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ABSTRACT. We show that for infinitely many n there exists a
Cayley graph I of order n in which any two largest cliques have
a nonempty intersection. This answers a question of Hahn, Hell
and Poljak. Further, the graphs constructed have a surprisingly
small clique number cr = |v2n] (and we do not know if the
constant /2 can be made smaller).

1. Introduction

Cayley graphs have been widely studied in the literature for more than a
century. In most cases, the research has focused on two outstanding prob-
lems. The first is the well known conjecture that every connected Cayley
graph has a Hamiltonian cycle (see e.g. [1] for a survey). The second is
the problem of characterization and construction of vertex-transitive graphs
that are not Cayley graphs; for the recent progress in this area we refer the
reader to [4].

In contrast with the above, the investigation of cliques (or, equivalently,
independent sets) in Cayley graphs seems to be a largely intact area. It was
observed in [3] that in incomplete Cayley graphs of abelian groups there
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are (at least two) disjoint largest cliques, that is, cliques whose order is the
clique number. Furthermore, it is proven in [2] that this holds for Cayley
graphs whose generating sets are invariant under inner automorphisms.

As we shall see, this is not true in general for non-abelian groups. The
interesting extremal question is now almost immediate: If, in a Cayley
graph of a non-abelian group, any two largest cliques intersect, then how
small can the cligue number of the graph be?

At first glance, the above intersection requirement forces the clique num-
ber to be quite large in comparison with the order of the graph. It may
therefore be surprising that for infinitely many n there is a Cayley graph
(of a non-abelian group) of order n with clique number |v/2n], such that
any two its largest cliques meet (see Theorem 1). Moreover, we show that,
in a certain class of coset constructions, the number |v/2n] is also the lower
bound for the clique number of a Cayley graph of order n in which any two
largest cliques intersect. This shows that the result of Theorem 1 is, in a
sense, best possible,

The graphs constructed here provide counterxexamples to an unstated
hypothesis of Hahn, Hell and Poljak which hoped that for any Cayley graph
I" the ultimate independent ratio I(I") was equal to the independence ratio
i(T") of T (details will be found in the last section of this note).

2. Lower bounds

Let G be a finite group and let X be a symmetric unit-free subset of G,
thatis, X~! = X and 1 ¢ X. The Cayley graph C(G, X) has vertex set G,
and two vertices a,b € G are adjacent if a~1b € X. Note that the adjacency
does not depend on the ordering of a and b, and so our Cayley graphs are
undirected (and, of course, simple). Let T C G be the vertex set of a clique
in C(G, X). Obviously, T~!T C X* where X* = X U {1}. Conversely, if
T-!T C X* then a~'b € X for any two distinct a,b € T, and so T induces
a clique in C(G, X). It follows that if T induces a clique in C(G, X), then
so does any set aT for a € G (this is also clear from the fact that the left
multiplication by an element of G induces an automorphism of the graph
C(G,X)).

For the sake of brevity, we will say that a Cayley graph C(G, X) has the
largest clique intersection property (and we will be using the acronym LCI)
if any two cliques of largest cardinality in C(G, X) (shortly, largest cliques)
have a nonempty intersection LCI) if any two cliques of largest cardinality
in C(G, X) (shortly, largest cliques) have a nonempty intersection.

Let C(G, X) be a graph with the LCI property and let S C G induce
a largest clique in C(G, X). Then, for each a € G, the set aS induces a
largest clique as well. The intersection property implies that aSN S # @
for each a € G. The latter is equivalent to saying that a € SS! for every
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a € G, or briefly, G = SS~!. We see that if S induces a largest clique
in a Cayley graph C(G, X) in which every two largest cliques meet, then
§~18 c X* and SS~! = G. The converse is not true in general: Even if
such a set S exists in C(G, X), apart from the sets aS there may well be
other sets inducing largest cliques in the graph, and these may violate the
LCI property.

We now turn to our extremal problem of determining the smallest pos-
sible size of a largest clique in Cayley graphs with the LCI property. For
any graph I' let np be its order and let cp denote its cligue number, i.e.,
the number of vertices in a largest clique in I".

