Total Chromatic Number of Graphs
of High Maximum Degree

K.H. Chew

School of Mathematics
University of New South Wales
Sydney 2052
Australia

ABSTRACT. The total chromatic number x7(G) of a graph G
is the least number of colours needed to colour the edges and
vertices of G so that no incident or adjacent elements receive the
same colour. This paper shows that if G has maximum degree
A(G) > 3|V(G)I — 4, then xr(G) £ A(G) + 2. A slightly
weaker version of the result has earlier been proved by Hilton
and Hind [9). The proof here is shorter and simpler than the
one given in [9].

Introduction

The graphs we shall consider are finite and simple. We denote the vertex
set, edge set, maximum degree, minimum degree and chromatic index of
a graph G by V(G), E(G), A(G) (or simply A), §(G) (or simply §) and
X1(G) respectively. We denote the degree of a vertex z in G by dg(z) or
simply d(z).

A famous result of Vizing says that for any graph G,

A(G) £ x1(G) < A(G) +1.
If x1(G) = A(G), G is said to be class 1, and if x;(G) = A(G) +1, G is
said to be class 2. The subgraph induced by those vertices of maximum

degree A(G) is denoted by Ga.
A total colouring of a graph G is a function

7m: E(G)UV(G)—C

where C is a set of colours such that

JCMCC 18 (1995), pp. 245-254



1. no adjacent edges or vertices of G have the same image; and

2. the image of each vertex is distinct from the image of its incident
edges.

The total chromatic number of a graph G is the least value of |C| for which
G has a total colouring 7 : E(G)UV(G) — C. From its definition, x7(G) >
A(G) + 1. Behzad [1] and Vizing [10] independently made the conjecture
that for any graph G,

x7(C) < A(G) +2.

This is known as the total colouring conjecture and no counterexample has
been found. See (8] for a recent survey.

Preliminary Results
The first lemma is due to Erdds and Pos4 [6].
Lemma 1. A graph G contains a matching of size at least min{§(G),

LzlveN)}-
The next result, although well-known, has yet to be formally stated until

now and so has always been known in the literature as an argument, the
Vizing’s fan argument.

Lemma 2. If all edges of G except one edge zy have been coloured with
at most A(G) colours, and if all vertices which are adjacent to z, with the
possible exception of y, have degree < A(G), then there is a colouring of
all edges of G using A(G) colours.

Proof: In the proof of Vizing’s theorem presented in [7], it is first assumed
that there is a (A + 1)-colouring of all edges of G with the exception of
one edge and it is then shown that this colouring can be extended to a
colouring of all edges of G without using additional colours. We can adapt
this proof of Vizing’s theorem, using only A colours instead of A+1 colours,
but we must made sure that in a A-colouring of all edges of G with the
exception of edge zy, there is at least one colour missing from z and from
each vertex (including y) adjacent to z. This explains why we require all
vertices adjacent to z, with the possible exception of y, to have degree
< A. (Actually in the proof, we need only require certain vertices and
not all vertices adjacent to = to have degree < A in order to extend to a
colouring of all edges of G.)

A related result of Lemma 2 is Lemma 5 of [2] which is the first to
suggest adapting this argument of Vizing’s theorem, as far as we know.
Those graphs whose edges can be coloured using Vizing’s fan argument are
class 1 and have been studied by various authors. In particular, we will
describe one such graph H, first mentioned in [3]. Let H be a graph with
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vertices uy, ..., %, v, ..., %,%1,...,0 Wherer > 1 and ¢t < 0 and such that
{uyvy,...,u,v,.} is a maximum matching of H and E(H) contains edges
only of the form: u;v; with ¢ < j and v;u; with i > 1 or j > 1. We shall
say H has class I structure.

Lemma 3. Let H be a subgraph of G induced by vertices such that H has
class 1 structure. If V(Ga) C V(H), then G is class 1.

Proof: Replace Ga with H throughout the proof of Theorem 5 of [3].

