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ABSTRACT. D-optimal exact designs in a completely random-
ized statistical set-up are constructed, for comparing n > 2
qualitative factors (treatments), making r observations per treat-
ment level in the presence of n (or less) quantitative or continu-
ous factors (regression factors or covariates) of influence. Their
relation with cyclic supplementary difference sets 2-{u; k1, k2; A}
is showed, when n = 2u =2 (mod 4),r =1 (mod 2), r # 1,
r < u and ki, ko, A are defined by 1 < ky € k2 < (u —1)/2,
(w=2k1)% + (u—2k2)? = 2(ur+u—r), A=k  +ka— (u—17)/2.
Making use of known cyclic difference sets, the existence of a
multiplier and the non-periodic autocorrelation function of two
sequences, such supplementary difference sets are constructed
for the first time. A list of all 201 supplementary difference sets
2-{u; k1, k2; A} for n = 2u < 100 is given.

1. Introduction and Prcliminary results

Let u, k;, k; and A be positive integers. Suppose that C = {cy,...,¢cx, },
D = {d,,...,dx,} are two collections of ki, k2 residues mod u respectively,
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such that the congruence
¢ —c¢j =a (mod u),d; —d; =a (mod u) (1)

has exactly A solutions for any a # 0 (mod u). Such two residue sets C
and D are called supplementary difference sets, denoted by 2-{u; ki, ko; A}
(see in (Seberry) Wallis [17,18]).

From the definition it follows that

Au—1) = ky(ky — 1) + ko(kz — 1). @)

If C, D are two supplementary difference sets, construct the incidence
matrices Ry, R of C, D respectively, which are u x u circulant (41, —1)-
matrices having in their first row —1 in the positions indicated by C, D
respectively and +1 in the remaining positions of their first row. The
following result is proved by Chadjipantelis and Kounias [4].

Theorem 1. (i) If C, D are supplementary difference sets 2-{u; k1, k2; A}
and R;, Ry the corresponding incidence matrices, then

RiRT + RoRY = A(ky + ko — M) Iy + 2(u — 2(k1 + k2 — \)) .

(ii) Given two u x u circulant matrices Ry Ry satisfying (2), then the corre-
sponding sets C, D are supplementary difference sets 2-{u; ky, k2; A}, where
k1, ko is the number of —1’s in each row of Ry, Ry respectively and X satisfies
(2).

Here, AT denotes the transpose of a given matrix A, I, is the identity
matrix of order u and J, is the u X » matrix of ones.

Let n = 2u and W), W5 are u X u commuting matrices, with elements 41
such that

WAWT + WoWS =2(u =)L, +2rdy, || <w. (3)

Then for the matrix

W, -W
w=lwt W] @
it holds that
WTW = WWT = 2(u — )], + 2rJ,) ® L. (4a)

It is known (Ehlich [7]), that if u =1 (mod 2) (i.e. n =2 (mod 4)) and
r =1, the n X n matrix W has the maximum determinant among alln x n
(+1, —1)-matrices. Such matrices W are used in optimum design problem
and correspond to the D-optimal weighing designs for estimating n weights
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making n weighings in a chemical balance, as well as to the D-optimal
2" fractional factorial resolution III designs for estimating the main effects
of n two-level factors in n observations. These two statistical settings are
closely related. For the construction of such D-optimal designs see in Ehlich
[7], Yang [23-26], Chadjipantelis and Kounias [4), Chadjipantelis, Kounias
and Moyssiadis [5], Cohn [6], Kharaghani [9], Whiteman [20], Trung [16],
Koukouvinos, Kounias and Seberry [10).

In this paper we consider the more general case n = 2 (mod 4), r = 1

(mod 2), and facilitate the following two problems:

(a) Construct all possible two supplementary difference sets 2-{u; k1, k2; A}
foru=1 (mod 2) (i.e. for n =2 (mod 4)) and for all almost practi-
cal values of n, i.e. for n < 100.

(b) Find their connection with optimal experimental exact designs.

As stated above, for = 1 these two supplementary difference sets can be
used to construct D-optimal first order designs. In the sequel we consider
the case r # 1.

It is proved in Section 3, that such matrices W can be used for con-
structing D-optimal complex linear designs in a covariates model without
blocking, for estimating the effects of n treatments (or one treatment at n
levels) in the presence of n (or less) continuous covariates with values on
an n-cube, making r observations per treatment level.

If Wy, W, are circulant matrices, then pre- and post-multiplying both
sides of (3) by €T and e respectively, we get

(u—2k1)% + (u = 2k2)? = 2(u(r + 1) — 1) (4b)

where e is the u x 1 vector of ones and ky, k5 is the number of —1’s in every
row of W), W5 respectively.

If Wy, W, satisfy (3), so do +W,,+Ws, i.e. we can always take 0 < k; <
k2 < (v —1)/2. Now form the two sets

C= {01,02,--~ack1}:D= {dlid2,""dkz}

where c;, d; are the positions of —1’s in the first row of W, W, respectively.
From Theorem 1 it follows that (3) holds if and only if the congruence
(1) has exactly
A=ki+ka—(u—-17)/2 (4¢)
solutions for any a # 0 (mod ). '

Hence the construction of the two circulant u x u (41, —1)-matrices
W), W, satisfying (3) is equivalent to the construction of two supplementary
difference sets 2-{u; ki, k2; A} where ky, k2, A satisfy (4b) and (4c).
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In this paper we construct such supplementary difference sets for 3 <
r <u < 50 and for r = —1.

The construction methods are given in Section 2. In Section 3, using
the results of Section 2 we construct D-optimal complex linear designs for
a covariates model, when rn = 2 (mod4), »r =1 (mod2), r > 3. In
Section 4 a list of all 201 two supplementary difference sets for u < 50 is
given.

2. Construction methods of 2-{u; k;, k2; A} SDS

In this section we give some construction methods of supplementary dif-
ference sets 2-{u; k;, k2; A} for v =1 (mod 2), where k, ko satisfying (4b)
withr=1 (mod 2),3<r<u,r=—-1and A = k; + k2 — (u—7)/2. Before
giving our first construction theorem we need the following:
Let u, k and X be positive integers. Suppose that E = {ej,ez,...,ex} is
a set of k residues mod u with the property that for any residue a # 0
(mod w) the congruence

ei—ej=a (modu)

has exactly A solution pairs (e;,e;) with e; and e; in E. Such a residue
set is called a cyclic difference set, denoted by (u, k, A\)-CDS. About cyclic
difference sets see in L.D). Baumert [1]. It is known that the u x u (+1, —1)-
incidence cyclic matrix R of I£ satisfies the matrix equation

RRT = RTR=4(k — M1, + (u — 4(k — \))Js.. (5)

Theorem 2. Let for some r = 1 (mod 2) there exists a (u,k, A\)-CDS,
where

k=(u—-0c)/2,A=(r—c)/2c= (u(2r —u+2) —2r)/2

u=1 (mod 2), or ©)
k=(u—c)/2,A=(r+2—c)/2, c=(u(2r+u—86)—2r—4)/2, (6a)
u=1 (mod 2), or
k=(u—-c)/2,A=(u+r—2c)/4,c= (u(r+1) — )2, @

u=1 (mod 2).
Then, there exists a matrix W satisfying (4a).

