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ABSTRACT. In this paper, scheduling problems with communi-
cation delays are considered. Formally, we are given a partial
order relation < on a set of tasks T, a set of processors P and
a deadline d. Supposing that a unit communication delay be-
tween two tasks a and b such that a < b occurs whenever a and
b are scheduled on different processors, the question is: Can
the tasks of T' be scheduled on P within time d? It is shown
here that the problem is NP-complete even if d = 4. Also for
unlimited number of processors, C. Picouleau has shown that
for d = 8 the problem is NP-complete. Here it is shown that
it remains NP-complete for d > 6 but is polynomially solvable
for d < 6, which closes the gap between P and NP for this
problem, as regards the deadline.

1. Introduction

Multiple-machine scheduling theory is the study of constructing schedules
of machine processing for a set of jobs in order to ensure the execution of
all jobs in the set in a reasonable amount of time. Such problems arise
in the parallelisation of algorithms, & model of parallel computation be-
ing represented by a network of processors communicating through a main
memory and a set of tasks (“a program”) to be executed as soon as pos-
sible. But what we observe then is that, the practical performance (the
execution time in practice) of a computation does not perfectly match the
gain (in time) that one would expect from a (theoretically) effective par-
allelisation. Anomalies of this kind account for the communication delays
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involved in the communication between the processors. A realistic evalua-
tion of a performance of an algorithm should then take into account such
communication delays.

Formally, we are given a partial order relation < on a set of tasks T, a
set of processors P and a deadline d. Supposing that a unit communication
delay between two tasks a and b such that a < b occurs whenever a and b
are scheduled on different processors, the question is: Can the tasks of T
be scheduled on P within time d? Previous work has been obtained in the
area (see [?] and [?]). The complexities of some scheduling problems with
communication delays have been studied by Picouleau [?] and Rayward
Smith [?].

We propose here to strengthen some known NP-completeness results in
order to obtain lower bounds on the polynomial approximation ratios and to
locate more precisely the boundary between P and NP for these problems.

1.1. Definitions and notations

Let T be a set of tasks endowed with a partial order relation <, P be a set
of p processors and d be an integer.

Throughout, each task will be supposed to have unit execution time.
Moreover, for every two tasks a and b such that a < b, if a and b are sched-
uled on two different processors, then a unit communication delay will occur
before the execution of b. The problem of deciding on the existence of a
schedule of T on P within time ¢ < d is denoted by SC(P,d). Moreover,
if the number of processors is not limited (so p >| T |), the correspond-
ing subproblem is denoted by SC(P,d). If in addition, the duplication of
tasks is allowed, the corresponding decision problem will be denoted by
SC(P,d,dup). (Notice that the duplication of tasks can be usefull to de-
crease communication time). The optimisation versions of these problems
are denoted by SC(P) and SC(P) respectively.

Let us add a few words on the encoding of a partial order relation in
our decision problems. A precedence graph, as a graph of a partial order
relation, is an acyclic directed graph and its vertices are called tasks. Con-
versely, every directed acyclic graph defines a partial order relation which
is the transitive closure of the relation of the graph. As the computation
of the transitive closure of a graph is easy, our partial order relations will
be defined (encoded) simply as directed acyclic graphs in all our decision
problems.

Examples of schedules with communication delays:

Let T = {a,b,c} be a set of three tasks such that a and b precede c, and
P = {Py, P,} be a set of two processors. Then the earliest execution time of
T is t = 3, because the processor to which the task c is assigned needs both
"results” from a and b, so either a and b are executed by the same processor,
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or a communication delay will occur. Hence, ¢ cannot be executed at time
t = 2. Similarly, if a precedes both b and c, the earliest execution time of T
is t = 3, because either T is executed by a unique processor, or one of the
tasks b and c is executed by a processor distinct from the one to which a is
assigned, which produces a communication delay. However, if duplication
of tasks is allowed in this latter case, we could execute T in time ¢t = 2 by
duplicating a.