If H = Ga, then Lemma 3 is a special case of Theorem 5 of [3] and
it is this special case that is used in the proof of one of the main results
(Theorem 1) of [3]. In fact, we can replace G in Theorems 4 and 5 of [3]
by a subgraph H of G induced by vertices and need only V(Ga) C V(H).
The edges of graphs in [3] are coloured using Vizing’s fan argument with
the final edges to be coloured have endvertices z and y each of degree A, a
condition which we do not impose in this paper.

Following [11], a graph G is said to be mazimal if whenever z and y are
nonadjacent vertices, then either d(z) = A or d(y) = A. To prove the
total colouring conjecture, it suffices to prove it for maximal graphs. The
concept of maximal graphs although not crucial in the proof of our main
result, makes the argument more specific and thus shorter.

Lemma 4. Let G be a maximal graph on n vertices with s vertices of
degree A. Let m =n— A ~1 wheren > 3m. Then§ > A+m —s
where s > m and there exist m disjoint pairs S; = {z;,5:} (1 < i < m) of
nonadjacent vertices in G such that either

(1) there are at least m vertices of degree A not belonging to any of the
S;, or

(2) the z; are all vertices of degree A and the y; are all vertices of degree
<A.

Proof: There are n — s vertices of degree < A. Since G is maximal, these
vertices induce a complete graph of order n — s in G. Thus A > § >
n—s—1=A+4+m—sandsos>m. If s=m, then A =6 and G is regular
and so s = n = m, contradicting that m =n — A — 1. Thus s > m. The
complementary graph G has minimum degree m =n—-A -1 < 3 since
3m < n. By Lemma 1, G has a matching P = {z19,...,ZmYm} of size
m. Then S; = {z;,¥:} (1 < i < m) are m disjoint pairs of nonadjacent
vertices.

If G is a regular graph, (1) follows since n > 3m. We suppose that G is
not regular throughout the rest of the proof. Let $* = V(G)—(S1U- - -USy,).
Among sets of m pairs of nonadjacent vertices, we choose S, ..., Sm such

247



that the set Z = {z € S* | d(z) = A} has maximum number of elements.
If |Z| > m, then (1) follows.

Suppose now |Z| < m. Then 2m + |Z| < n and so there is a vertex
z € S* with d(z) < A — 1. If z is nonadjacent to both z; and y;, then
d(z;) = d(y;) = A since G is maximal. We can replace S; by S} = {z;, z}
and Z' = {z € (S* U S]) — S; | d(z) = A} has one more element than Z
contradicting that Z is maximal. Thus z can be nonadjacent to at most m
vertices of S} U---US,,, and so z must be nonadjacent to a vertex y € S*,
where d(y) = A. If for some j, S; consists of two vertices of degree A, then
we can similarly replace S; by S} = {z,y}, thereby contradicting that Z is
maximal. Thus each S; consists of one vertex, say z; of degree A and one
vertex, y; of degree < A. Thus (2) is established.

Main Results

The main ideas of the method are essentially the same as in [5, 9], some of
which are set out in Lemma 5. Once Lemma 5 is proved, we can assign a
single colour to edges in that matching and the two nonadjacent vertices
that the matching misses, thereby using a total of m colours. We now just
need A + 2 — m colours to assign to the remaining edges and |V (G)| — 2m
vertices, a problem which we will reformulate as an edge colouring problem.
By applying Vizing’s theorem or Lemma 3, we can obtain an edge colouring
that uses A + 2 —m colours which can be modified to colour the remaining
edges and vertices, with a distinct colour for each vertex. Unlike the proofs
in [5, 9], we need not divide the proof according to whether G is of odd or
even order and need not assume any known results in total colourings.

Lemma 5. Let G be a maximal graph on n vertices with A > 3% — 1 and
s vertices of degree A. Let m =n — A — 1 and p = min{m, s — m}. Then

the following hold:

(1) There exist m disjoint pairs S; = {zi,%:} (1 < i < m) of nonadjacent
vertices in G and a set Z of p vertices of degree A not belonging to
any of the S;.