Proof: (i) Let R be the corresponding u % u (+1, —1)-incidence matrix of
the (u, k, A)-CDS whose parameters satisfy (6). Then, from (5) we obtain

RTR=2(u—7)l,+ (2r — u)J,.
Since
RTJ,=J,R=(u—k)J, and RTR+ J2 =2(u —r)I, + 2rJ,
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it follows that the matrix W of the form (4) with W, = R, W, = J,,
satisfies (4a).

(ii) Let S be the corresponding u x u (+1, —1)-incidence matrix of the
(u, k, \)-CDS, whose parameters satisfying (6a). Making use of (5) we get
STS =2(u—r—2)I, — (u—2r —4)J,.

Hence the matrix W of the form (4) with Wy = S, Wa = -21,, + J,, satisfies
(4a).

(iii) Let @ be the corresponding u x u (41, —1)-incidence matrix of the
(u, k, A)-CDS, whose parameters satisfying (7). Then again from (5) we get

QTQ=(u—r)l,+rJ,.
So, the matrix W of the form (4) with W) = W, = Q satisfies also (4a). O

For the construction of cyclic difference sets of theorem 2 see in Raghavarao
[13], Baumert [1] and Table 1 below.
Remark 1: The system of equations (6) or (7) has always a solution for
u=r+2or u = r+4 respectively (withc=u-2)and R=Q = -2I,+ J,.
In the sequel we consider only 1 < k; < k.
Lemma 3. Let u=1 (mod 2), 7 =1 (mod 2), u > r. Assume that (i)
in the decomposition of u(r + 1) — r into prime factors, a prime p = 3
(mod 4) appears to an odd power, or (ii) 7 < —3. Then there do not exist
supplementary difference sets 2-{u; ki, k2;\}, where kj, ko, A satisfy (4b),

(4c).
Proof: If there exist such supplementary difference sets 2-{u; k1, k2; A},
then from (4b) we have (8)

2u(r+1)—r) =7+ (8)

where 7;, 2 is the sum of the elements in each row of the corresponding
cyclic incidence matrices. (i) It is known in number theory (Landau [12],
p- 135) that the above Diophantine equation has no solution when 2(u(r +
1) — r) has at least one prime factor p = 3 (mod 4) appearing to an odd
power. (ii) For r < -3 it is obvious that (8) has no solution for any » > 1.0

Remark 2: For the following values of u = 1 (mod 2), r = 1 (mod 2),
u < 50, 7 < 20, u > r > 3 there do not exist supplementary difference
sets 2-{u; k1, k2; A}, where ki, k2, A satisfy (4b), (4¢c) (i.e. (8) has no integer
solutions):

r=3,u=9,15,27,33,41,45; r=5,u=23,37,43;r=7,
u=17,21,23,27,35,41,19; r=9,uv=15,17, 21, 31, 33, 35, 39,47; r =11,
u=19,33,47;r=13,u=19, 23,29,41,43,47;r=15,
u=21,25,27,33,39,45,47, r=17,u=27,37,41,47;r=19, u=29, 35, 37, 47.
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Next, as in Chadjipantelis and Kounias [4] we facilitate the construction
problem of supplementary difference set 2-{u; ky, k2; A} if we know the ex-
istence of a multiplier, i.e. and integer ¢, (£,u) = 1 such that tC =C +¢,
tD = D+ d where

tC = {tcy, tey, ..., Lok, } (mod u),tD = {tdy,tdy, ..., tdg,} (mod u)
CH+c={a+cca+c,...,cx +c} (mod u),
D+d={di+d,d2+d,...,dk, +d} (mod u).

Especially if the shifts C; = (C+¢) (mod ), D = (D+d) (mod u) are
fixed by an integer ¢, i.c. ¢(C+c) (mod u) = (C+c) (mod u), t(D+d)
(mod u)=(D+d) (mod u), then the supplementary difference sets Cy, D,
are unions of sets {a,ta,...,t™ la} where t™a =a (mod u), 1 <t < v,
(t,u)=1.
A slight modification of the algorithm given in the aforementioned pa-
per by Chadjipantelis and Kounias [4] described below, is applied for the
construction of supplementary difference sets 2-{u; ki, k2; A}.

Algorithm 1.: Given r,n,r=1 (mod 2}, n=2 (mod 4),n > 2r,r >3
(i) Find non-negative integers k, k2, A satisfying:
(n/2 — 2k1)% + (n/2 — 2k2)> = n(r+1) —2r
1<ki <k <(n—-2)/4
A=ki+ko—(n—2r)/4

(ii) For an integer {,1 < L < u, u = n/2, (t,u) = 1, form all the sets

{a,ta,...,t™ 'a} with
t"a=a (modu)forala=0,1,...,(u-1).
(iii) Form two sets C, 1) with k, k2 elements respectively as unions of sets
found in step (ii).
(iv) Examine if C, D are supplementary difference sets 2-{u; k1, k2; A}.

(v) If the answer in (iv) is negative, go to step (iii) and take another
union of sets C, D.

(vi) Repeat step (v) until the answer in (iv) is positive or until all possible
combinations of unions of sets C, D are examined.

(vii) If the answer in (vi) is still negative repeat steps (ii)-(vi) for another
value of t,1 < L < u, (t,u)=1.
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In the sequel we give a construction method of supplementary difference
sets 2-{u; k1, k2; A} by using the non-periodic autocorrelation function of
two sequences.

Let the sequences A = {ay,as,...,a4}, B = {by,bs,...,b,} of length u,
consisting of the elements of the first row of the u x u circulant incidence
matrices Wy, W respectively, with a; = +1, ;= £1,7=1,2,...,u.