Let S C G induce a largest clique in a Cayley graph ' = C(G, X).
Without loss of generality we may assume that S contains the unit element
of the group, ie., 1 € S. For every a € G we introduce the set S(a) =
{(r,s) € S x S; rs~1 = a}, and let o(a) = |S(a)|. The system {S(a)}acc
is clearly a partition of S x S (note that, in general, some of the sets S(a)
may be empty). Therefore,

Y ol@) =15 =ct. 1)

a€G

Observe that for the unit element we have |S(1)| = ||, and so o(1) = ¢r.
Now, if the graph I has the LCI property, then SS~! = G, which implies
that o(a) > 1 for every element a € G. From (1) we then immediately
obtain:

Lemma 1. Let ' = C(G, X) be a Cayley graph (of a nontrivial group)
with the LCI property. Then cr > /nr.

This lower bound on the clique number can be improved in some cases.
Let Ar denote the valency of the Cayley graph I' = C(G, X); clearly Ar =
|X].

Lemma L.et ' = C(G, X) with np > 3 have the LCI property and let
Ar < 2cr—3. Thencr > \/ﬁn[-.

Proof: Let S C G induce a largest clique in I" and let 1 € S. We show
that our assumptions imply o(a) > 2 for every a € G. Indeed, take an
a € G,a#1l Since SS~! = G, there exist r1,72 € S such that a =
riry ', and so (r1,73) € S(a). Consider the sets X; = {z € X; riz € S}
for i = 1,2; note that |X;| = cr — 1. Using the valency assumption we
obtain [X; U X3| < |X| = Ar < 2¢cr — 3. Therefore, |X; N X3| > 1. Let
y € X1 N Xz. Then, riy € S and (r1y)(roy)~! = mry! = a. It follows
that also (r1y,72y) € S(a), and we have o(a) > 2 for each a € G, a # 1.
Substituting this into (1) and taking into account that o(1) = cr yields
cr > 2nr for np > 3. a
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Another source of better lower bounds comes from special choice of the
set S. Let C(G, X) be a Cayley graph with the LCI property and assume it
is not complete. Clearly, if S C G induces a largest clique in C(G, X) then
S cannot be a subgroup of G. This suggest to consider unions of cosets of
some subgroup of G as good candidates for S. For the sake of simplicity
we confine ourselves to unions of two cosets.

Lemma 3. Let I' = C(G, X) be a Cayley graph with the LCI property.
Assume that a largest clique in T is induced by the set S of the form
S = HgUHh where H is a subgroup of G and g, h € G. Then, cr > |/2nr).

Proof: We use the notation introduced before Lemma 1. Let a € H be
an arbitrary element. For every b € S = HgU Hh we have ab € S and
b=! € 1. The fact that a = (ab)b~! now implies that o(a) = |S(a)| > |9|
for every a € H. By (1),

=Y o)+ Y o(a)2|H|S|+|C\H|

a€EH a€G\H

Since |S| = 2|H| = cr, it follows that ¢& > ¢&/2 + (n — cr), and hence
cr 2 [\/anj. [}
As we shall see in the next section, this lower bound is best possible for

infinitely many values of nr in the class of Cayley graphs where a largest
clique is induced by a union of two cosets.

3. The construction

Let GF(g) be the Galois field of order ¢ = p* = 3 (mod 4) where p > 7
is prime, and let d be a fixed primitive element of GF(g). Let G be the
(obvious) index 2 subgroup of the 1-dimensional affine group on GF(q)
corresponding to the even powers of d. More formally, G consists of all
transformations f : GF(q) — GF(q) such that f(z) = d**z + b where
k is an integer and b € GF(q). Observe that |G| = q(q — 1)/2. Let
H = Stabg(0) be the subgroup of G which fixes the zero element of GF(q),
that is, H = {g; g(z) = d**z}. Clearly, |H| = (¢ — 1)/2. Further, let
h € G be the transformation h(x) = = + d where d is the fixed primitive
element of the field; note that h ¢ H. Consider the set S = HU Hh =
{g9; 9(z) = d?*(z + 6d), § € {0,1}}. It follows that $-! = HUh~1H =
{g9; 9(z) = d®*z — &d, 6 € {0,1}}. For the product of these sets we have
S~1S = HU HhU R~ H U h~'Hh, or explicitly, S™1S = {g; g(z) =
d?*(z + 6d) — §'d, 6,6’ € {0,1}}. For each k, 0 < k < (g — 1)/2 we thus
have 4 transformations in $~1S with coefficient d?* at z, and only three
of them for k = 0; it follows that |S~1S| = 2¢g — 3. Now let X* = $-1§
and let X = X*\ {id} where id is the identity element of G. The set X is



obviously a symmetric (X ~! = X) and unit-free subset of G. We therefore
may define the Cayley graph I'y = C(G, X).