(2) There exist m edge-disjoint matchings F, ..., Fy, of G such that each
F; misses both vertices in S; and the subgraph of G—(F1U---UFy) =
G* induced by Z has class 1 structure.

(3) All vertices have degree < A+1—m in G* and if a vertex has degree
A +1—m in G*, then that vertex must belong to ZUS1U---US,.

Proof: We first note that 3m = 3(n — A — 1) < n. So (1) follows directly
from Lemma 4, with p = m in (1) of Lemma 4 and p = s — m < m in (2)
of Lemma 4.
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We now prove (2). Consider the subgraph Z* of G induced by Z =
{z1,...,2p}, where Z is as in (1). We first show that there exist p edge-
disjoint matchings M, ..., M, of Z* such that Z* — (M U---U Mp) has
class 1 structure and (i + |M;|) < p and M; misses z; for each i. Let
M = {uyvy,...,usv,} be a maximum matching in Z*. Let the remaining
vertices of Z* be w,...,vo which induce a null graph in G. Note that
p =2r+1—t. We now define p edge-disjoint matchings M,, ..., M, of Z2*
as follows:

1. For 1 < ¢ < r, M; is the matching consisting of edges ujux of G such
that j + k =< (mod r).

2. For r+1 < i < p, M; is the matching consisting of edges ujv; of G
suchthat j —k=i—r. .

Observe that M U---U M, contains all edges of Z* except for edges which
join u; to w; with 4 < j and which join v; to v; for any ¢ and j. We
see that M is also a maximum matching of Z* — (M U---U M,) and so
Z* — (M U---U Mp) has class 1 structure. Next note that

ifi1<i<r,
IMi] <<r ifr+1<i<r+1-t,
p—i ifr4+2-t<i<p.

(SR

Thus (i 4+ |M;]) < p for all i € {1,...,p}. By labelling 2i,..., 2, as follows:

Vitt-1 if1<i<r,
2 = § V2r—i+1 1fr+15z5r+1—t,
Uipt—r—1 ifr+2_t stpv

it can be checked that M; misses z; for 1 < i < p. At this stage, we divide
the proof of (2) by considering the cases when p = m and when p < m
separately. The proof for the case when p = m is easier than for the other
case and so is first considered. We may then adapt the proof of the first
case to cope with the second case.

Case 1: p=m.
We claim that there are m edge-disjoint matchings Fy,..., F,, of G such
that for 1 < k < m,

(a) M- (FAVU---UF_1UM)=M;C Fy;

(b) Gx =(G—(F1U---UF,_UM)) - (V(M})U Sk) has a matching Ci
such that the set By = {v € V(Gy) | dg, (v) 2 A -k - |[V(My)| — 2
and v is Ck-unsaturated} has at most one element and if Bx # 0,
then By = {};
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(¢) Fe = M; UCk.

Suppose we have already constructed matchings Fi,..., Fy, according to
conditions (a) to (c). Then each Fi misses both vertices in Sk, and since
FenM=0and (MiU---UM,)C (FLU---UFy), Z2* —(FLU---UFy)
has maximum matching M and so has class 1 structure, thereby proving
(2) in this case. To prove such matchings do exist, we suppose edge-disjoint
matchings F, ..., Fx_; have been constructed according to conditions (a)
to (c) where 1 < k < m. We first prove that Gy has a matching Cy such
that |Bx| < 1. Let
M=A—-k—-|V(M)| -2

and v € By with dg,(v) = d. There are d vertices vj,...,vq adjacent to
v in G, and another d vertices v}, ..., v} such that v;u; € Cx (1 < j < d)
as we want Bj to have as few elements as possible. (It is possible that
v} € {v1,...,va} for some j.) We claim that for any vertex w of Gy with
dg, (w) > A, there is a v — w alternating path (with respect to C) of
odd length < 3 in Gy, that is, either vw € E(Gy) or wv; € E(Gk) for
some j € {1,...,d} where v € By. Suppose not. Then v,v],...,v} are
each nonadjacent to w in Gx and so dg, (w) < |[V(Gi)| —d — 2. Since
[V(Gk)| =n — V(M) — 2 and d > Ax we have