The non-periodic autocorrelation functions N4(s), Ng(s) are defined as

u—8

NA(S) = zaiai-fa, NB(S) = Zbib‘i-l-a,s = 01 1," U — 1
i=1 ]

t=1

and the polynomials associated with A and B (also called generating func-
tions) are

A(z) = a1 + @z + -+ + auz* "}, B(z) = by + boz + -+ - + byz™ "},

Then for every = # 0

ADAG) =33 magt, B@BE) = 3 bibyat,

i=1j=1 i=1j=1
and
A(z)A(z™") + B(z)B(z~!) = Na(0) + N5(0)

u—1
D [Na(s) + Nis(s) + (Na(u — 5) + Np(u — 5))z™¥]z*. ®

s=1

Lemma 4. Suppose there exist supplementary difference sets 2-{u; k1, k2; A},
where ky, ko satisfy (4b) and A = ky + ka — (u —r)/2. If Wy, W, are the
cyclic incidence matrices and A, B the corresponding sequences of length
u, then

A(@)Az) + B(z)Bz" ) =2(ur +u—r), ifr=1 (10)
AR A Y+ B@)B(z ") =2u-7), ifz*=1,z#1. (11)

Proof: Let there exist such two supplementary difference sets, i.e. the
relation (3) is valid. Then (3) is equivalent to

Na(0)+Np(0)=2u,s=0 (12a)
Na(s)+Np(s)+Na(u—s)

12b
+Ng(u—s)=2r,1<s<u-—1. (12b)
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Let z = 1. Then from (9) we have
A(2)A(z™") + B(z)B(z™") = Na(0) + Np(0)

u—1

2_[Na(s)+ Np(s) + Na(u— 5) + Np(u — 5)]

§=1
= 2u + 2r(u — 1) (from (12)).
Let ¥ = 1, £ # 1. Then again from (9) we get
A(z)A(z™") + B(z)B(z™") = Na(0) + Np(0)

u—1

+ Y [Na(s) + No(s) + Na(u - 5) + Np(u — s)}z®

s=1
u-1

= 2u +2r Z z® = 2(u - r) (from (12)).
=1
sincel+z+---+z* 1 =0. O
For every given sequence H = {hy,ho,...,hy} and for some m € {2,3,
...,u} we define the m subsequences H;, i =1,2,...,m, where

H; = {hi,hitm,..., hi+a‘-m}, 8 = int((u —-1i)/m),i=12,...,m

with associated polynomials

Hi(z) =) hitpmaz?i=1,2,...,m.
p=0

Then :
H(z) = Hy(z™) + zHa(z™) + - - - + 2™ Hpp (z™)
and hence for every z # 0

A(x)A(z™") + B(z)B(z"") = Z(Ai(x'")Aa(x"") + Bi(z™)Bi(z™™))

+) {Z_:(Ai(ﬂ:'")/\m(w"'") + Bi(z™)Biys(z™™))
s=1 Li=1 (13)

+2™ 3 (Assm-s(z™ Az ™) + Bitm-o(s™)B: (x-'"»} 2,

i=1
where A;, B; are the corresponding subsequences of A, B respectively.

Theorem 5. Suppose there exist supplementary difference sets 2-{u; ky, kz;
)}, where ki, ko satisfy (4b) and A\ = ky + k2 — (u —r)/2. Let W, W, be
the corresponding cyclic incidence matrices and A, B be their sequences of
length u = mw =1 (mod 2), m,w > 1 and m is a prime. Let also
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(8) Kim = X pei mod m @p Tim = 2p=i mod m Op

() Km = {kim,....kmm}, Bm = {Tim,...,Tmm}

(¢) Nk (s) = 2,° kimkisams N (8) = 305" rimTita,m-
Then, for the given m |

Ni,.(0)+ Np,(0) = klp 4+ Koy + Tom 4+ + Toam

(14)
=2u+2(w—1)r,w=u/m
Nk, (s) + Nk,.(m = s) + Ng,,(s) + Ng,,(m — 5)
=2uwr,s=1,2,...,(m—-1)/2 (15)

Proof: Let there exist such two supplementary diflerence sets. Then the
relations (10) and (11) in Lemma 2 are valid.

Let ™ = 1, = # 1 for the given m. Then z* =1 and since A;(1) = Kim,
Bi(1) = tim, i = 1,...,m,z™7 = z™7, the relation (11) with the help of
(9) becomes

m m-1 (m--8 8
Z(k?m + 7','2".) + Z { Z (kimk£+s,m + Timri+s,m) + Z(kimki+m—a,m
=1

j=1 Li=1 i=1
+Tim7'i+m—s.m)} ™ = 2('” - 1‘), s=12,..., (m - 1)'
or
m—1
Nk (0) + Np, (0)+ ) (Nk,(5) + Nk, (m — s) + Np,, (s)
j=1

+ Np_(m —s))z™ 7 =2(u—r)
and since z™ = 1 we get

Nk (0) + Ng,,(0) = (Nk,.(s) + Nk, (m — 5)
+ Np.(s) + Np,, (m —5)) = 2(u — 1)

for s =1,2,...,(m—1). Let z = 1. Then, the relation (1) with the help of
(9) deduces to

(16)

m m | (m—s
E(k?m + rizm + Z { Z (kimki+s,m + Timri+s,m)
i=1

31 i=1
s
+ Z(kim ki jm - sm + Timri-i-m—s,m)} = 2(’":7' +u-—- T),

i=1

s=12,...,(m-=1)
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or

Nk, (0) + Ng,, (0) + (m — 1)((Nk,, (s) + Nk, (m - s)

+ Npr..(8) + Np,,(m —38)) =2(ur +u—r) (17)

fors=1,2,...,(m -1).
Therefore the relations (14), (15) can be easily obtained from (16), (17).
By taking complex conjugates in (9), (10) and (11) we see that it is enough

to take s = 1,2,...,int(m/2), ie. s =1,2,...,(m — 1)/2 since m is a
prime. O

Algorithm 2: Since it is difficult to find directly the values ay,...,ay;
b, ..., by of the sequences A, B respectively, we find the values of integers
kim, ... kmm; T1im; . .., Tmm as defined from relations (a) in Theorem 3.

Step 1: Given r and u find all the integers solutions of the system (18):

2ur+u—r)=k3 +r}
ki1 > 11 > 0, k=1 (mod 2),1‘11 =1 (mod 2) (18)
u=1 (mod 2),r=1 (mod 2),u >r > 3.