Let G be a partial order relation graph and L; be the set of vertices of
G that have no predecessors. Let us denote by U the graph obtained from
G by adding a source node xo which precedes all the vertices of L.

For a vertex z of G, we call level of z and we denote s(z) the integer
defined by s(z) = dy(zo, ), where dy(z, y) denotes the distance from z to
y in U. In other words, s(z) is the breadth first search level (search from
x9) of vertex z.

We denote by L;(G) (or simply L; if G is obvious from the context) the
set of vertices of level i in G. For a subset A of tasks, we denote by I't (A)
(resp.I'=(A)) the set of all successors (resp. predecessors) in G of the tasks
of A. Simillarly, we define I'*(A) (resp. ['~%(A)) as: ['*(A) = I'+(I'*~1(A))
(resp. I'~%(A) = I'—(I'~(k=1)(A))). For a task z, we denote by §*(z) (resp.
6= (z)) the out-degree (resp. in-degree) of = as a vertex of G: §*(z) =|
It (z) | (resp. 6§ (z) =| I~ (z) |). For two subsets A and B of tasks, we
denote by I'* (A, B) the set of all the successors of the tasks of A in B,
i.e: Tt(A, B) =T*(A) N B and we denote by §*(A, B) the cardinality of
I't(A, B).

2. Complexity of the scheduling problems with communication
delays

We are going to establish in this section the NP-completeness of: SC(P, 4),
SC(P,4,dup) and SC(P, 6).

2.1. Case of a limited number of processors

The aim of this subection is to establish the NP-completeness of SC(P,4)
and SC(P, 4, dup).

Let us consider the following decision problem (denoted by SE):

Instance: A (undirected) balanced bipartite graph B, with bipartition
(X,Y) and an integer k.

Question: Does there exist in B an independent set with k vertices in X
and k vertices in Y? Such a subgraph is called balanced independent set of
order k.
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We know that SE is NP-complete (see [?], where SE is called “balanced
bipartite complete graph problem”). The subproblem of SE corresponding
to the case k = n/2 (where n is the cardinality of X) will be denoted SE'.

Lemma. SE’ is NP-complete.

Proof: Let (B = (X,Y), k) be an instance of SE.

We construct a balanced bipartite graph B’ instance of SE’ as follows: If
k < n/2, we add to B an independent set of order 2(n — 2k), vertex-disjoint
from B. Thus, B admits a balanced independent set of order k if and only
if B’ admits a balanced independent set of order n/2. 0

Theorem 1. SC(P,4) and SC(P,4,dup) are NP-complete.

Proof: We are going to reduce SE’ to SC(P,4,dup). Let B = (X,Y) be
a balanced bipartite graph instance of SE’.
Consider the following bipartite precedence graph denoted by G:

1. V(G)=XUYUZUuUuVuWuU/{ay,aza3,as}U {by, bz, b3, bs}.
2. X UY induces the bipartite graph B oriented from X to Y.

3. |[WI=lZ|=|VI[=|U |=n.
4

. U UV induces a perfect matching oriented from U to V. Similarly,
V UY induces a perfect matching oriented from V to Y and Wu Z
induces a perfect matching oriented from W to Z. Moreover, a; and
b, precede W (i.e., there are two arcs from a; and b, to every vertex
of W), U precedes a3 and b3, V precedes a4 and b4 and finally a;
(resp. b;) precedes a;;; (resp. bi4+1) for every i < 4.

5. XUZ induces the complete bipartite graph of bipartion X, Z oriented
from X to Z. This completes the description of the precedence graph
G (see figure below). Let us take p = n + 3 + 2 as the number of
processors.

We claim that the so-constructed instance of SC(P, 4, dup) is ”schedula-
ble” in time ¢t = 4 if and only if the bipartite graph B admits a balanced
independent set of order n/2.