In the following series of auxiliary result we investigate the properties of
I’y that are related to its largest cliques.

Lemma 4. The set S is a largest clique in T,.

Proof: A subset T C G is a clique in I’y if and only if T~!T c X*. Thus,
by the definition of X, our set S is a clique in I'y. Clearly, |S| =¢—1. We
show that |T'| < g —1 for any other clique T in T,.

Let T be a clique in I'y. Suppose that T contains (for some integer k)
three different transformations f; such that f;(z) = d®*z +b;, 1 <i < 3.
By our assumption T~!T C X* we have f'f; € X. But f7f;(z) =
z +d~2%(b; — b;), and the only transformations in X with coefficient 1 at
z and non-zero shift are h(z) = z + d and A~1(z) = z — d. Therefore for
every 1,7, 1 < 14,5 < 3 we have d~25(b; — b;) = d. It is easy to check that
three distinct b;’s cannot satisfy this condition if the characteristic of the
field is # 3 (which is true in our case). Hence every even power of d gives
rise to no more than two transformations in T, and so |T| < ¢—1. (As a
by-product, we see that if fi(x) = d**z + b; and fo(z) = d%*z + by are in
a clique T then, without loss of generality, by = by + d?*+1)) 0

Lemma 5. If T is a largest clique in 'y then T = K U Kh for a suitable
subset K C G, |K| = (¢ —1)/2.

Proof: Let T be a clique in 'y such 'that [T] = ¢ — 1. The preceding
proof shows that for every k such that 0 < k < (g — 1)/2 there are exactly
two elements ci and ¢ such that T contains the transformations fi(z) =
d%*z + ¢ and fi(x) = d**z + c}. By the concluding remark of that proof,
we may assume that ¢, = ci + d**!, which is equivalent to saying that
fi. = fxh. Now, denoting the set of the transformations f; by K we see
that Kh = {f]; fx € K}, and thus T = K U Kh. O

Lemma 6. Let T be a Iérgest clique inTy. Ifid € T and h € T then
T=S.

Proof: According to Lemma 5, T = KU Kh where K is a suitable set of
transformations of the form fi(z) = d**z+cx, 0 < k < (g—1)/2. To prove
our statement it is sufficient to show that {id, A} C T implies ¢, = 0 for
all k, 0 < k < (¢ —1)/2. (Indeed, if this is the case, then K = H and so
T=38)

Take an arbitrary but fixed k such that 0 < k < (g—1)/2 and consider the
set of transformations M = { fi, fch, A~ fx,h~! frh}. By our assumption
we have {id,h~'} C T, and therefore M C T~!T c X* (the last inclu-
sion holds because T is a clique). Starting from fi(z) = d®*z + cx, an easy
computation yields feh(z) = d®*z+cp+d?*+1) =1 fi(z) = d?**z+4cx—d, and
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finally b1 fih(z) = d**z + ¢ + d?**! — d. Since all these transformations
are in X* and they have the same coefficient d?* at z, the set M is equal to
the set of the transformations g of the form g(z) = d®*(z +6d) —&'d, 6,6’ €
{0,1} (see the definition of the set X* = $~15). Consequently, the corre-
sponding sets of shift coefficients are equal, that is,

{cx, ok + d**F1 ok — d, i + d2XH! — d} = {0,d%*F1, —d, d%H1 _ g}, (2)

If d?* # +1 then each of the sets in (1) contains 4 distinct elements. Clearly,
if (1) holds then the sum of the 4 elements in each of the sets is the same.
However, this is possible only if 4¢; = 0, which implies that ¢, = 0 (recall
that the characteristic of our field is > 7). If d>* € {1, —1} then each set in
(1) has exactly three distinct elements. Their equality then implies (by a
similar argument) that 3cx = 0, and so ¢, = 0 again. Lemma 6 follows. O

Lemma 7. Every largest clique in 'y has the form gS for a suitable g € G.