Step 2: For every solution ki1,711 of the system (18) and a given prime
m > 1, with u = mw find kipn,..., kmm;} Tim, - . ., Tmm satisfying

(i) kll = klm+"'+kmm; T =1’1m+...+rmm

(i) kim = kom > k3m, -y kmm; Tim 2 Tomy -+« s Tmm

(iii) Kimy--.1Kkmm; Tim,-..,Tmm are all odd (even) if int{(u — i)/m)+1
is odd (even),i=1,...,m

(iv) |kim| < int((w —4)/m) +1, |rim| < int((w—i/m)+1i=1,...,m
W) R+ R+ 2, = 2u4 2w — 1), w=u/m

(vi) Nk, (s)+Nk,,(m—s)+Ng_ (s)+Ng, (m-s)=2wr,s=1,2,...,(m-
1)/2, where

m-—s m-—s
Nk, (s) = Z kimkits,m) Nr,(5) = z TimTit+s,m-
i1 =1

Step 3: (i) For every set ki, ..., kmm; Tim»- - - » "mm found in step 2, find
kl,wmy ceey kwm,wm; T1,wm; - - - Twm,wm

satisfying (ii),(iii) and (iv) in step 2. (ii) Go to step 2 (v),(vi), setting wm
instead of m.
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Step 4: Stop when m = u and examine if

Nk..(0)+ Nr,.(0) = 2u
Nxm(s)+NKm(m—s)+NRm(s)+NRm(m—s) = 2r,
s=12,...,(m-1).

a

8. D-Optimal complex linear designs for rn = 2 (mod 4), r =1
(mod 2)

Let By, Bs,..., B, be n x g matrices with entries in some closed interval
and let D(r,n) be the set of all rn x (n + ¢) matrices X, where
X [1,} I ... 1,%]T_
By B; ... B;

Such matrices, called design matrices, arise in linear equireplicated covari-
ates models, as defincd by J.L. Troya [15], for comparing n > 2 treatments
(or one treatment at n levels), making r observations (the common repli-
cation number) per treatment level, and it is known that for each subject
entering the study, ¢ continuous covariates in a completely randomized sta-
tistical set-up can be observed, each of them assuming values on a closed
interval. Since these modcls involve both discrete (ANOVA type) and con-
tinuous (regression type) factors of influence, they are also called “com-
plex linear models”. For more information regarding covariates models see
Harville [8], J.L. Troya [15], Kurotschka [11], Wierich [21, 22], Chadjicon-
stantinidis and Moyssiadis [3], Chadjiconstantinidis and Chadjipadelis [2].
Our primary interest is in the joint estimation of regression coefficients (co-
variates) in addition to the estimation of treatment contrasts under the
D-optimality criterion, which is related to the maximization of the deter-
minant of the information matric M = XT X, when rank(X) = n+gq. Any
such design matrix X* € /)(r,n) maximizing the determinant of X7 X over
all X € D(r,n) is called “I)-optimal complex linear design”. It is known
(J.L. Troya [15], Lemma 2.1) that det(XT X) attains its maximum value
for a design matrix X such that B; has all its entries in {+1,—1} for all
i=12,...,r. Also for r =1 (mod 2) (J.L. Troya [15], Theorem 3.1) it
holds

maxdet(X"X)=r"(N —n/r)?, N = rn. (19)
For N = 2 (mod 4), ¢ > 3, J.L. Troya [15] proved that a necessary and

sufficient condition for the existence of D-optimal complex linear designs is
n > 2r. In the same paper, sec Theorem 3.10, she constructed D-optimal
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complex linear designs for n = 2r, ¢ <norn > 2r, ¢ < 8n/(n—2r). Chad-
jiconstantinidis and Moyssiadis [3] constructed D-optimal complex linear
designs when ¢ < n — 2r (Theorem 3.3) or ¢ < 2r (Theorem 3.5). In this
section we give a construclion of D-optimal complex linear designs when
the maximum number of covariates ¢ = n for n > 2r.

Let n.=2u, u= 1 (mod 2) and q = n. In the case ¢ < n, the D-optimal
complex linear designs can be obtained by deleting appropriate columns of
the D-optimal complex linear designs for ¢ = n.

Theorem 6. Suppose there exist n x n(+1, —1)-matrices U and W such
that

UTU =2[(u+1)I, - J,]® I, (20)
WTW = 2[(u — )l +r3,] ® L. (21)
Then the design matrix X* € D(r,n) given by

B.; = (_])j‘HUvj = ],2,...,(7’— 1)
Br=W

r

is a D-optimal complex lincar design.

Proof: By definition of matrices B} we find that

My = B} =W,M3, =3 B} B} =2((ru — 1)L + J,]® L.

i=1 i=1
Thus
det(M*) = det(X*' X*) = r*det(M3, — 1/rM]; M)
=r(N - n/r)"
and making use of (19) the result follows. O

Hence the construction of D-optimal complex linear designs when N =
rn =2 (mod 4), u =n/2 =1 (mod 2), ¢ = n is equivalent to the construc- -
tion of two matrices U, W satisfying (20), (21) respectively.

The problem of construction of W is examined in the previous section.
Let Uy, U; are u x u(4-1, —1)-commuting matrices such that

UTU,y + U Us = 2(u + DI, — 27,,. (21)

Then the n x n matrix U, where

_[uT U
”-[Ua" —ul]
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satisfies the relation (20).

Let Uy, Uz both be circulant. Then from Theorem 1 it follows that their
existence is equivalent to the existence of two supplementary difference sets
2-{u; k1, kg; A} where k;, &k, and X are found from (setting » = —1 in (4b),
(4¢))

(u - 2k1)2 + (u - 2k2)2 =2,A=k + kg - (u+ 1)/2

i.e. from

ki =ko=(u—-1)/2, A=(u-3)/2, or
ky =ka=(u+1)/2, A=(u+1)/2, or
ky o= (u1)/2, kp=(uF1)/2, A= (u—1)/2.

Theorem 7. Let u =1 (mod 2) be a'posx'tive integer. Then there exist
supplementary difference sets

(i) 2-{u;(u—1)/2,(u+1)/2;(u —1)/2}, ifu=1 (mod 4) is a prime

(i) 2-{u;(u—1)/2,(u — 1)/2; (u — 3)/2}, if u = 3 (mod 4) is a prime or
u=p(p+2), p is prime (twin primes).

Proof: When u is a prime, consider the Galois Field of u elements, GF(u),
and define the matrix @ = [¢;;] where ¢;; = x(aj —a;), 0<%, j <u-1and
x is the Legendre symbol (or quadratic character) defined on the elements
of GF(u). It is known (cl. Wallis, Street and Wallis [19], Lemma 1.19) that
Q is circulant, has diagonal zero and Q is symmetric if u = 1 (mod 4) and
is skew-symmetric if w = 3 (mod 4).

Thus, if q1,92,..., 9@ Ql) /2 are the non-zero quadratic residues (mod )
of the GF(u), the required two supplementary difference sets C and D are
given by:

() C={a1+1,2+1,...,qu-1yy2+1}, D= {1}UC, ifu=1 (mod 4)
with corresponding incidence matricess Uy = Q + 1, Vb = Q -1,

(ii) C =D ={q1,92,--.,9(u-1)/2}, if v =3 (mod 4) with corresponding
incidence matrices Uy = U = Q + 1.