Proof of the claim: Suppose first that B admits a balanced independent
set of order n/2 denoted by (X,,Y1), with X; C X, Y; C Y and | X, |=|
Y1 |=n/2. Consider then the following schedule of the tasks (vertices) of
G:

t=1 : execute U, X — X, a; and b,.

t =2 : execute V, X;, as and bs.
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t =3 : execute W, Y, a3 and bs.

t =4 : execute Z, (Y —Y)),aq and b,.

It is easy to see that this schedule is realisable (the assignment of the
tasks to the processors is omitted as it is easy here to find one from the
schedule). .

Conversely, suppose that we have a schedule of the tasks of G on p
processors within time ¢ < 4. Then we have the following facts:

1.

No task of G is duplicated: Otherwise, the number of tasks would

exceed 4p and so we would have ¢ > 4) and at each time, p tasks are
processed (no idle time is allowed for such a schedule).

. Every task of X is executed either at ¢ = 1 or at ¢ = 2: Otherwise,

there would be at least one task from Z that could not be executed
before ¢ = 5. We denote by X; and X3 respectively, the sets of tasks
of X executed at timet=1 and ¢t = 2.

. No task of Y can be executed before time ¢ = 3: Since every task

y of Y is at distance two from a task of U, it can not be executed
before time ¢ = 3. We denote by Y3 and Y, respectively the sets
of Y executed at time ¢t = 3 and ¢ = 4. Clearly, X, U Y3 forms an
independent set (as each task y of Y3 is preceded by a task of V which
cannot be executed before t=2, then due to communication delays, y
cannot be preceded by a task of X3).

. For every i < 4, a; and b; are executed at time ¢ = i:

Because the a;’s (resp. the b;’s) form critical paths (that is, paths
of length 3 here) and, as a consequence, all the tasks of X are exe-
cuted at time ¢ = 1. Hence, | X} |< p—(n+2) =n/2and | X2 |> n/2.

. Every task w of W must be executed at time ¢ = 3;

Indeed, it cannot be executed earlier due to the communication delays
between the processors assigned to the tasks w, a; and b;, and it
cannot be executed later as it precedes a task from Z). Therefore all
tasks in Z are executed in time 4. This leaves n/2 slots for time 4.
On the other hand, all the tasks of V must be executed at time ¢ = 2
(otherwise, a4 cannot be scheduled before ¢ = 5).
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a; by

ay by

Figure 1: The precendence graph G.
Bold lines denote the occurrence of all arcs between two sets of vertices.

Thus, the n/2 slots are filled by half of the tasks in Y, that is, | Y3 |= n/2.

Thus, there exists in B a balanced independent set of order n/2 given
by any balanced subset of X» U Y3 of cardinality n/2. Moreover, Fact (1)
above allows us to conclude that SC(P,4) is also NP-complete. a

As a consequence, SC(P) has no polynomial ¢-approximation with € <
5/4 unless P=NP. On the other hand, picouleau has shown that SC(P, 3)
is polynomial.

2.2. Case of an unlimited number of processors

The remaining part of this section is devoted to scheduling with an un-
limited number of processors. C. Picouleau has shown that SC(P,8) is
NP-complete. We prove that it remains NP-complete for d = 6 even if the
precedence graph is constrained to be of fan-in 4 and depth 4 (the fan-in of
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G is the maximum in-degree of a vertex in G and the depth is the number
of levels minus one) and it becomes polynomial when d < 6.

Theorem 2. SC(P,6) is NP-complete.

Proof: We are going to reduce 3-SAT to SC(P,6). Let f be a formula
instance of 3-SAT. Let us label the litterals by z,, z, ..., z,. Represent each
litteral z; by three vertices i, z;,Z; and put an arc from i to z; and from
i to Z;. Represent each clause c by the component H, of figure 2 which is
the directed graph constructed as follows:

1. V(H.)) = AUBUB'UCURUR'UR”; each of A,B,B’,C is of
cardinality three and is labelled from 1 to 3. For example, the first
element of A is labelled a,, the second element of B’ is labelled b}
...etc.

