necessary conditions for a T-factorization of o to be minimal.

21



Definition 4.1: Given a factorization o = ttm—1...t2¢1 and x a vertex
of T, we define the trajectory of = determined by this factorization to be
the (ordered) sequence R(z,0) = {z = Zo,Z1,%Z2,... ,Tm} Where z; =
(titi1...tat1)(z) fori=1,2,...,m. We may refer to these as “trajectories
of o” when the factorization is understood. Two trajectories are disjoint
if they are disjoint as sets. For a fixed T-factorization, it is clear that in a
trajectory R(z,0), for each i =1,2,...,m, z; and z;_ are either equal or
adjacent, and that for each i, precisely two of the trajectories have unequal
entries in the ¢, i+1 positions. The trajectory R(z, o) is said to be monotone
provided that for all ¢ = 1,2,..., m we have:

(i) z: € R(z,0) = z; € P(z,0) = [z = a0, a1,a2,. .., 0% = 0(z)]
(ii) If z, = a, then either zi41 = ar OF T¢41 = ary1.
(A monotone trajectory for x traces out the path of z, P(z,0), in order

from z to o(z), without either “going off” the path, or “backing up” on
the path.)

We can write ¢; = (u;,v;) (where (u;,v;) € T). If z and y are vertices of
T with the following property:

Ti—1=ti—1.. .tl(z) =u; and yi—1 =t;—1.. .t1(y) = vj,

then we will say that = and y cross at ;.

Lemma 4.2. Given a T-factorization o = tytm—1...t2t1. If = and y cross
at t;, then

o=tm...t1 =tm...Lix1ti—1.. .tl(:z:,y) = (a(:r),a(y))tm...t.-+1t,-_1 I 1

Proof: For any permutation a and transposition (r,0), it is true that
a(r,0) = (a(r), a(o))a. The result follows from this. 0

In the above lemma, [z,y] need not be an edge of T. If it is, of course,
then the lemma gives an alternative T-factorization of o.

Theorem 4.3. Let 0 = tym ...t1. Suppose that {1 < i,42,...,% < m}

is an increasing sequence of integers. (We will use the notation t(i) =

t;.) Let o(iy,ip,...,ik) denote the result of removing the transpositions

t(31), t(i2), . . ., t(ix) from the factorizationty, .. .¢1. For eachi = 1y,42,...,%
write t; = (ui,v;), and let z;, i, ai, b; be defined by

u; =t;_1ti_2.. -tl(mi)
v; = ti—ati—a. .. b1(¥i)
a; = o(z;),b; = o(yi)-
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Then

O =1lm...ty =0(iy,d2,..., %) (@1, 11)(Z2, ¥2) - . - (Tk, Yk)
= (a'lrbl)(a"b 62) vee (ak’ bk)a(ils i?, cen 12"16)'

Proof: The proof is by induction'on k. The case £k = 1 is just Lemma
4.3; for simplicity we work out only the case k = 2. Foreachi=1,...,m,
define ¢; = ¢;6i—1 ... 8261

Put i = 'il and ] = 1:2. Since 1 < 1 < J < m, then T3 = tjtj_1 . --ti+lTi;
and by Lemma 43, we have T = tjtj_l .. .t,'+1‘7'i = tj_l - t,-+11',~(x2,y2).
Since 7y =titi—1...t; = ti—1...t1(x1, 1), it follows that o = o (%, 5)(z1, ¥1)-
(x2,y2). Since ap = o(z3), ba = o(¥2), and a; = o(z1), b1 = o(y1), then
we have (a3, b2)0(z2,y2) = 0 = (a1, b1)0(z1,¥1) so that (ag, bz)(a1,b1)0 =
o(z2,y2)(z1,11) = o(3,7), and (a1, b1)(az, bp)o(i, j) = o as required. O

Obviously, if the product (or any subproduct of) (z1, y1)(z2, y2) - - . (&, ¥x)
is the identity then the initial factorization of ¢ is not minimal. If any of
the (z;,u:) (or (as, b)) is an edge of T, then one can get a different T-
factorization of o. Unfortunately, a non-minimal factorization of o need
not have any product of this type equal to the identity, and need not allow
any rearrangement along these lines. The example in Section 3 is such a
one. Nevertheless, this theorem supplies a reasonable necessary criterion
for minimality, which we shall see is satisfied by the factorizations produced
by the VPA.