M < do, () < n = [V(ME)] = M — 4

which simplifies to
2A < n+2k+ V(ML)

_ Since 1
k+ §|V(Mi)| <k+|Mi|<p=m,

it follows that
2A<n+2m=n+2(n—-A-1)
or A < 38 — 1 contradicting that A > 3% — 7. Hence there isa v —w

alternating path of odd length < 3 in Gy if dg,(w) > Ax. If w is Cy-
unsaturated, then we can replace Ci by

, {C;c U {vw} if vw € E(Gy),
Ci=

- (Cx U {vv;,wv}}) — {vjv;} if wv} € E(Gk),

where now v and w are Cj-saturated. This shows that |By| < 1.

We next show that if By # 0, then Bx = {zx}. Since dg(zx) = A and Mj
misses 2k, zx belongs to V(Gy) and so dg, (zk) > Ax. Thus we may assume
that 2) is Cy-saturated. Let zx2), € Ck. If dg,(2;) 2 Ak, then there is a
v — 2}, alternating path of odd length < 3 in G where v € Bi. Then as
above, we can similarly modify Cx by Cj, so that By = {2} (with respect
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to C;). Suppose now dg,(zx) < Ae. Since there is a v — 2 alternating
path of odd length (< 3), we can again modify Ci by C} so that By is
now empty (with respect to C}). Therefore, we have shown that Fj can be
constructed according to conditions (a) to (c), thereby proving (2) in this
case.

Case 2: p=s—m < m.

Let w; (1 < i < m) be distinct vertices of V(G) — (S; U --- U Sp) such
that w; = 24 p_m if m—p+1<i<m. If 1 <i < m—p, then by Lemma
4, A-1>deg(ws) >6>A-pandifm—p+1<i<m,de(w)=A4A
where w; € Z. We define

MY =

3

] ifl<i<m-—p,
Mip-m ifm—p+1<i<m.

Then M;" misses w; for 1 <i < m. Let

o 1 fl<i<m-p,
10 ifm—-p+1<i<m.

We claim that there are m edge-disjoint matchings Fi, ..., Fiy of G such
that for 1 < k < m,

(a) Mf —(FU---UF_UM)=M; C F;

(b) Gk = (G—(F1U- - -UFy_UM))—(V(M;;)USi) has a matching Cy such
that the set By = {v € V(Gk) | d (v) = A —par — k - [V(M)| -2
and v is Ci-unsaturated} has at most one element and if By # 0,
then B = {wk};

(c) Fi = M,: U Ck.

Once we have constructed such matchings Fy,..., Fy,, then as in Case 1,
result (2) follows. We suppose edge-disjoint matchings Fi,..., Fx—1 have
been constructed according to conditions (a) to (¢) where 1 < k < m. Let

A=A —par — k= |V(Mg)| -2

and v € By. Since dg(wy) > A — pay and M;' misses wg, wy belongs to
V(Gk) and so dg, (wx) 2 A;. Thus as in Case 1 to prove Fj exists, we
need only to prove that for any vertex w of Gx with dg, (w) > A} there
is a v — w alternating path (with respect to Ci) of odd length < 3 in Gk.
Suppose not. Then as in Case 1, we have

Ak < dg, (w) < n—|V(ME)| — Xy —4
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which simplifies to
2A < n+2k+ |V(ME)| + 2pak.

If1<k<m-p, M{ =0, =1 and so

1 .
k+ §|V(Mk)| +pag < (m—p)+p=m.

Ifm—-p+1<k<m, M C My p_m, ax =0 and so

1
k+ S |IV(M)| + pok S k+ [Mictp-m| S k+p —(k+p—m)=m.

It follows that
2A<n+2m=n+2(n—A-1)

or A < 37" - %, which is a contradiction. Therefore, we have shown that
F; can be constructed according to conditions (a) to (c). This completes
the proof of (2).