2. For every 1 < i < 3, join r; to r{ by an arc and join r! to 7; by an
arc and finally join r”; to ¢; by an arc.

3. For every 1 <i < 3, join a; to b; (resp. b;) by an arc. Join b; to ¢;4;
by an arc (the subcripts are taken here modulo 3) and b} to ¢;_; by
an arc.

Notice that, if we consider H, as a precedence relation on tasks, then all
its tasks can be scheduled within time ¢ = 5 but then only one task ¢ from
C at most is scheduled at time ¢ = 4 (moreover, ¢ can be chosen to be any
of the three tasks of C). This describes H..

R”

C .

Figure 2: Representation of H,

For every clause c of f, if variable z; is the first (resp. second, third)
variable appearing in c, then join the vertex corresponding to Z; to the first
(resp. second, third) vertex of the subset C of H,.
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1. For every clause ¢ construct the component H/ which is the graph of
Figure 3.

CI

Figure 3: The graph H

Observe here that if we consider H. as a precedence relation on tasks,

then all its tasks can be scheduled within time ¢ = 5 but then only two
tasks from C’ (which is of cardinality 3) at most are scheduled at time
t = 4 (moreover, these two tasks can be chosen to be any pair from the
three tasks of C’).
6) For every clause c construct a set D of three vertices and for every
1 £1 <3, join ¢; (resp.c}) of C C V(H.) (resp. C' C V(H.)) to d; of D.
This completes the description of our instance of SC(P, 6) (see next figure
in which the formula C,.C; is represented, where C; = z; + Z3 + z3 and
Ca = %1+ z2 + z3).

Figure 4.

We claim that the instance of SC(P,6) so associated to f admits the
scheduling time 6 if and only if f is satisfiable.
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Proof of our claim:: Suppose that f is satisfiable. To every clause c, let
us associate a variable z, satisfying f and consider the task ¢, of C C H,
joined to Z.. Then we have the following schedule 7:

At t = 1: execute all the tasks i preceding the variables z;, Z; (for every
i < n) and all the tasks of AU R C H_ for every clause c.

At time ¢ = 2; execute all the false vanablw At the same time, execute
for every c, by_; and b, (of BC H.) and b, (of B’ C H.). Execute also
all the tasks of R’ C H, for every c.

At time ¢ = 3: execute all the true variables and all the remaining tasks
of BUB'UR" C H, for every c.

At time t = 4: execute ¢, for every clause c. On the other hand, for
every clause c, consider a schedule of H! within time ¢ = 5 such that s
and c,,_, are scheduled at time ¢ = 4.

At time ¢t = 6: execute D, for every c.

Clearly, 7 is a schedule within time ¢ = 6 of our instance because of the
mentionned simple properties of the H.'s and the H!’s. Now conversely,
suppose that our instance admits a schedule within time 6. Set all the
variables scheduled at time ¢ > 3 to "true”. Then f is satisfied by such an
assignment. Indeed, as for every clause ¢, C’ C H! has at least one task
that is executed at time ¢ = 5, C C H, must contain a task scheduled at
time ¢ = 4. Let us call it c, and suppose that Z; the variable linked to ¢,
in our construction (so that z; appears in the clause c). Then Z; must have
been executed at time ¢ = 2 and consequently c is true for our assignment,
which proves the claim and the theorem. O

As a consequence, we see that SC(P) does not admit a polynomial e-
approximation with € < 7/6, unless P=NP. We conclude this section by the
following theorem:

Theorem 3. SC(P,5) is polynomial.

Proof: We describe here a simple reduction of SC(P,5) to a maximum
flow problem in a capacitated graph. Let G be a directed acyclic graph
instance of SC(P,5). Let us call here a feasible schedule of the tasks of G
every schedule within time 5 of G. We say that a schedule is "active” if at
any time, no processor is idle while it can execute some task. Clearly, if G
admits a feasible schedule, then it admits a feasible active schedule.

