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ABSTRACT. Let a,b,c be fixed, pairwise relatively prime inte-
gers. We investigate the number of non-negative integral so-
lutions of the equation az + by + cz = n as a function of n.
We present a new algorithm that computes the “closed form”
of this function. This algorithm is simple and its time perfor-
mance is better than the performance of yet known algorithms.
We also recall how to approximate the abovementioned func-
tion by a polynomial and we derive bounds on the “error” of
this approximation for the case a = 1.

1. Definitions
In what follows, | z] means the integer part of z and {z} = z — || denotes
the fractional part of z.

Let m be a positive integer and let (ay, ... ,an) be an m-tuple of positive
integers. Let n be a non-negative integer. Each m-tuple of non-negative
integers (z,...,zm,) such that

m
Z aiTi =n
i=1

is called a partition of the number n into parts of size ay, ... ,am. For a
given n, let N(n;ay,...,an) denote the number of all such partitions. Its
generating function is
(-] m 1
. n _ ’
ZN(n,al,...,am)t —Hl—t°-'° 1)
n=0 ) i=1
The number N(n;ay,...,an) is sometimes called the denumerant of n

with respect to the sequence (a;)1<i<m. ([1], p. 108.) We deal with the
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problem of determining N as a function of n for certain sequences (a;).
This issue is also known as the money changing problem (when we consider
n as an amount to be changed in coins or bills of size a;).

In the present paper we extend several results from the paper [2] written
by Tiberiu Popoviciu in early fifties. This work is quoted in most textbooks
on combinatorial enumeration, such as [1] or [3]. While the abovementioned
paper is more static (aiming at isolating denumerants with a certain prop-
erty), we advance its results for dynamic purposes, namely for computing
arbitrary denumerants with relatively prime parts.

2. Facts
We begin our investigations with recalling several known facts.

Fact 1. Let k be a non-negative integer. With the notation as above, we
have

Nm(n'l' kam; Qyy ... xam) - Nm(n;alv o ram)
- ) (2)
= Z Nm—l(n+ em,; A1, ..., am—!)'
i=1 :
Proof: Consider the the following equation with unknowns x,... ,zy,

1T + ...+ anZTm =n+ kany,.

The solutions of this equation are of two types: (i) those with z,, > k, (%)
those with z,, < k. Each solution (z,... ,Zm-1,2m) of the type (3) is in
a one-to-one correspondence with the non-negative solution

(yl’ see tym) = (xl’“- 1y Im—1Tm — k)

of the equation
ay1+...4+enYm =n.

Each solution of the type (%) is in a one-to-one correspondence with the
non-negative solution

(yla- .. lym—-l) = (xlt"- !xm—l)
of the equation
aiy1+ ...+ tm-1¥ym-1 =n+ (k —zm)am.

The formula (2) now follows by summation. (]

In the present paper we study the denumerants in the case when the part
sizes a; are pairwise relatively prime. From the theory of rational generating
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functions it follows that Ny,(n) := N(n;a,,...,a.) is then expressible in
the nice form

Nm(n) = Rm(n) + Gm(n)

where R,, is a polynomial of degree m — 1 in n whose coefficients are
symmetric functions in the parameters a; and G,, is a periodic sequence
with the period [;~, a;. The coefficients of Ry for m < 4 can be found in
(1], p. 113.

In the case m = 1 we have R;(n) = 1/a; and Gi(n) = —1/a; + 1 or
—1/a; according as a; divides or does not divide n.

For relatively prime numbers p, ¢, let the symbol

G17)

denote the unique integer z € {0,...,p — 1} such that

gc=n (mod p).

Fact 2. ([2], pp. 24-25.) In the case m = 2 we have

Ralm) = o, Gal) = —o- (21 ) - o (B o) 41 @)

The interesting cases are m > 3 where it becomes less trivial to determine
the periodic part G,,(n). The rest of this paper deals with the instance
m = 3. For the sake of brevity, we will use the letters a,b, c instead of
ay,az,as. The polynomial part of the denumerant can be extracted from
the formulas in [1], p. 113:

Fact 3. Let a, b and c be pairwise relatively prime positive integers and
let N3(n) := N3(n;a,b,c) be the denumerant of n w.r.t. a,b,c. Then

N3(n) = Ra(n) + G3(n)

where (n+atb+o)
n(n+a+b+c
Ry(n) = 2abc
and Gs(n) is a periodic sequence with period abc. O

Fact 4. ([2], p. 38.) With the notation introduced in Fact 3, let r =
abc— (a+b+c). Foreachi=1,2,...,a+b+c—1 we have
ila+b+c—1)

Gi(r+i) = 2abe
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3. Algorithms for Computing Denumerants
3.1. Known Methods

The traditional methods for computing denumerants are typically based on
the partial fraction decomposition ([1], p. 109) which is costly.