Corollary 4.4. Suppose that o = i, ...t is a minimal T-factorization. If
x,y are two distinct vertices of T, then = and y cross at most once, that is,
if z and y cross at some t; (1 <i < m), then z and y do not cross at t; for
any j #i.

Lemma 4.5. Suppose that z is an outer vertex of T, adjacent to y, and
that o(z) = z. If 0 = tm ...t is a VPA factorization, then t;(z) = z for
alli=1,2,...,m.

Proof: The result is certainly true if m = 1, and then it follows easily by
induction for all m > 1. a

In the next lemma, recall the notation of the VPA: at the ith step of
the VPA, we have permutations o;, a; and §; such that o = fioia;. The
permutations ¢; and §; are products of the transpositions associated with
the various A, B, and C-steps employed up to that point.

Lemma 4.6. Let i > 1, and suppose that the first ¢ steps of a VPA for o
are all A or B-steps. Then (a) for every = in T, the trajectories R(zx, o)
and R(z, f;) are monotone, and (b) the a; components of T, and the f;
components of T, do not contain any fixed points of .
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Proof: Statement (a) follows by induction from the definitions of A and
B-steps. To see (b), suppose that o(c) = ¢, and that, for example, the first
step is an A-step. We have o = t,,...¢;, where ¢; = (u,v), and neither u
nor v is fixed by o (from the definition of an A-step). Then ¢;(c) = ¢, and
o1(c) = c; then if ¢ is an A or B-transposition for o; we must have ¢(c) = ¢
also. Proceeding inductively, none of the first i steps of the VPA can move
c, that is, if x # c, the trajectories R(z,a;) and R(z, 5;) do not contain
c¢. Since all the trajectories R(x,q;) are monotone, then each of the a;-
components of T consists precisely of a union of all the vertices contained
in some collection of the trajectories R(z, a;); similarly for B;. Since none
of these trajectories contains any fixed points of o, then (b) follows. a

Corollary 4.7. Let o(z) € z, and suppose that P(x,o0) contains a fixed
point of 0. Then every VPA factorization of o requires at least one C-step.

Theorem 4.8. Let 0 € S,,. The following are equivalent:
1. m = rank o =PL(0)/2
2. o0 hasa VPA féctorization with no C-steps
3. o has a VPA factorization with no C-steps or B-steps

4. For eachi =0,1,...,m — 1, if 0y(z) # z, then P(z,0;) contains no
fixed points of o;.

Proof: The implications (1) < (2) and (3) « (1) follow from Theorem
3.11, and (4) < (3) follows from Theorem 3.9; while (3) < (4) and (2) &
(4) come from Corollary 4.7. 0O

5. Conditions satisfied by the VPA

In this section, we first show that the VPA has a property which seems to be
desirable for minimality, that is, if two elements z and y of T have disjoint
o-paths, and if o = {,,...11 is a VPA factorization, then the trajectories
R(z,0) and R(y,o) are disjoint. (We have not been able to prove that
a minimal factorization of ¢ must have this property, but it seems highly
probable.) We then prove that any VPA factorization satisfies the necessary
condition for minimality given in Corollary 4.4. We will show that if o =
tm ...t is a VPA factorization, then two distinct elements of T' do not cross
more than once.

Definition 5.1: If X and Y are subsets of the set of vertices of T, then
the distance between X and Y is

d(X,Y) =dp(X,Y)=min{d|T(z,y) |z € X,y Y}



We may regard a path or trajectory of o as a set of vertices of T, and so it
makes sense to speak of the distance between two o-paths, for instance.

Theorem 5.2. Suppose that ¢ = iy, ...t is a VPA factorization, and
z,y € T. Suppose that d(P(z,c), P(y,a)) > 2. Then the trajectories
R(z,0) and R(y, o) are disjoint.