First determine the levels Ly, Ly, ...Lx of the precedence graph. If k > 5
then clearly, the answer is “no”, a schedule within time 5 of the tasks of G
is not possible. So, let us suppose, without loss of generality, that k = 5
(Ls may be empty in all the arguments below). A task z of L;, for i < k,
is said to be “critical” if for every schedule within time 5, z is necessarily
executed at time i. For every given feasible schedule of G and for every
t <k, a task z € L; is said to be “late” if its execution time ¢(z) is larger
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than or equal to i+ 1. We say that a subset of tasks B satisfies property 7
if:

1. For every i, every task b of B in level ¢ > 1 has only one predecessor
ainlevel i—1and aisin B.

2. Every task b of B in level i has at most one successor in B at level
i+ 1.

Observe that every subset of critical tasks satisfies property # since an
unlimited number of processors is assumed. Consider now the subset U of
L3 such that: z € U if and only if z € I'"2(Lg) N L3 or z has at least two
sucessors in Ls. Clearly, U is a critical subset of Ls. Similarly, Ls and
I'~(Ls) are critical subsets of tasks. To simplify the writing, let us put:
U’ :=T-(U)N Ly and U” :=T'~2(U). From the preceding observation, U’
and U” are also critical subsets hence the whole set C = Ls UT'~(Ls) U
UuU'UU” is a critical set and satisfies therefore property v. We shall
suppose in the sequel that C satisfies property = (otherwise, there is no
feasible schedule for G).

Let us consider W to be the set of tasks: W = {z € Lo, 6§ (z) >
2}Ur+(U”, Ls). For every feasible schedule of G, every task of 't (L3 — U)
has at most one late predecessor in L3 — U; on the other hand, every task z
of Ly —U” has §*(z, Ly — U’ — W) — 1 late successors because the processor
to which the task s has been assigned at time ¢ = 1 can only execute one
task from 't (z, Ly — U’ — W) at time ¢ = 2 and our schedule is active. Let
us then add a source z¢ and a sink y to our graph G so that:

1. To every vertex = of L, — U”, z is linked to z by the arc zox of
capacity 6§+ (z, Ly — U’ — W) — 1 and to every vertex y of W, zg is
linked to y by the arc zqy of capacity 1.

2. To every vertex z of 't (Ls — U), yo is linked to z by the arc zyg of
capacity 1.

3. All the arcs of G have capacity 1.

Then G admits a feasible schedule if and only if the so constructed capac-
itated graph G’ admits an zoyo-flow saturating the capacities of all the arcs
zoz and zpy. The “if” part of our claim is clear from the arguments above.
To see the “only if” part, observe that, for a given flow on G’, the meaning
of the flow on a given arc zz’ of G being 1 (resp 0) is that if = is executed at
some time ¢ on a processor p, then z’ is executed at time ¢ + 2 (resp. ¢t +1)
on a different processor (resp. the same processor). This defines without
ambiguity a feasible schedule when our condition is satisfied. a



3. Conclusions

Communication delays make scheduling problems difficult even for aproxi-
mation. In this paper, it is shown that even if the acyclic graph describing
the precedence relation is bipartite of depth 4 and fan-in 4 and an unlim-
ited number of processors is assumed, finding a schedule within time 6 is
NP-complete. Hence no polynomial approximation ratio less than 7/6 can
be found for SC unless P = NP. In fact, by modifying appropriately the
components H, in the above proof of Theorem 2, the same result can be
established for acyclic graphs with depth 3 and fan-in 2 while it is polyno-
mial to decide if a schedule with completion time 5 is possible as shown in
Theorem 3. In the case with a polynmial number of processors, it is even
NP-complete to decide if there exists a schedule within time 4; hence no
polynomial 5/4-approximation ratio can be found here unless P = NP.
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