In our restricted case when the part sizes a; are pairwise relatively prime,
we may observe that the periodic part Gy, is expressible as a sum Y"1, G®)
where each G(¥) is periodic with period @;. Then we may set up a linear
system for the unknowns G¥(j), 1 < i <m, 0 <j < a; — 1 ([1], p. 114).
Solving this system by Gaussian elimination requires O((3_[" ; a;)?) ele-
mentary arithmetic operations (addition, subtraction, multiplication and
division). Moreover, we need to compute the vector of right-hand sides for
this linear system. To this end we must evaluate N(n) at (3", a;) - m
contiguous points. This subgoal may further increase the total time com-
plexity.

3.2. The New Algorithm

We now present a new algorithm that in certain situations requires many
fewer steps compared to the methods mentioned earlier. We add the fifth
“elementary” arithmetic operation in our computational model, namely the
binary modulo function (mod). In the complexity analysis we will assume
that all five operations are performed at the unit cost.

As before, let a, b, c be three fixed pairwise relatively prime positive in-
tegers and let a < b < c. Our goal is to compute N3(n;a,b, c) as a function
of n. It should be noted that this problem actually includes two different
tasks:

(I) Compute the “closed form” of N, i.e. obtain a representation of N
that will allow us to evaluate N(n) for any given n in a constant
number of arithmetic operations.

(IT) Evaluate N(n) for one given n.
For every non-negative integer ¢ we denote
9(t) = Gs(t + c) — Ga(t).
Lemma 1. For any two non-negative integers k, ! such that k = ! (mod ab)
we have
g(k) = g(1).
Proof: Let ¢t € {k,{}. We have
G3(t +c) — G3(t) = N3(t +¢c) — Na(t) + R3(t) — Ra(t + ¢).
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From Facts 1, 2 and equation (3) we obtain

t
Na(t+¢) — Na(t) = :bc +Ca(t+0)
_ t+c 1 1
Rs(t)—R3(t+C)— TJ—-z—a-—%.
Hence
9(t) = G3(t +¢c) — Gs(t)
1 t+c 1(t+c 1 1 (4)
“;(T ")'E(T“’)“‘E‘%'

It is easily seen that n’ =n"” (mod p) implies (n’/q | p) = (n"/q | p), hence
k =1 (mod ab) implies g(k) = g(l). (]

Lemma 2. Let k =1 (mod ab) and let ¢ be an integer. Then
Gk + g¢) — Ga(k) = Ga(l + gc) — Ga(l).

Proof: This is an easy consequence of Lemma 1. O

Lemma 8. There are (ab)? rational numbers A, 0 < i < ab,0< j < ab
such that for any k we have

Gs(i-c+k)=Ga((ab—-1)-c+k) + A{ whenever k=3 (mod ab).

Proof: Put A = G3(i- ¢+ j) — G3((ab—1) - c + j). Using Lemma 2 we
conclude that k = j (mod ab) implies Af =G3(i-c+k)—Gs((ab—1)-c+k). O

Lemma 3 is the basis for the following simple algorithm which computes
G3(ng) for given 0 < ng < abc:

1. Set ip := |no/c].
2. Set ko :=ng mod c.
3. Set jo := ko mod ab.
4. Evaluate Gsa((ab — 1) - ¢ + ko) by Fact 4.
5. Return G3(no) := Gs((ab— 1) - c+ ko) + AR,
Lemma 4. Let a,b,c be pairwise relatively prime positive integers. If

ab > c then the task (I) can be solved in time O(abc). If ab < c then the
task (I) can be solved in time O((ab)?).
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Proof: The values (2 | 5) and (% | a) for all residue classes of n can be
identified by computing the values

az mod b (0<z<b)

and
bz mod a 0<z<a)

using O(b) arithmetic operations (cf. the description of our computational
model).