Proof: The proof is by induction on m. The result is certainly true for all
o which have a VPA with no C-steps, by Theorem 4.8 , since in that case,
the VPA would consist entirely of A-steps, and all the trajectories would
be monotone. In particular, it is true for all o of rank 1 or 2, which are
precisely those with a VPA factorization of length 1 or 2.

Assume the result is true for all permutations + with a VPA factorization
of length less than m. Suppose first that 7y = (a,b), is an A-step for o.
Then 0y = t; ...tz is a VPA factorization of length m — 1, P(a,0,) =
P(b,0) - (a, b], P(b o1) = P(ae,0) — [a,b), and for all z € a,b we have
P(z,01) = P(z,0). The situation is similar for a B-step. For a C-step,
two of the paths have a point removed and a new vertex is fixed, while the
others remain the same. Thus, in all cases, the distance between two paths
cannot decrease, that is, for all z,y € T, we have

d(P(erl)rP(yyal)) 2 d(P(a:,a),P(y,a))

Now assume that d(P(z,0), P(y,0)) = 2. Then d(P(z,0,), P(y,01)) = 2
also, and by the induction assumption, since d{P(x, 1), P(y,o1)) > 2, then
the trajectories R(z,01) and R(y, o) are disjoint. Since d(P(z, o), P(y,0)) >
2, then (z,y) cannot be an A or B or C-transposition for o, and so
t; # (z,y), and the trajectones R(z,t1) and R(y,t;) are also dlSjOlnt
Then R(z,0) and R(y,o) are disjoint, as required. O

Theorem 5.3. Suppose that ¢ = t,,...t; is a VPA factorization where
d(P(z,0), P(y,0)) = 1. Then the trajectories R(z,0) and R(y, o) are dis-
Jjoint.

Proof: The proof is by induction on m. The result is easily checked for
m=1or 2.

The assumption implies that P(z,0) and P(y,o) are disjoint, and so
(z,y) cannot be an A or B or C-transposition for . Then for o; (the
result of the first step of the VPA) we have d(P(z,0,), P(y,01)) > 1. If
the equality holds, then R(z, o) and R(y, o) are disjoint by the induction
assumption; otherwise they are disjoint by Theorem 5.2. Since the first A
or B or C-step is not (z, y), then ¢; € (x,y), and as in the proof of Theorem
5.2, we have that R(z,0) and R(y, o) are disjoint. (]

Lemma 5.4. Suppose that ¢ = t,,...t; is a VPA factorization, and
that t; = (a,b) is an A-transposition for o (respectively, that t,, is a B-
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transposition for o). Then a and b cross at t; (respectively, t), and do
not cross at t; for any i = 2,...,m (respectively, i=1,...,m —1).

Proof: We have oy = t,, ... t2, and by the definition of an A-step,
d(P(atal)’ P(btal)) =1

Thus R(a, o) and R(b,0,) are disjoint. It follows that a and b do not cross
at any ¢; with 2 < i < m. The proof is similar when t,, is a B-transposition
for o. a

Lemma 5.5. Let o0 = t,,...t; be a VPA factorization, and suppose that
t; = tm = (a,b) is a C-transposition for o (i.e., o(a) = a, and o(b) # b,
o(z) = b, and a € P(b,0), a € P(z,0)). Then a and b cross at ¢, and do
not cross at t; for any i = 2,...,m, and a and z cross at t,,, and do not
crossat t; foranyi=1,...,m—1.

Proof: Since ¢; = (a,b) is a C-transposition it is easily verified that a and
b cross at ¢;, and a and z cross at ¢,,. We need only show that a and b and
a and z do not cross at any of t;n—1,...,¢2.

