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ABSTRACT. Let n > 1 be an integer and let G be a graph of
order p. A set D of vertices of G is a n-dominating set (total
n-dominating) set of G if every vertex of V(G) — D (V(G), re-
spectively) is within distance n from some vertex of D other
than itself. The minimum cardinality among all n-dominating
sets (respectively, total n-dominating sets) of G is called the
n-domination number (respectively, total n-domination num-
ber) and is denoted by vn(G) (respectively, 74 (G)). A set T of
vertices of G is n-independent if the distance (in G) between
every pair of distinct vertices of Z is at least n + 1. The min-
imum cardinality among all maximal n-independent sets of G
is called the n-independence number of G and is denoted by
in(G). Suppose Iy is a n-independent sets of k vertices of G for
which there exists a vertex v of G that is within distance n from
every vertex of Zx. Then a connected subgraph of minimum size
that contains the vertices of Zx U {v} is called a n-generalized
K, in G. It is shown that if G contains no n-generalized K} 3,
then ¥a(G) = in(G). Further, it is shown if G contains no n-
generalized Ki k41, k 2 2, then i, (G) < (k= 1)71(G)— (k—2).
It is shown that if G is a connected graph with at least n + 1
vertices, then there exists a minimum n-dominating set D of G
such that for each d € D, there exists a vertex v € V(G)—-D at
distance n from d and distance at least n 41 from every vertex
of D — {d}. Using this result, it is shown if G is a connected
graph on p > 2n + 1 vertices, then v,(G) < p/(n + 1) and that
i1 (G) + 17 (G) < p. Finally, it is shown that if T is a tree on
P = 2n 41 vertices, then in(G) + nvi(G) < p.
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1. Introduction

For graph theory terminology not presented here we follow [12]. Specifically,
p(G) and ¢(G) will denote, respectively, the number of vertices (also called
the order) and number of edges (also called the size) of a graph G with
vertex set V(G) and edge set E(G). For a connected graph G, the distance
d(u,v) between two vertices u and v is the length of a shortest u-v path.
The eccentricity eg(v) of a vertex v of G is defined as max,ev (c) d(u,v).
The radius rad G of G is min,cy(c) €(v), while the diameter diam G of G
is maxyev(g)e(v). If S is a set of vertices of G and v is a vertex of G,
then the distance from v to S, denoted by dg(v, S), is the shortest distance
from v to a vertex of S. The nth power G™ of a connected graph G, where
n > 1, is that graph with V(G") = V(G) for which uv € E(G") if and only
if 1 <dg(u,v) <n.

Let v be a vertex of a graph G. The degree of v in G, written as deg v,
is the number of edges incident with v. Equivalently, the degree of v is the
number of vertices different from » that are at distance at most 1 from v
in G. This observation suggests a generalization of the degree of a vertex.
In [14], for n a positive integer, the set of all vertices of G different from v
and at distance at most » from v in G is defined as the n-neighbourhood of
v in G and is denoted by N,(v). If u € Ny(v), then we say that u and v
are n-adjacent vertices. The n-degree, deg,, v, of v in G is given by |Ny(v)|.
Hence Ni(v) = N(v) and deg; v = deg v.

This definition of the n-degree of a vertex suggests a generalization of
the domination, total domination and independent domination numbers
of a graph. Let n > 1 be an integer and let G be a graph. In [19],
a set D of vertices of G is defined to be an n-dominating set (total n-
dominating set) of G if every vertex in V(G) — D (V(G), respectively) is
within distance n from some vertex of D other than itself. The minimum
cardinality among all n-dominating sets (total n-dominating sets) of G is
called the n-domination number (total n-domination number) of G and is
denoted by v,(G) (¥4(G)). We note that the parameter ¢ (G) is defined
only for graphs with no isolated vertex. Observe that 4¥(G) = v;(G) and
7(G) = 74(G). For the graph shown in Figure 1, D = {u,w,y} is a 2-
dominating set of G with v2(G) = |D|, while T = {u,v,z,y} is a total
2-dominating set with 44(G) = |T)|.