Then we can compute g(t) for any ¢ in constant time using (4). Now we
employ two sets of equations

A} = g((ab - 1)c+ ) (5
and
A=A +9((i-1c+35), 1<i<ab (6)

Using (5) and (6) we determine A for all indices in the range 0 < i < ab
and 0 € j < min(ab,c) in constant time per item. If ab > c then we
compute abc such values, if ab < ¢ then we need (ab)? values. Knowing
these AJ allows us to evaluate G3(t) and hence also Na(t) for any ¢ in
constant time. O

Lemma 5. Let a,b, c be pairwise relatively prime positive integers. Then
the task (II) can be solved in time O(ab).

Proof: Again we start by computing the values (2 | b) and (% | a) in O(b)
time. Now for any given t, we compute G3((ab — 1)c+ (¢ mod c)) by Fact
4. Then we “jump” to the value G3(t) in at most ab — 1 steps described by
equation (4), in a constant time per each step. Actually at most ab/2 such
steps are always sufficient since we can do the steps in both “directions”.0

8.8. Comparison with Other Algorithms

From Lemma 4 it follows immediately that our algorithm for task (I) is
asymptotically better than the linear system approach described in section
3.1 since the latter one needs at least order of ¢® operations if Gaussian
elimination is used.

Task (II) is treated in [2], p. 27 with a formula which has time complex-
ity O(c). If ab > c then this formula more effective while our approach
(Lemma 5) is asymptotically better in the case ab < c.

We also have to emphasize the simplicity of our algorithms as they do
not use any procedure other than the basic arithmetic (no linear systems,
no partial fraction decompositions etc.).
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4. Approximations

The main goal of the paper [2] was to determine all pairwise relatively prime
triples (a, b, ¢) such that the denumerant N(n) = Ns(n;a, b, c) is expressible
as the floor of some polynomial P(n), i.e. N(n) = [ P(n)]. This is possible
exactly if

0 ngmG(t) - mm G(z) <1 7

For the sake of completeness we mention that there are 18 such triples
(a, b,c) and all of them are listed in [2]. The equality a = 1 turns out to be
a necessary condition for (7) to hold.

In our paper we extend these investigations by giving bounds on the
values of G(n) for all cases with a = 1, (b,c) = 1. Hence we give bounds
on the “error” that may occur if the denumerant N3(n) is approxlmated by
the polynomial R3(n).

Lemma 6. Let b and c be pairwise relatively prime positive integers, b < c.
For any non-negative n we have

b+c+1 b ((b+c+1)/2)?

b
e "8 < Na(n;1,b,¢) — Ra(n;1,b,¢) < She + g

Proof: Recall that {z} means the fractional part of z. From equation [4]
it follows that

Ga(n+c;1,b,¢) — G3(n;1,b,c) = Tl_{z—_;—_c}

for any n. For the rest of the paper, let G(n) denote G3(n;1,b, c). For any
1 < k < b we have

Cln+ ko) — Glm) = k- =1 i n+ je
n+ kc n)= _26 -—j=l _b .

Let us examine the function
' k
F(k) =k(b—1)/2 = (n+jc) mod b.
i=1
One can write F(k) = Z;;l f; where
fi=(®-1)/2—(n+ jc) modb.
From (b, c) = 1 it follows that
{(fi11<5 <8} ={~(6-1)/2,—-(b-3)/2,...,(b-3)/2,(b-1)/2}.
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Denote
F-={fi1f<0}, fe={f;1f;>0}

For any value of b we have

b2 b
—-S—SZ-'L" ZZSE-

z€ES- z€ES+
Hence, . )
b b
-g < F(k) < 3

Incidentally, these bounds are indeed achieved for certain choices of n, b, ¢
and k. (The proof is left as an exercise.) Coming back to the definition of
F(k), we see that

b _ .5 b
“gshisy

for all ¢, . By Fact 4 we have

b+c+1 ((b+c+1)/2)?
“ohe SOM ST

for all bc —(b+ ¢) < n < be— 1. The rest follows from Lemma 3. o

Remark: A slight refinement of the last lemma can be achieved by splitting
it in three statements according to the parity of b and c.
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