Since the first step is a C-step, we have o1 = tpy—1...%2, and P(b,01) =
{b}, P(a,01) = P(b,0) — (a,b], P(z,01) = P(2,0) —(a,b]. Thus

d(P(a, 01), P(b,01)) =1 and d(P(z,al),P(b,al)) =1

We can then conclude by Theorem 5.3 that R(a,01) and R(b,0,) are dis-
joint, and so a and b do not cross at any ¢; with 2 < i < m, as required,
and also R(z,0;) and R(b,0,) are disjoint, and so b and z do not cross at
any t; with 2 <1 < m. Since z # @, and a and b do cross at ¢, then a and
2 do not cross at ¢;, and so a and z do not cross at any ¢; with 1<i<m.O

Theorem 5.6. Let ¢ =ty ...t be a VPA factorization. If z,y € T, and
if z and y cross at t; for somei=1,2,...,m, then z and y do not cross at
t; for any j # i.

Proof: The proof is by induction; the result is easily seen for m =1 or 2.
Suppose m > 2, and suppose that z and y cross at ¢;, where i is minimal.
If i = 1 or m, the result follows from Lemmas 5.4 and 5.5, so suppose
2 < i < m. Then ¢;(z) and t1(y) cross at ¢; in o1, and by the induction
assumption, they do not cross at any other t; in ¢;. Then z and y do not
cross at any other ¢; in ;. If o has an A-step, then z and y do not cross
at ¢, and o =ty ... ¢2, and the result follows; similarly if o has a B-step.
If o has a C-step, then z and y do not cross at either ¢; or ¢y, (by Lemma
5.5), and 01 = t;—1 . .. t2, and the result follows.
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6. Heuristics

Each step of VPA allows a number of permissible steps. At this point, we
have no theoretical basis for preferring one A (or B or C)-step over another.
However we do know that the final result does depend on these choices. In
an attempt to determine the effectiveness of VPA and to investigate its
behavior under various decision criteria (heuristics), we have programmed
six versions of the VPA, which we will call VPA;, VPA,, and so on. We
have run these for all permutations in S,, for n = 1,2,...,7, for all non-
isomorphic trees with n vertices. These trees are enumerated in the Table 1.

The rank of each permutation for each tree was computed separately by
constructing the appropriate Cayley graph. Each heuristic was then applied
to each permutation for each tree and the actual T-rank was compared to
the length of the resulting T-factorization. Due to the fact that a given
permutation is either even or odd, the difference between T-rank and the
length of any T-factorization must be an even number. Let us denote the
length of the T-factorization of o by VPA; as LF;(s) and DF;(o) as the
difference LF;(o)-T-rank of o.

NisR

S31 S4.1 542 551

1

<

$7.1

1T
NS

NE
KELFKH
XK

S7.6 S1.7 $7.8

K

$7.9 S710 S2.11

Table 1. Non-isomorphic trees with < 7 vertices

The six heuristics are described below. In all cases, A-steps are preferred
to B-steps and B-steps are chosen over C-steps. If there are several trans-
positions that satisfy the selection criteria for a heuristic, the one chosen
is the first one encountered. The symbols z,y, z, used in a way consistent
with Definitions 3.1, 3.2, 3.3
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VPA, | A-step. Select the first one encountered.
B-step. Select the first one encountered.
C-step. Select the first one encountered.

VPA, | A-step. If possible, select (z,y) where either z or y will be
removed from the span of the tree. Otherwise, select the
first one encountered.

B-step. Same as A-Step.

C-step. If possible, select (z,y) where z will be removed
from the span of the tree. Otherwise, select the first one
encountered.

VPA3 | A-step. Select (z,y) so that either L(z,0)

or L(y, o) is maximal

B-step. Same as A-Step.

C-step. Select (z,y) so that either L(z,0)

or L(z,o0) is maximal

VPA, | A-step. Select (z,¥) so that L{z,0) + L(y, o) is maximal
B-step. Same as A-Step.

C-step. Select (z,y) so that either

L(z,0) + L(z,0) is maximal

VPAg | A-step. Select (z,%) so that the distance from z or y
to an outer vertex is maximal

B-step. Same as A-Step.

D-step. Select (z,y) so that the distance from z

to an outer vertex is maximal

VPAg | A-step. Select (x,%) so that the crossover number on
[z — y] is maximal

B-step. Same as A-Step.

D-step. Same as A-Step.