Another domination parameter that has received considerable attention
in the literature is the independent domination number. A set Z of vertices
of a graph G is defined to be n-independent in G if every vertex of Z is at
distance at least n+ 1 from every other vertex of I in G. Furthermore, I is
defined to be an n-independent dominating set of G if T is n-independent
and n-dominating in G. The n-independent domination number i,(G) of
G is the minimum cardinality among all n-independent dominating sets of
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G. Hence l-independent dominating sets of G are independent dominating
sets of G and i;(G) = i(G). For the graph G of Figure 1, Z = {v,z} is a
3-independent dominating set of G with |Z| = i3(G).

u w y

Figure 1. The graph G.

These concepts of distance domination in graphs find applications in
many situations and structures which give rise to graphs. Consider, for
instance, the following illustration. Let G be the graph associated with the
road grid of a city where the vertices of G correspond to the street intersec-
tions and where two vertices are adjacent if and only if the corresponding
street intersections are a block apart. A minimum n-dominating set in G
may be used to locate a minimum number of facilities (such as utilities,
police stations, waste disposal dumps, hospitals, blood banks, transmission
towers) such that every intersection is within n city blocks of a facility. For
practical reasons it may be desirable that each facility be sited within n
blocks of some other facility (for instance to cope with emergencies and
breakdowns), in which case the use of a total n-dominating set of minimum
cardinality is indicated. To avoid interfernce and contamination, it may
also be required that no two facilities be within n blocks of each other,
and facilities should then be sited at points corresponding to vertices in
a minimum n-independent dominating set. Corresponding applications to
the design of computer nertworks and defence systems exist. For more
applications see [13].

Results on the concept of n-domination in graphs have been presented
by, among others, Basc6 and Tuza [3, 4], Beineke and Henning [5], Bondy
and Fan [7] , Chang [8], Chang and Nemhauser [9, 10, 11], Fraisse [14],
Fricke, Hedetniemi, and Henning [15, 16}, Hattingh and Henning [17, 18],
Henning, Oellermann, and Swart (19, 20, 21, 22], Meir and Moon (23], Mo
and Williams [24], Slater [25], Topp and Volkmann [26], and Xin He and
Yesha [27).

2. The distance domination number ~,.

We begin by stating a useful observation, the proof of which is immediate.
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Proposition 1 If G is a connected graph, then v,(G) = v(G™), v4(G) =
7(G™), and in(G) = i(G™).

Bollobés and Cockayne [6] established the following result.

Theorem A IfG is a connected nontrivial graph, then there erists a min-
imum dominating set D of G such that for each d € D, there exists a vertez
v € V(G) — D such that N(v)N D = {d}.

An immediate consequence of Theorem A and Proposition 1 is that if G
is a connected nontrivial graph, then there exists a minimum n-dominating
set D of G such that for each d € D, there exists a vertex v € V(G) — D
such that N,(v) N D = {d}. We prove the following stronger result.

Theorem 1 Forn > 1, if G is a connected graph of order at least n + 1,
then there exists a minimum n-dominating set D of G such that for each
d € D, there exists a vertex v € V(G) —7D at distance ezactly n from d such
that N,(v)n D = {d}.

In order to prove this result, we first state a useful known resuit from
[19].

Lemma A Forn > 1, let D be an n-dominating set of a graph G. Then D
i3 a minimal n-dominating set of G if and only if each d € D has at least
one of the following two properties:

Py: There exists a vertez v € V(G) — D such that N,(v) N D = {d};

Py: The vertez d i3 at distance at least n 4+ 1 from every other vertex of
DinG.

Before proceeding further, we introduce some notation. Let S be a set
of vertices of a connected graph G. We will call a nondecreasing sequence
&, 6a,...,¢s of integers the distance sequence of S in G if the vertices of
S can be labelled v, vy, ... ,v5| so that & = dg(vi, S — {v;}) for all i. For
example, for the graph G given in Figure 1, the set {u,w,y} has distance
sequence 3,3,3 in G, while the distance sequence of the set {t,w,2} in G
is 5,5,5. (Observe that both {u,w,y} and {t,w, 2} are 2-dominating sets
of G.) As a further example, let G be obtained from a connected graph
H by attaching a path of length n to each vertex of H. (The graph G
is shown in Figure 2.) Then the distance sequence of V(H) in G is the
sequence 1,1,...,1 of length p(H). (Observe that V(H) is a minimum
n-dominating set of G.) A

Suppose s, : a;,@2,... ,a;, and s2 : by,bo,... , b, are two nondecreasing
sequences of positive integers. Then we say that s, precedes s in dictionary
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order if either m < n and @; = b; for 1 < i < m or if there exists an i
(1 £ i < min{m,n}) such that a; < b; and a; = b; for j < i.

n
vertices

, .
M ¢
’ .
’ M ’
, 4 .
4 .
4 +

’
I3

Figure 2. The graph H.