When u = p(p+ 2), p is a prime, then the set C of powers of a generator
of the Galois domain plus the multiples of p+2 is a (u, (u—1)/2, (v —3)/4)-
CDS. So, the required two supplementary difference sets are the sets C and
D=C. O

Remark 3: Let u =1 (mod 4) be a prime. The set of non-zero quadratic
residues (mod u) and the set of the non-quadratic residues (mod u) of
the GF(u) constitute supplementary difference sets 2-{u; (u — 1)/2, (v —
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1)/2; (u — 3)/2}, which are equivalent to those given in Theorem 7(i) by
definition (see also in Street and Wallis [14], p.194). Note that for u = 9
and u = 27 there exist supplementary diflerence sets 2-{9;4,4;3} and 2-
{27;13, 13; 12} given respeclively by

C =1{1,2,3,5},D=1{1,2,5,7} and
C=D={z*:2=0,1,...,12}

where z is a primitive element of the field GF(33).

Also for u = 39, with the help of Algorithm 1, we construct for the
first time the two supplementary diflerence sets 2-{39;19, 19;18} (see in
Table 1).

4. Tables of 2-{u; ky,k2; A} SDS

In Table 1 are indicated the values of the parameters of all 201 supplemen-
tary difference sets 2-{u; k1, k2; A} and also the method of their construction
for all u = 1 (mod 2), u < 50. The symbol * is referred to known supple-
mentary difference sets corresponding to D-optimal first order designs (see
in (4], {5}, (6], (7] 9], [10], [16], [20], [23-26]).

Table 1
Supplementary difference sets 2-{u; k1, k2; A}
with ki, ko, A satisfying (4b), (4c)

u=3ki=1,k=1;A=0,r=-1 Th7

u=5k =1ky=1;A=0,r=1 Trivial
u=5;k,=2,k2-:2;/\=1,r=—1 Th.7

u=Tk=1ky=1A=0,r=3 Trivial
u=Tkk=Lko=3A=1r=1 *; Th.2
C={1},D={1,2,4}
u=Tky=3ky=32=2,r=-1 Th7

u=9k =1,k=1A=0,r=5 Trivial
u=9%k=2,k=3A=1r=1 *

u=9k =4,k =4;A=3,r=—-1  Remark 3; ALG1
C ={1,2,4,9}, D = {1,4,6,9}

u=1Lk; =1L kg=1;A=0,7r=7 Trivial
u=11;k1 =1Lk, =5;A=2,7r=3 Th.2
C={1},D={1,3,4,5,9}
u=11;k; =5,ky =5;A=4,r=-1 Th2; Th.7
C=D={1,3,4,59} .
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Table 1 (continued)

u=13;k1 =1Lk =1;A=0,r=9
u=13;ki =L ko=4;A=1,r=5
C={1},D={1,3,9,13}
u=13;k1 =3,k =3;A=1,r=3
C=1{1,3,9},D={2,5,6}
u=13;k; =3,kg =6, 1A=3,r=1
u=13k; =4,k =4;2=2,r=1
u=13;k1 =6,k =6;A=5,r= -1

u=15ki=Lk=12=0r=11
u=15;k1=l,k2=7;/\=3,r=5
C ={1},D = {1,2,4,5,8,10, 15}
u=15k1 =2 ks =4;A=1,r=5
C= {1,15},D= {2,5,9,15}
u=15;k1=4,k2—6/\ 31‘=1
u=15;k1 =T, ko =T;A=6,r = -1

u=17;k; =Lk =1;A=0,r =13
u=17k1 =2,ky =6;A=2,r =
u—l7k1—3k2—7,A 3,1‘—3
u=1Tk1 =4,k =5A=2,r =
C={1,4,6,17},D = {1,4,9,11,17}
u=17;k) =8, ks =8 A=7,r= -1

u=1%k; =1Lk =1;A=0,r=15
u=19%k; =Lk =9 A=4,r=

|
o

(]

-
-

-

C={1},D={1,4,5,6,7,9,11,16,17}

u=19%k =3 ko =4A=1,7r=7

C={2,519},D={1,7,11,19}
u=19k; =3,k =6,A=2,r=5
C= {1 7,11}, D = {2,3,4,6,9,11}
u=19k; =4,k =7, A=3,r=3
Cc=1{1,711,19}, D = {1,4,6,7,9,11,19}
u=19; k1—6 k2=7,/\=4,1‘=1
u=19;k1=9,k2=9;/\=8,r=—1
u=2Lky =1k, =1A=0,r=17
u=2Lk=1Lky=5A=1,r=11
C={1},D={3,6,7,12,14}
u=21k; =5k =5 A=2,r=5

C=D={3,6,7,12,14}
u=21;k1=6,ka=61A=3,7r=3
u=2lk1 =6,k =10;A=6,7r=1

u=21;k; =10,k = 10; A =9,r = —1
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Trivial
Th.2

ALG1

*
*

Th.7

Trivial

Th.2; ALG1, ALG2
ALG1, ALG2

*

Th.7
Trivial
ALG1, no solution

ALG]1, no solution
ALG1

Th.7
Trivial
Th.2
ALG1
ALG1
ALG1

*

Th.7
Trivial
Th.2
Th.2

ALG2, no solution

*
?



Table 1 (continued)

u=23%k; =1k =1;A=0,7r=19
u=23;k1 =1,k =1;A=5,7r=9

Cc={1},D=1{1,2,3,4,6,8,9,12,13,16,18}

u=23;k; =2,k =52=1,r=11
C={1,23},D = {2,7,10,19, 23}
u=23ky=2,ko=T;A=2,7=9
u=23;k1 =5ke=10;A=5,r=3
u=23;lc1 =7,k2=10;/\=6,r=1
u=23;k; =11,k =11;A=10,7r = -1

u=25k; =1, k2=1;A=0,r=21
u=25ky=1ky=92=3,r=11
'u,=25;k1 =3,k2=7;/\=2,1’=9
u=25k; =3,kg=10;A=4,r=7
u=25;k1j =4, ka=42=1r=11
u=25k1 =4,ko=12;A=6,r=5
C = {10, 20, 23,24},

D = {2,4,9,10,14,17,18, 20, 21, 23}
u=25k) =6,kp=T;A=3,r=5
C = {5,10, 18,20, 23,21},

D = {4,13,15, 21, 22, 24, 25}
u=25k) =6,ko=10;A=5,r=3
C = {13, 15,20, 23,24, 25},

D = {2,4,9,10,14,17,18,20, 21, 23}
u=25k =%k =%2=6,r=1
u=25k1 =12,ko =12;A = 11,7 = -1

u=27k; =1Lka=1;A=0,7r=23
u=27k=1,k=132=6,r=11
u=27;k; =3, ks =0;A=1,r=13

C =1{1,8,27},D ={2,5,11,15}
u=27k;=3,ke=%A=3,r=9
u=2T;k; =5ko=11;A=5,r=5

C = {15,17,23, 24,27},

D = {3,6,9,11,13,20, 21, 22, 25, 26, 27}
u=27k1 =9 k=1;A=7r=1
u=27;k1 =13,k2=13;/\= 12,7’= -1

u=29k =1,kp=1;A=0,7=25
u=29;k; =1,ks=8A=2,7=15
u=2%k =2,ko=11;A=4,r=11
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Trivial
Th.2

ALG1

ALG]1, no solution
?