We next prove (3). If z € V(G) is Fj-saturated for all j € {1,...,m},
we have dg.(z) < A —m. Let z € V(G) be Fi-unsaturated but Fj-
saturated for all j € {k+1,k+2,...,m} where 1 < k < m. Since F =
Mg U Cy and z is Fr-unsaturated, z must belong to V(Gx) U Sk. Let

t=G—(FiU---UFi_). We divide the proof according to the following
cases.

Case 1: dg;(z) < A — k. Since z is Fj-saturated for all j € {k+1,k+
2,...,m}, we have

do~ (@) < day (2) — (m — )
<A-m.

Case 2: dg;(z) > A—k+1. We know that z € V(Gk)U Sk. If z € V(Gk),

then z is Cx-unsaturated and
dg,(z) 2 doy(x) —1 - [V(Mg)| -2
2A-k- V(M) -2
Thus if p = m, then dg,(z) > Ak and so by condition (b), z = 2. If

P < m, then dg, (z) > A}, and so by condition (b), £ = wx. We consider
two subcases.

Subcase 2a: z is Fj-saturated for all j € {1,...,k — 1}. Then dg-(z) <
A-(m—-1)=A+1-m. Ifdg.(z) = A+ 1— m, then we must have
de(z)=A and z € ZU S;.
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Subcase 2b: z is F,-unsaturated but is Fj-saturated for all j € {g+1,q+
2,...,k — 1} where g < k. Since either z € S U {2} or z € Sx U {wy},
z belongs to V(G,) and is C,-unsaturated. Then z cannot be z, since
otherwise dg(z) = dg(2x) = A and so dg,(x) > A, which implies that
x = 2 = z,, a contradiction. Vertex z also cannot be wy, since otherwise
dg(z) = de(wk) 2 A — pay and so dg (z) > A, which implies that z =
w;, = w,, a contradiction. Thus z belongs to Si. }f dc (z) > A-g+1and
since z € V(G,), we may use Case 2 with k replaced by q to conclude that
either z = z; or 2 = w,, which is again a contradiction. Thus dg;(z) <
A —gq. Since z is Fj-saturated for all 5 € {q,q9+1,...,m} - {q,k}, we have

da.<z).<.da;<z)—(m—q—l)
<A+1-m

Therefore we have shown that vertex = has degree < A+1—m in G* and
if  has degree A+1—m in G*, then z must belong to ZU S;.. This proves
(3) and completes the proof of Lemma 5.

We are now ready to prove the main theorem. Hilton and Hind [9] have
proved that if A(G) > 3|V(G)|, then xr(G) < A(G) +2.

Theorem 1. Let G be a graph on n vertices with A(G) > 3% — 1. Then
x7(C) < A(G) + 2.

Proof: We may assume that G is maxlmal Then results (1) to (3) of
Lemma 5 hold. We now construct a graph G* by introducing a new vertex
v* to G* = G - (F,U-..-UF,) and adding an edge joining »* to each
vertex in V(G) — (Sy U---U S,,) where F; and S; are as in Lemma 5. We
note that dg+(v*) = n—-2m = A+1-m. From Lemma 5, A(G*) <
A(G*)+1 < A +2—m, and any vertex of degree A +2 — m in G must
be adjacent to »* and so must belong only to Z where Z is as in Lemma 5.
By the construction of F; in Lemma 5, the subgraph of G* (or G*) induced
by Z has class 1 structure. If A(GY) = A +2 —m, then Gt is class 1
by Lemma 3 and so has an edge colouring « that uses A 4+ 2 — m colours

wA+2—m. If A(Gt) = A+ 1 —m, then by Vizing’s theorem, G+
has an edge colouring 7 that uses A + 2 — m colours. We modify 7 to a
total colouring @ of G that uses A + 2 colours as follows:

0(e) = w(e) if e € E(G) N E(G™);
0(v) =w(vv*) ifv e V(G) - (S1U---USp);
0(v)=0(f)=A+2-m+jifveS;and fe F;(1<j<m).

It is easy to check that @ is indeed a total colouring of G.
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