We are now in a position to present a proof of Theorem 1.
Proof of Theorem 1.
Among all minimum n-dominating sets of vertices of G, let D be one that
has the smallest distance sequence in dictionary order. Let the distance
sequence of D be given by ¢y, 45,... , ¢, (g), Where D = {v;,va,..., Uy, (0}
and ¢; =dg(v;, D — {v;}) for 1 < i < ,(G).

We show firstly that each vertex of D has property P,. If this is not the
case, then let ¢ be the smallest integer such that the vertex v; does not have
property P;. By Lemma A, v; has property P>, and so ¢; > n+ 1. Now
let v; € Nn(v;) and consider the set D’ = (D — {v;}) U {v{}. Necessarily D’
is minimum n-dominating set of G. Furthermore, the vertex v} is within
distance n from some vertex of D — {v;}; consequently, & = dg(v}, D’ —
{v{}) < &. Now let j be the largest integer for which ¢; < ¢;, and consider
the value ¢, = dg(vk, D’ — {vi}) for each k with 1 < k < j. Since & < &,
a shortest path from the vertex v to a vertex of D — {v;} does not contain
v;. It follows, therefore, that £} < ¢ for all k (1 < k < j). This, together
with the observation that & < ¢, for all r > j, implies that the distance
sequence of D’ precedes that of D in dictionary order. This produces a
contradiction. Hence every vertex of D has property P;.

For each vertex v; of D, let w; be a vertex of V(G) — D at maximum
distance from v; in G satisfying Nn(w;) N D = {v;} (1 < i € 1.(G)). We
show that d(v;,w;) = n for all i. If this is not the case, then let i be the
smallest integer for which d(v;, w;) < n. We observe, therefore, that every
vertex of V(G) — D at distance greater than n—1 from v; is within distance
n from some vertex of D — {v;}. We now consider a shortest path from the
vertex v; to a vertex of D — {v;} in G. Let v} denote the vertex adjacent
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to v; on such a path. Further, let D* = (D — {v;}) U {v}}. Necessarily D*
is minimum n-dominating set of G. Now let j be the largest integer for
which £; < ¢, and consider the value £ = dg(vk, D* — {vi}) for each k
with 1 < k < j. Necessarily, £; < ¢ for all k (1 < k < 7). Furthermore,
do(v},D* — {v}}) = £ —1 < & for all r > j. It follows, therefore, that
the distance sequence of D* precedes that of D in dictionary order. This
produces a contradiction. Hence d(v;, w;) = n for all i, which completes
the proof of the theorem. a

As an immediate corollary of Theorem 1, we have the following result
which was established in [19].

Corollary 1 Forn > 1, if G is a connected graph of order p > n+1, then

m(G) £ ;.;.Ll

3. Bounds relating i,, and +,.

We begin this section with the following theorem, which is in fact a corollary
of Theorem 1. This result was established in [21] using entirely different
techniques to those presented in this paper.

Theorem 2 Forn 2> 1, if G is a connected graph of order p > n+1, then
in(G) + n1(G) < p.

Proof. Among all the n-dominating sets of vertices of G with cardinality
n(G), let D be one which comes first in dictionary order. Using the no-
tation introduced in the proof of Theorem 1, let Q; denote a v;-w; path of
length » in G for each i with 1 < i < «4,(G). We show that this collec-
tion {Q1,Qa,...,Q,.(c)} of paths is disjoint. If this is not the case, then
for some i and j with 1 < i < j < y(G), we have V(Q;) N V(Q;) # 0.
This implies, however, that at least one of w; and w; is within distance n
from both v; and v;, which produces a contradiction. Hence the collection
{@1,Q2,...,Qy.(c)} of paths is disjoint.

let Z be a minimum n-independent dominating set of vertices of G. Then
Z contains at most one vertex from each path @Q; (1 < i € 4,.(G)). Let W; be
a set of n vertices of Q; that are not in Z for all i. Then (U?;ﬁG)W,-)ﬂI =9

and | UT2{%) W;| = ny,(G). Hence we have

in(G) +n1m(G) = |Z|+ U W)
= Iz (UEOwy)|

< v(G)
=p.