*

Th.7

Trivial

ALG2, no solution
ALG2, no solution
ALG?2, no solution
ALG2, no solution
ALG2

ALG2
ALG2

*
?

Trivial
ALG1, ALG2, no solution
ALG1, ALG2

ALG1, ALG2, no solution
ALG2

no solution
Remark 3

Trivial
no solution
2



Table 1 (continued)

u=2%k =4,ko=%5A=3,r=9 ?
u=29ki =4,ka =13 A=6,r=7 ?
u=29k; =6,kg=11;A=5r=5 ?
u=29k =7, ky=T;A=3,r=7 ALG1
C ={1,7,16,20,23,24,25}, D = {2,3,11,14,17,19, 21}

u=2%k  =7,ko=14;2=8,r=3 ALG1
C ={1,7,16,20,23,24, 25},

D ={1,4,5,6,7,9,13,16, 20, 22, 23, 24, 25, 28}

u=2%k =8k =8A=4,r=5 ALG1
C ={1,7,16,20,23,24, 25,29},

D ={2,3,11,14,17,19, 21,29}

u=29%k =14,k =14;A=13,r = -1 Th.7
u=3lLky =1Lk =1A=0,7r=27 Trivial
u=3Lki=1k;=6A=1,7r=16 Th.2

C ={1},D={1,5,11,24,25,27}
u=3lk1=1k;=10;A=3,7r=15
u=3lLk1=1,ky=152=7,r=13

C = {1},D = {1,2,3,4,6,8,12, 15, 16, 17, 23, 24,27, 29, 30}

u=3Lk1 =6,k=6;2=2,r=11
C=D=/{1,5,11,24,25,27}
u=3lki=6,ko=10;A=4,r=7
C=1{1,2,4,8,16,31},

D ={3,6,7,12,14,17,19,24, 25, 28}
u=3l;k; =6,k =15;A=8,r=5

C = {2,3,10,13, 15,19},

D =1{1,2,4,5,7,8,9,10, 11,16, 18, 19, 20, 25, 28}
u=231;k; =10,k; = 10; A =6,r =3
C=1{1,2,3,4,6,8,12,16,17,24},

D ={1,2,4,7,8,14, 16, 19, 25, 28}
u=231;k; =10,k; =15, A = 10,r =1
u=31k; =15k =15A=14,r= -1

u=33ki=1Lke=1;2=0,r=29

u=233k =2,ky=6A=1,r=19

u=33;k1 =3,k2= 10',/\= 3,1‘ =13

C = {11, 30,32}, D = {8,11,17,21, 25, 26,28, 31, 32, 33}
u=3%hki=4,ko=5A=1,r=17
u=33ki=T,ke=14,A=7,7=5

C = {9,10,11, 22,28,29, 33},

D = {6,10,14, 15,17, 18, 20, 22, 24, 25, 27, 30, 31, 33}
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no solution
Th.2

Th.2

ALG1
ALG1

ALG1

Th.7
Trivial

ALG2

ALG2



Table 1 (continued)

u=233;k; =8,k =%2A=4,r=7
u=233;k1 =11,k =15 2=10,r =1
u=33%k =12,k =13;A=9,7r =1
u=233k1 =16,k =16;2=15,r = -1

u=35ki=1k=1;2=0,r=31

u=35k =1k =17;12=8,r=15

Cc={1},D={1,3,4,7,9,11,12, 13, 14, 16,
17,21,27,28,29, 33, 35}

u=35ky =4,ko=8;A=2,r=15

u=235k; =4,k =10;A=3,r=13

u=35;k1 =6,k2 =9;/\=3,1‘= 11

u=235;k =8,ks=14;A=7,r=5

u=235ki =%ke=12;A=6,r=5

C = {12,13,17, 21, 24, 30, 31, 32, 35},

D = {4,5,10,18,20, 21, 24, 26, 28, 30, 31, 33}

u=3%k; =10,k =14;1=8,r=3

u=35k =17,ko=17; 2= 16,r = -1

u=37ki=1ky=1;A=0,r=33

u=37;k1=l,k2=9;)\=2,r=21

c={1},D={1,7,9,10,12,16, 26, 33,34}

u=3Tk1 =3,k =6;A=1,r=21

C ={1,10,26}, D = {2,5,13,15,19, 20}

u=237;k1 =3,k =15 A=6,r=13

Cc ={1,10,26}, D = {3,4,5,13,17,18,
19,21, 22, 24, 25, 28, 30, 32, 35}

u=37"ki =4,k =12;A=4,7r=13

u=3T;k1=4,ks =16, A=7,7r=11

¢ ={1,10,26,37}, D = {1,5,7,10,11,13,
14,19, 26, 27,29, 31, 33, 34, 36,37}

u=37;k;=6,ks=7;A=2,r=15

C =1{1,3,4,10,26,30},

D = {2,15,20,21, 25, 28, 37}

u=3"ki=7ko=15;A=7,7r=7

C ={3,4,5,13,19,30,37}, D = {2,6,8,11, 15,
17,20,21, 22,23, 25, 27,28, 35, 36}

u=37ki =%k =% A=4,r=9

C=D={1,7,9,10,12, 16, 26, 33,34}

u=237;k; =10,ke =10;A=5,r=7

C ={1,3,4,5,10,13, 19, 26, 30, 37},

D ={1,2,6,8,10, 15,20, 23, 26, 37}
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ALG2, no solution
*

*
?

Trivial
Th.2

?
?
”