The crossover number of an edge [z — y| is the number of o-paths,
[a = o(a)], in which [z — 3] is found. The rationale for VPAg is to reduce
the total crossover number as quickly as possible.

The trees S3.1, S4.1, S5.1, §5.3, S6.1, S6.6, S7.1, and S7.11 are either star
graphs or paths and therefore all heuristics produced exact factorizations for
all 0. In all cases studied and for all heuristics, DF;(c) < 4. In particular,
DF3(0) < 2 and DF4(0) < 2 for all o in all cases and these seemed to be the
best overall heuristics for the cases studied. In addition, VPA3 and VPA,4
gave exact factorizations for S5.2, thus being exact for all permutations
of 5 letters. Table 2 shows the worst and best heuristics studied, VPA,
and VPA, respectively. The entries in a row labeled Sn.m are the number
of permutations in S, for which the equation at the top of the column
was satisfied. For example, of the 120 permutations generated by way

28



of tree S5.2, 119 had exact factorizations using the heuristic VPA, (i.e.,
DFl(O' ) = 0)

Tree || DF1(0)=0 | DFi(0)=2 | DFi(0)=4 || DF4(0)=0 | DF4(0) =2
S5.2 119 1 120
S6.2 702 18 714 6
S6.3 696 24 716 4
S6.4 686 34 720
S6.5 706 14 720
S7.2 4813 226 1 4938 102
S§7.3 4739 297 4 4924 116
S7.4 4617 422 1 4941 99
S7.5 4526 514 4886 154
S7.6 || 4752 282 6 4946 94
S7.7_|| 4732 306 2 4990 50
S7.8 | 4752 288 4949 91
S7.9 4890 150 5040
S7.10 H 4638 402 5040

Table 2: The best case and worst case results

As an additional example, we consider several permutationson {1,2,3, ...
9,A,...,F} with T given below:

Since it was not possible to compute the actual rank of the all 15! permu-
tations, 10 permutations were arbitrarily chosen and all 6 heuristics applied.
A lower bound was computed using a theorem from [4], reproduced below
without proof.

Theorem. Let 0 = t,,...t; be a T-factorization. Let K be the set of all
fixed points of o such that for some y # z, we have z € P(y,o). Let J be
the set of all z such that o(x) # z, and for some y # z, P(z,0) € P(y,0),
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and the two paths are in the same direction. Then

m > |K| +|J| + PL(0)/2.

Table 3 summarizes the results of this second experiment. If the parity
of a permutation is not that of the lower bound, an adjustment can then
be made. This is reflected in the computed lower bound (LB).

Image of ¢ !? |K{ [ TLB]LF, | LFo | LFg | LF4 | LFs | LFg
ASB6FIED23C7984 5 | 0 1 26 34 30 28 | 30 34 34
[ B87AD2FI1C4593E6 | 22 0 0 23 | 25 25 25 25 25 25 |
[ 386B21C47AFDISE | 18 0 1 19 23 21 23 3 23 23
AFDC3472B65E081 | 23 1 1 26 | 32 30 28 28 32 32
O9BEFDC6817A2534 | 22 0 2 25 29 29 29 27 29 29 |
[TCDFIABOE3428765 | 23 0 1 34 | 30 30 28 28 30 28 |
ESFB3C4D1AG66972 | 22 0 1 24 28 30 28 28 28 30
| 7ACFED2649B3158 | 22 0 0 23 25 25 25 25 25 |
ES512DAC3B469F87 | 22 0 1 23 29 27 29 27 29 29
ODB436FBI1CBATEZ | 20 1 0 22 34 24 24 34 24 36
Table 3: Results of the second experiment

Conclusion

In this paper we have described an algorithm that factors permutations
from S, into a product of transpositions. The set of allowable transpositions
forms a tree on = vertices. The algorithm guarantees factorizations that
are bounded above by PL(c) — 1 and bounded below by PL(c)/2. In
addition, the algorithm produces minimal factorizations in the case of the
path and the star. Necessary, but not sufficient, conditions for minimality
are satisfied by the resulting factorizations. The paper concludes with a
computer investigation of VPA under various decision criteria and small
values of n. :
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