Since every n-independent dominating set of a graph G is an n-dominating
set of G, we have the following proposition.
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Proposition 2 For n > 1 and for every graph G, v,(G) < in(G).

We note that strict inequality may occur in Proposition 2. Consider for
instance the graph G constructed as follows. For n,m > 1, we recall that
the double star S(m,n) is obtained froin the (disjoint) union of two stars
K)» and K m by joining a vertex of maximum degree in K 1,n to a vertex
of maximum degree in Ky ,». The graph G is obtained from the double star
5(2,2) by subdividing each edge n — 1 times. Then G is a graph for which
(G) =2 and i,(G) = 3.

Allan and Laskar [1] established the following sufficient condition for the
independent domination number of a graph to equal its domination number.

Theorem B If a graph G has no induced subgraph isomorphic to K, 3,
then v(G) = i(G).

In order to present the next two results, we need to define a generalization
of Ky for k > 3. Let G be a graph that contains a n-independent set Z;, of
k vertices and a vertex v of G that is within distance n from every vertex
of Z;.. Then we shall refer to a connected subgraph of G of minimum size
that contains all the vertices in Z, U {v} as a n-generalized K4 in G. The
next result follows immediately from Theorem B and Proposition 1 and the
fact that if a graph G contains no n-generalized K, 3, then G™ contains no
induced K| 3.

Theorem 3 Forn > 1, if G is a graph containing no n-generalized K 1,3
then v,(G) = in(G).

Bollobés and Cockayne [6] established the next result.

Theorem C If G is a graph containing no induced subgraph isomorphic to
Kyksr (k 22), then i(G) < (k- 1)¥(G) — (k - 2).

Theorem C may be generalized as in Theorem 4. The proof is immediate
from Theorem C and Proposition 1 and the fact that if a graph G contains
no n-generalized K41 (k > 2), then G* contains no induced K 1,k+1-
However in order to characterize the extremal graphs, we offer a direct
proof.

Theorem 4 For n > 1 and k > 2, if G is a graph containing no n-
generalized K\ k41, then in(G) < (k — 1)1(G) — (k — 2).

Proof. Let D be a minimum n-dominating set of vertices of G and let Z be

a maximal n-independent set of vertices of D in G. Further, let Y denote
the set of all vertices in V(G) — D that are at distance at least n + 1 from
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every vertex of Z in G. Let X be a maximal n-independent set of vertices of
Y in G. Then ZU X is a maximal n-independent set in G; or, equivalently,
Z U X is an n-independent dominating set of G.

We show that each vertx of D — Z is n-adjacent to at most k — 1 vertices
of X in G. If this is not the case, then there is a vertex v of D—Z that is n-
adjacent to (at least) k vertices of X in G. Furthermore, v is n-adjacent with
some vertex of Z. Hence there exists an n-independent set of k41 vertices
and a vertex v within distance n from every vertex of that set. This implies
that G contains an n-generalized K x4, which preduces a contradiction.
We deduce, therefore, that each vertex of D — 7 is n-adjacent to at most
k — 1 vertices of X in G. This, together with the observation that every
vertex of Y (and hence of X) is n-adjacent with some vertex of D —Z in
G, implies that | X| < (k — 1)(7a(G) — |Z]). It follows that

in(G) <[I1+1X|
< 21+ (k = 1)(7a(G) - IZ])
< (k= 1)1a(G) ~ (k - 2)IT|
< (k= 1)7a(G) — (k- 2). ---(1)

(]

We now attempt to characterize graphs G for which i,(G) = (k —
1)7(G) = (k—=2). If yv,(G) =1, then G is a graph with maximum n-degree
equal to p(G) — 1 and equality holds in (1). Hence in what follows let G be
a graph with v,(G) > 2 and for which i,(G) = (k — 1)v.(G) - (k - 2).