Proof: Let T be a largest clique in I'y. By Lemma 5, T = K U Kh for
some K C G. Take an arbitrary g € K and consider the clique g~!T =
g 'K U g 'Kh. Since id € g-'K and h € g~1Kh, we see that g~ T
contains both id and k. Invoking Lemma 6, g~'T" = S, and hence T=¢S. O

Now we are ready to prove the main result of this section.

Theorem 1. Any two largest cliques of the Cayley graph Iy = C(G, X)
have a nonempty intersection.

Proof: It follows from Lemma 7 that all largest cliques in I'4 have the form
95, g € G. By transitivity of I', it is sufficient to prove that gSN S # @
for every g € G. The latter is easily seen to be equivalent to saying that
SS~! = G. The inclusion §S~! C G is trivial. To show that the reverse
is also true, take an arbitrary g € G, g(x) = d?*z +b. If b = 0 then
g € H C 5571, so we may assume b # 0. Since d is a primitive element of
our field GF(g) and ¢ = 3 (mod 4), each such b can be written in the form
b = Ad?>™t! where A = +1. But then,

9(z) = d®*z + AP+ = @™ (d**-™)z 4 Ad) = gohP gy (x)

where g1(z) = d** ™)z and go(z) = d*™z. Notice that g1, g2 € H, and
therefore g = goh*g, € HRH U Hh='H C $S~1. The proof is complete. O

We have seen that the Cayley graph I'y constructed above has n = g(g —
1)/2 vertices (¢ = p*, p > 7 a prime) and its largest clique has size |S| = g—
1 = |V2n]. This shows that the lower bound obtained in Lemma 3 is best
possible (when restricted to the “two-coset” constructions) for infinitely
many values of n. In general, we do not know of any family of Cayley
graphs ' with the LCI property with cr = ¢/, ¢ < V2. Note that by
Lemma 1, ¢ > 1.
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4. Application to independence ratio

The box product (cartesian product) I' O I of two graphs I" and I is
well known and is defined by (V(T') x V(I'), E) with E = {(u,z)(v,y) €
V() x V(I'') : either u=v and zy € E(I"), or uv € E(T) and z = y}.
It is well known - and easy to see - that this product is commutative and
associative (up to isomorphism). We define I'! =T and, for k > 1, put
I'* = rOr*%-!. We denote by (') the independence number of . The
independence ratio of I is the fraction i(I") = a(T")/|V(T')|, and the ultimate
independence ratio of I is defined as I(I") = limg_o0 i(I'*) (the limit is
known to exist, see, for example, [2]).

The work of [2] shows that I(I") = (") whenever I' = C(G, X) is a Cayley
graph such that X is setwise invariant under all inner automorphisms of
the group G. In particular, I(T') = i(T) for every Cayley graph I" of an
abelian group. This fact gave rise to a working hypothesis of Hahn, Hell
and Poljak, claiming that the equality I(T') = i(I") might be true for any
Cayley graph I.

As an application of results of the preceding section, we show that there
are counterexamples to this working hypothesis.

Corollary 1. There exist infinitely many Cayley graphs T" with I(T") <
().

Proof: Consider the complements of the graphs constructed previously in
Theorem 1; these are Cayley graphs again, and the LCI property translates
to the corresponding property of largest independent sets. But it is shown in
[2] that if any two largest independent sets intersect non-trivially in a graph
[ of order n with independence number & < =, then I(T') < 2=1 < 4(I').0

References

(1] J.A. Gallian and D. Witte, A survey: Hamiltonian cycles in Cayley
graphs, Discrete Math. 51 (1984), 293-304.

[2] G. Hahn, P. Hell and S. Poljak, The ultimate independence ratio of a
graph, European J. of Combinatorics (to appear).

(3] P. Hell, X. Yu and H. Zhou, Independence ratio of graph powers,
Preprint (1991).

[4] B. McKay and C. Praeger, Vertex-transitive graphs which are not Cay-
ley graphs I and II, Preprint (1993), submitted.

63