ALG?2, no solution
ALG2

ALG2, no solution
Th.7

Trivial
Th.2
ALG1
ALG1

?
ALG1

ALG1
ALG1

Th.2

ALG1



Table 1 (continued)

u=237;k; =10,ky =18;A=11,r=3

C =1{1,3,4,5,10,13,19,26,30,37}, D = {1,3,4,7,
9,10,11,12,16, 21,25, 26, 27, 28, 30, 33, 34, 36}

u=237k1 =12,k =13;A=8,r=3

C = {2,3,4,5,11,13,15,19, 20, 27, 30, 36},

D ={1,2,5,6,8,10, 13,15, 19, 20, 23, 26, 37}

u=37k; =13,ky = 16;A=11,r=1

u=237;k1 =18, ks = 18; A =17,r = -1

u=23%ki =1k =1;2=0,7=35

u=23%k =1Lk =19%5A=9,r=17

u=239k =5k, =8;2=2,r=17

C ={1,16,22,26,39}, D = {2,4,5,10, 13, 25, 32, 39}

u=23%k =5k =12;A=4,7=13

u=3%k; =Tka=92=3,r=13

C ={1,2,5,16,22,32,39},

D = {4,6,10,13, 15, 18, 25, 26, 39}

u=3%k; =T, ke=15A=4,r=11

u=23%k =8 k=15 A=7,7=7

C ={1,3,9,13,16,22,27,39},

D = {3,4,5,7,8,13, 14, 15, 19,22, 24, 26, 36, 38, 39}

u=239%k; =9k =13A=6,r=7

C =1{1,2,3,5,9,16, 22,27, 32},

D =1{1,2,5,6,7,13,15, 16, 18,22, 32, 34,37}

u=3%k; =11,k =13;A=7,7=5

C ={1,2,3,5,9,13, 16, 22, 27, 32, 39},

D = {3,4,7,9,10,13,14, 25, 27,29, 34, 35,37}

u=23%k =12,k =15A=9,r=3

C =1{1,2,4,5,6,10,15, 16, 18, 22, 25, 32},

D ={1,2,3,4,5,9,10, 12,16, 22, 25,27, 30, 32, 36}

U= 39;k1 = 19,k2 = ]9;/\ = 18,7‘ =-1

C ={1,3,4,6,7,8,9,10,11,15,16,18, 20, 22, 25,
26,27,34,37}, D = {2,5,6,7,8,11,12,15, 18,
19, 20, 26, 28, 30, 31, 32, 34, 36, 37}

u=41;ky =1L ks =1;A=0,r =37
u=41;ky =1,ko =16;A=6,7=19
u=A41;k) =5ky =5;A=1,7r=23

C = {1,10, 16, 18, 37}, D = {2, 20,32, 33,36}
u=41;k; =5,kp =20; A =10,r =11
u=41;k1 =6,ko =10;A=3,7 =15
u=41;k; =6,kp =15; A =6,7r =11
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ALG1
ALG1

*

Th.7
Trivial

no solution
ALG1

?
ALG1

?
ALG1

ALG1
ALG1
ALG1

ALG1

Trivial
no solution
ALG1

?
?
?



Table 1 (continued)

u=41;k; =10,k =11;A=5,r=9 ALG1
C =1{1,3,7,10,13, 16, 18, 29, 30, 37},

D ={1,6,10,14,16,17,18,19, 26, 37,41}

u=41;k; =11,k =15 A=8,7r =5 ALG1

C=1{1,3,7,10,13,16, 18, 29, 30,37,41},
D={1,6,10,11,12,14,16,17,18, 19, 26, 28, 34, 37, 38}
u=41,k—16k2—16/\—12r—1 *
u=41;k; =20,k =20; A =19,r = -1 Th.7
u=43;k; =1,k =1;A=0,r=39 Trivial
u=43%3k1=1ko=7;A=1,r=29 no solution
u=43;k; =1,ky =15;A=5,r =21 no solution
u=43;k; =1,k =21;A=10,7r=19 Th.2

C= {1} D =1{1,2,3,4,5,8,11,12, 16, 19, 20,
21, 22,27, 32, 33,35, 37, 39,41, 42}

u=43;k; =4,k =6;A=1,r=25 ?
u=43;k1 =4,k =% A =2,r=21 ?
u=43;k; =4,kp = 13;A=4,7r =17 7
u=43;k; =4,k =16;2=6,r=15 ALG1

C =1{1,6,36,43}, D = {4,7,10, 14,15, 16, 17,
19,24, 28,31, 37, 39,11, 42,43}
u=43;k; =6,k =18;A=8,r =11 ALG1
C=1{4,7,15,24,37,42}, D = {2, 3,10,12,14, 16,17,
18,19, 21, 22, 25, 28,29, 31, 39, 40,41}
u=43;k1 =T, ko=72=2,7r=19 ALG1
u=43;ky =7, ke = 15; A =6,r =11 ALG1
C ={1,4,11,16,21,35,41},
D=1, 3 4, 5 11, 12 16,19, 20,21, 33, 35, 37,41, 43}
u=43;k; =Tk, =21;A=11,r=9 ALG1
C = {3,4,15,18,22,24,43}, D = {1,2,4,6,7,9,11, 12,
13,15,19, 23,24, 28, 29, 35, 36, 37, 38, 39, 42}
u=43;k) =9,k =18, A=9,r=7 ALG1
C=1{1,3,4,6,15,18,22,24,36}, D = {2,3,5,
7,8,9,11, 12,13, 18, 22, 23, 29, 30, 35, 37, 38,42}
u=43;k1 =13, ko =182 =11,r=6 ALG1
C=1{2,3,4,5,8,12,15,18,22,24,29,30,43}, D = {2,3,4,
7,9,11,12, 13,15, 18, 22, 23, 24,29, 35, 37, 38,42}
u=43;k; =15,ko = 15;A=10,r=3 ALG1
C =1{1,2,3,4,6,7,12,15,18,22, 24, 29, 36, 37, 42},
D ={4,7,9,11,13,14, 15,23, 24, 31, 35, 37, 38,41, 42}
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Table 1 (continued)

u=43;k1 =15,ko =21;A=15,7r=1 *
u=43;k; =16,k = 18; A =13,r=1 *
u=43;k; =21,k =21;2 =20,r = -1 Th.7
u=45k; =1L,k =1;A=0,r=41 Trivial
u=45k1 =1,k =12;A=3,7=25 no solution
u=45;k; =2,ko=T;2=1,r=29 ?
u=45/k1 =2,k =18;A=7,7r=19 ?
u=45;k; =5,ky =132 =4,r =17 ?
u=45;k; =5,ka =21;A=10,r=13 ?
u=45;k1 =T, k=10, A= 3,7 =17 ?
u=45;k; =10,ks = 18;A=9,r =7 ?
u=45;k;1 =1L,k =11;A=5,r=11 ?
u=45;k1 =11, kp =22; A =13,r=5 ALG?2, no solution
u=45;k; =12,k =12;A =6,r=9 ?
u=45;k1 =13,k =162 =9,r=5 ?
u=45/k; =16,ks =21;A=15,r=1 *
u=45k1 =22, ks =22; A =21,r= -1 ?
u=A4T;k1 =1L, ko =1;A=0,r =43 Trivial
u=4T;k1 = 1,k =23; A =11,r =21 Th.2
C={1},D={1,2,3,4,6,7,8,12,14, 16,17, 18,
21,24,25,27,28, 32,34, 36, 37,42}
u=47;k1 =2,k =10; A =2,7 =27 ?
u=4T;k; =2,k =14\ =4,r =23 ?
u=47;k1 =3,ko =12;A=3,r =23 ?
u=A47;k1 =5,ka =91 =2,r =23 ?
u=47;k; =5,ka =152 =5,r =17 7
u=4T;k1 =9,k =192=9,r=9 ?
u=A4T;k1 =10,k =22;A=12,r =7 ?
u=47;k; =12,k =21;A=12,r=5 ?
u=A4T;k1 =14,k =22;A = 14,r=3 ?
u=47k1 =15,k =19 A =12,7r=3 ?
u=47;k; = 23,ky =23; A = 22,7 = —1 Th.7
u=49k; =1,k =1;A=0,r =45 Trivial
u=4%k; =1,k =16, A =5,r=25 no solution
u=4%k; =3, ko=7;A=1,7r=31 ALG1
C ={1,18,30}, D = {4,9, 15,22, 23, 25,49}
u=49%k; =3,k =10;A\=2,r =27 ?
u=49%k; =4,ks =12; A =3,r =23 ALG1