Using the notation introduced in the proof of Theorem 4, |D| = v,(G)
and equality holds at each point in the sequence of inequalities of (1).
Hence |Z| =1 for every choice Z of maximal n-independent sets of vertices
of D in G. It follows that the vertices of D are pairwise n-adjacent in G.
Furthermore, equality in the above sequence (1) implies that every maximal
n-independent set X of vertices of Y in G is of cardinality (k—1)(vn(G)-1),
with exactly k — 1 vertices of X that are n-adjacent to each vertex of D —-Z
and with each vertex of X being n-adjacent to exactly one vertex of D -7
in G. It follows, therefore, that each vertex of Y is n-adjacent with exactly
one vertex of D—Z; for otherwise, if there is a vertex of Y that is n-adjacent
with at least two vertices of D — Z, then X can be chosen to contain such
a vertex, which would produce a contradiction.

We show next that each vertex of V(G) — D is either n-adjacent to every
of D or n-adjacent to exactly one vertex of D. Suppose v is a vertex of
V(G) — D that is at distance at least n + 1 from some vertex u of D in G.
We now choose Z = {u}, and so v € Y. Moreover, we may further choose
X to contain the vertex v. It follows, then, by our earlier observations, that
v is n-adjacent to exactly one vertex of D.

Now let Z be the set of all vertices of V(G) — D that are n-adjacent to
every vertex of D in G. Then, by our earlier observations, every vertex of
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V(G) — (DU Z) is n-adjacent to exactly one vertex of D in G. Moreover
for each d € D, if we let Ny = Np(d) — (D U Z), then every maximal
n-independent set of vertices of (Ng)¢ in G contains exactly k — 1 vertices.
Thus G has the following structure: G is a graph with vertex set V(G) =
DU Z U (UgepNg) where |D| = ¥n(G), the vertices of D are pairwise n-
adjacent in G to every vertex of Z. For every d € D, N3y = Ny, (d) - (DU Z).
Further, every maximal n-independent set of vertices of Ny in G has exactly
k — 1 elements and all maximal n-independent sets of vertices of the union
of any 7,(G) — 1 of the sets Ny in G have cardinality (k — 1)(7,(G) - 1).

4. Bounds relating i, and .

Allan, Laskar and Hedetniemi [2] established the following relationship be-
tween the independent domination number and total domination number
of a graph.

Theorem D If G is a connected graph of order p > 3, then i(G)+v,(G) <
.

The next result extends this result for all trees of sufficiently large order.

Theorem 5 For an integern > 2, if T is a tree of order p > 2n+ 1, then
in(T) +nvi(T) < p.

Proof. The following paragraphs outline the proof. (The details of the
proof are left to the reader.) If radT < n, then iy (T)+nyi(T) =1+4+2n <
p. Assume thus that radT > n 4+ 1. Suppose the theorem is false and
let T be a counterexample of smallest possible order p > 2n + 1. Let
diamT = d and let P : up,uy,...,uq be a longest path in T. We prove
that 4% (T — w) = v4(T) — 1 for every end-vertex of T.

Let i be the smallest integer such that deg un4; > 3. Choose the path
P such that ¢ is as small as possible. We show that deg u; = 2 for 1 <
j€n+landd-n-1<j5<d and hence that 2 < i < d-—2n -2,
We show further that 2 < i < n — 1. We then consider the component of
T — {Un+i—1Un+i, Untilntit1} that contains uy,¢. Call this component T;.
Then T; is a nontrivial component, and by our choice of P, the eccentricity
eT;(un+i) Of upnyy in T; satisfies er,(unys) < n + i. We then prove that
eT;(unyi) # n + 1, and that each end-vertex of T; (different from uy ;)
is at distance at least i 4+ 2 from un4;. In this way we establish that
eri(unti) € {i+2,i+3,... ,n+i—1}.

We show next that T; is not a path with u,,; as end-vertex. Otherwise,
if Ti @ ungi,v1,v2,...,v5 (+2 < j <n+1i—1)is a path with upy; as
end-vertex, then let T} and T, be the components of T — {untiuntis+1}
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containing un4; and un4is1, respectively. We show that p(77) > 2n. We
then consider two cases, depending on whether p(Té) 2 2n or p(T}) < 2n.

If p(T3) > 2n, then we show that i, (T}) +nvt (T7) < p(TY) and i,(T3) +
n(TS) < p(T3). Thus in(T) +no(T) < in(T)) + in(T3) + nlyk(TY) +
74 (T3)] < p(T1) + p(T4) = p, which contradicts our assumption about T

Ifp(T3) < 2n, then we show firstly that T} is the path up1i41, Untis2, ...
uq. (Hence T is obtained from the star K 3 by subdividing one edge n+i—1
times, one edge j — 1 times, and the remaining edge d —n — i + 1 times.)
By our choice of %, the length of T3 is at least n + i — 1. We show that
T; has at most 2n — 2 vertices and thus length at most 2n — 3. We then
show that v; is n-dominated by u4_n, and that dr(un,u4—n) > n. Thus
{tn, Un4i, ¥a—n} is a total n-dominating set of T and {un,ug_n} an n
independent dominating set of T. Hence p = p(T) > 3(n + 1), in(T) = 2,
and 4%(T) = 3. Consequently, in(T) + nvyi(T) < p, once again producing
a contradiction. Therefore degp, un4; > 2 or A(T;) > 3.

If there exists w € V(T;) — {un+:} such that degy, w > 3, then choose
such a w with dr, (u,+:, w) as large as possible. Let z be the vertex that
precedes w on the u, +;-w path. Denote the end-vertices of the component
of T — wz that contains w by w;,ws,...,wm, where m > 2. Assume
that the vertices have been labelled in such a manner that d(w,w;) >
d(w,wy) > .-+ > d(w,wm). Then a total n-dominating set of minimum
cardinality in T — wo contains a vertex y that is within distance n from w,
but not w;. We may assume, without loss of generality, that dr(w;,y) = n.
So y is an internal vertex on the w;-w path and dr(ws,y) > n. Hence
dr(w,w;) > n and dr(w;, w2) 2 2n+1. We then consider four possibilities,
depending on whether dr(w;,ws) = 2n+ 1, 2n + 2 < dr(w;,w?) < 3n,
dr(wy,w2) = 3n+1 and dr(wy, w2) > 3n+2. All four possibilities, however,
produce a contradiction.

Hence degy, = < 2 for all z € V(T;) — {un+:} and degp, un4i > 2. Let
v1,%2,...,¥, Where r > 2 be the end-vertices of T;, labelled in such a way
that dr(vj, unsi) 2 dr(vj41,un4i) for 1 € j < r. Since P is a longest
path, d(v1,un4i) < n+1i < 2n— 1. Let Q; be the vj-un4; path in T
(1 £ 3 <r). We show that d(vy, un+i) > n and that d(ve, unyi) > n. We
then consider the paths Q, : vy = zo,%1,... ,Zp,... ,Tn4s and Q2 : v2 =
20y213+++ 1 Zny .+ yUnyi. We show that dr(2y,,z,) > n and therefore that
d(v1,v2) 2> 3n+1. We then prove that d(v;, v2) = 3n+1. Let S be the set
of 2n + 2 vertices that consists of the vertices in V(Q;) — {un+:} together
with the first 2n + 2 — |[V(Q1) — {un+i}| vertices on the va-upn4; path Q.
Then 2n +1 < p(T — S) = p — 2n — 2. Suppose z’ is the end-vertex of
T — S that belongs to Q2. Then d(up4;,2’) = n — 1. Let D be a total
n-dominating set of T — .S of minimum cardinality. Then there exists a
vertex z in D such that dr_s(z,2’) < n. We may assume that z is not
an internal vertex of Q2 (otherwise replace 2 with u,4;). However, then
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dr(z,zn) < n. Thus DU {z,,2'} is a total n-dominating set of T. Further
if Z is an n-independent dominating set of T — S, then we need to add at
most two vertices to Z to produce an n-independent dominating set of T'.
Since in(T — S) + nyi(T — §) < p(T — 8) = p— 2n — 2, it follows that
in(T) + nyi(T) < p, which contradicts our assumption about T (m]
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