C = {1,18,30,49},
D ={1,2,6,8,10,11, 18,30, 33, 36,44, 46}
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Table 1 (continued)

u=4%k; =4,k; =21;A=9,7 =17 ?
u=49;k1 =6,ky =15;A=5,r =17 ALG1
C ={1,2,11,18, 30,36},

D = {2,4,6,7,8,10,11, 14, 22,23, 28, 33, 36,44, 46}

u=49k =6,k =18;A=7,7r=15 ?
u=49%k; =7,k =19;A=8,r=13 7
u=49%k =%k =9HA=3,r=19 ?
u=49k; =9, k; =24;A=13,7r=9 ALG1

C=1{1,2,3,5,11,18,30,36,41}, D = {4,7, 8,12, 14,
16,17, 20, 21, 22, 23, 24, 28, 29, 32, 34, 35,
37,39, 40,42, 43, 44,46}
u=49%k =10,k =152 =9,r=9 ?
u=149;k; =12,k =13;A=6,7r =11 ALG1
C ={1,2,4,6,10, 11,18, 22,23, 30, 33, 36},
D ={1,2,3,5,9,11, 15,18,25,30, 36,41,49}
u=49%k =13,k =21;A=12,r=5 ALG1
C =1{1,2,3,5,7,11,14,18,28,30,36,41}, D = {4,7,
10,14, 15,16, 17, 19, 24, 28, 31, 37, 39, 41, 42,49}
u=49;k; = 15,ky =22;A=14,r=3
u=49;k; =16,ko =16;A=5,r=5
u=4%k = 18,k; =22;A=16,r=1
u=49 k1 =24, ko =24;A =23, r = -1

N ¥ ) N

References

(1] L.D. Baumert, Cyclic difference sets, Lectures Notes in Mathematics,
Vol. 182. (Springer, Berlin, 1971).

[2] S. Chadjiconstantinidis and T. Chadjipadelis, Purther results oo sup-
plementary difference sets and optimal cyclic complez linear designs,
Utilitas Math., 44 (1993) 17-40.

[3] S. Chadjiconstantinidis and C. Moyssiadis, Some D-optimal odd-
equireplicated designs for a covariate model, J. Statist. Plan. Inference
28 (1991) 83-93.

[4] T. Chadjipantelis and S. Kounias, Supplementary difference sets and
D-optimal designs for n =2 (mod 4), Discrete Math. 57 (1985) 211-
216.

[5] T. Chadjipantelis, S. Kounias and C. Moyssiadis, Construction of D-
optimal designs for n = 2 (mod 4) using block circulant matrices, J.
Combin. Theory Ser. A 40 (1985) 125-135.

54



(6] J.H.E. Cohn, On determinants with elements +1, /I, Bull. London
Math. Soc. 21 (1989) 36-42.

[7] H. Alicia, Determinantenabschatzung fur binare Matrizen, Math.
Zeitzchrift 83 (1964) 123-132.

(8] D.A. Harville, Compuling optimal designs for cavernous models, In:
J.N. Srivastava, Ed., “A survey of Statistical designs and Linear Mod-
els”, North Holland, Amsterdam (1975) 209-228.

[9] H. Kharaghani, A construction of D-optimal designs for n = 2
(mod 4), J. Combin. Theory Ser. A 46 (1987) 156-158.

[10] C. Koukouvinos, S. Kounias and J. Seberry, Supplementary difference
sets add optimal designs, Discrete Math. 88 (1991) 49-58.

[11] V.G. Kurotschka, Optimal designs of complex ezperiments with quali-
tative factors of influence, Commun. Statist. Theor. Meth. A7 (1978)
1363-1378.

[12] E. Landau, Elementary Number Theory (Chelsea, New York, 1958).

[13] D. Raghavarao, Constructions and Combinatorial Problems in Design
of Experiments (John Wiley and Sons, Inc. New York, 1971).

[14] A.P. Street and W.D. Wallis, “Combinatorial Theory: An Introduc-
tion” (Winnipeg, Canada, 1977).

[15] J.L. Troya, Optlirnal designs for covariate models, J. Statist. Plan. In-
ference 6 (1982) 373-419.

[16] T.van. Trung, The ezistence of a symmetric block design wilj param-
eters (41,16,6) and (66, 26,10), J. Combin. Theory, Ser. A 33 (1982)
201-204.

[17] J. (Seberry) Wallis, On supplementary differeoce sets, Aequationes
Math. 8 (1972) 242-257 ’

[18] J.(Seberry) Wallis, A note on supplementary difference sets, Aequa-
tiones Math. 10 (1974) 46-49.

[19] W.D. Wallis, A.P. Street and J.S. Wallis, Combinatorics: Room
Squares, Sum Free Scls, HHadamard Mairices, Lecture Notes in Math-
ematics 312 (Springer, Heidelberg, 1972).

[20] A.L. Whiteman, A family of D-optimal designs, Ars Combinatoria 30
(1990) 23-26.

55



[21) W. Wierich, Oplimum designs under experimental consiraints for co-
variate models and an intraclass regression model, J. Statist. Plan.
Inference 12 (1985) 27-40.

[22] W. Wierich, On optimal designs and complete class theorems for ex-
periments with continuous and discrete factors of influence, J. Statist.
Plan. Inference 12 (1985) 27-40.

[23] C.H. Yang, Some designs for mazimal (41, —1)-determinant of order
n =2 (mod 4), Math. Comput. 20 (1966) 147-148.

[24] C.H. Yang, A construclion form mazimal (+1, —1)-matriz of order 54,
Bull. Amer. Math. Soc. 72 (1966) 293.

[25] C.H. Yang, On designs of mazimal (+1, —1)-matrices of order n = 2
(mod 4), Math. Comput. 22 (1968) 174-180.

[26] C.H. Yang, On designs of mazimal (+1, —1)-matrices of order n = 2
(mod 4), II, Math. Comput. 23 (1969) 201-205.

56



