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ABSTRACT. It is shown that for any even integer u > 20 a
Room frame of type 2"u! exists if and only if n > u+1.

1. Introduction

Let S be a finite set, let 0o be a “special” symbol not in S, and let H be a
set of subsets of S. As defined in [23] a holey Room square (briefly HRS)
having hole set H is an |S| x |S| array, F, indexed by S, which satisfies the
following properties:

1. every cell of F either is empty or contains an unordered pair of sym-
bols of S U {o0}.

2. every symbol of SU {co} occurs at most once in any row or column
of F, and every unordered pair of symbols occurs in at most one cell
of F,

3. the subarrays H x H are empty, for every H € H (the subarrays are
referred to as holes).

4. symbol s € S occurs in row or column ¢ if and only if (s,t) € (S x
S)\ Ugen H x H; and symbold co occurs in row or column ¢ if and
only ift € S\ Upen H.

5. the pair (s,t) occurs in F if and only if (s,t) € (S x S)\Uyeu H x H;
the pair {oo,t} occurs in F if and only if ¢ € S\ Ugen H.
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The order of F is |S|. Note that co does not occur in any cell of F if
UnenH = S. If H = @, then an HRS(H) is called a Room square of side
IS].

If H = {S),52,...,Sn} is a partition of S, then an HRS(H) is called a
Room frame. As is usually done in the literature, we shall refer to a Room
frame simply as a frame. The type of the frame is defined to be the multiset
{ISil : 1 £ i < n}. We usually use an “exponential” notation to describe
types: a type t}*ty?...t:"* denotes u; occurrences of ¢;, 1 < i < k. We
briefly denote a frame of type £}'¢3 ...t5* by RF(t]¢57 ... ¢1%).

If H = {S,S2,...,Sn, H}, where {S},Ss,...,5,} is a partition of S,
then an HRS(H) is called an incomplete frame or an I-frame. The iype of
the I-frame is defined to be the multiset {(|S:|,|Si N H|):1 < i <n}. We
may also use an “exponential” notation to describe types of I-frame: a type
(t1,71)* (t2,72)¥2 . .. (tk, T)** denotes u; occurrences of (¢;,7;), 1 <i < k.

The first Room frame was used to prove the existence of a Room square of
side 257 by Wallis [24]. Since then the notion of Room frame has played an
important role in recursive constructions of various combinatorial designs,
such as Room squares (see, for example, the recent survey [8]), incomplete
Room squares [10], [23], cycle decomposition [13], [15], [16], and weakly
3-chromatic linear spaces [17], [18]. This paper is a continuation of [11]
investigating the existence of Room frames with type 2"y!, The known
existence results for frames of related types can be summarized in the fol-
lowing theorem.

Theorem 1.1. There exist frames of the following types:

(1) [7], [12] t* for all even integers t > 2, except possibly when t € {14,
22, 26, 34, 38, 46, 62, 74, 82, 86, 98, 122, 134, 146}.

(2) [5], [7], [12] t® for any integer ¢t > 1.

(3) [7] t* for u > 6 and both t and u even.

(4) [7] t* for all t and all odd u > 7.

(5) [9] 2°4¢ for s € {6,7,...,14, 31, 42, 43, 44} or s > 48,0 < a < 5.
(6) [11] 2"4! for any n > 5.

(7) [11] 2™u! for any even u > 4 and n > 5[u/4] + 20.

For the existence of frames of type 2™u! the following necessary condition
is known.

Theorem 1.2. [9] If a frame of type 2"u' exists for some integer u > 2,
thenu=0 (mod 2) andn 2 u+1.



We shall describe direct and recursive constructions for frames in Sec-
tion 2. Define

U = {u even: there exists an RF(2"u!) for all n > u +1}.

In Section 3, we shall show that u € U for any even u, 20 < u < 34. With
this interval we can show in Section 4 that u € U for any even u > 428. In
Section 5 we shall deal with the values between 36 and 426. Therefore, the
main result of this paper can be stated as follows.

Theorem 1.8. For any even integer u > 20, there exists a Room frame of
type 2*u! ifand only ifn > u+1.

2. Constructions

The main direct construction used is the “starter-adder” construction and
its modifications, see [8], [20]. Let G be an abelian group, written additively,
and let H be a subgroup of G. Denote g = |G|, h = |H| and suppose
that g — h is even. A frame starter in G\H is a set of unordered pairs
S = {{si,ti} : 1 < i < (g — h)/2} satisfying

(1) Uicigg-ny2({ss} U {t:}) = G\H, and

(2) Uicic(s-nysa{£(si —t:)} = G\H.

An adder for S is an injection A : S — G\H, such that

Ur<i<(g-ny2({si + ai} U {t: + &i}) = G\H,

where a; = A(s;,¢;), 1 <1 < (g—h)/2. We have the following construction
for Room frames.

We have the following construction for Room frames.

Lemma 2.1. [20, Lemma 3.1] Suppose there exists a frame starter S in
G\H, and an adder A for S. Then there exists a frame of type h9/%, where
g=|G| and h = |H|.

As above, let G be an abelian group of order g and let H be a subgroup
of order h, where g — h is even. A 2k-intransitive frame starter in G\H is
defined to be a triple (S, C, R), where

S={{siti}:1<i<(9—-h)/2—2k}U{{u;}:1<i<2k}
C={{piq}:1<i<k}, and
R={{p,qi}:1<i<k},

satisfying
(M) {ss}u{tilu{u}u{p}u{a}=CG\H,
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(2) {£(s —t)} U {£(pi — @)}V {£(p; — )} = G\H, and
(3) all p; — g; and p} — g; have even orders in G.

An adder for (S,C, R) is an injection A : S — G\ H, satisfying
(4) {si + &} U{ti + @i} U{wi + b} U {p}, ¢/} = G\H,
where

a; = A(si,t:), 1 i< (9 - h)/2 -2k,
bi = A(w),1 <i < 2k.

The following result is known.

Lemma 2.2. [20, Lemma 3.3] If there is a 2k-intransitive frame starter
and an adder in G\H, where g = |G| and h = |H|, then there is a Room
frame of type h9/%(2k).

The next known recursive construction is useful in this paper.
Construction 2.3. (Filling in holes): (1) If there exist frames of type
(2n1)1(2n2)! ... (2nk) A? and type 2™! for 1 < i < k, then there exists a
frame of type 2"u! where n = ny +ng+---+ny, and u = h+v. (2) If there
exist an I-frame of type (2n; + u1,u1) (2n2 + ug,u2)! ... (2nk + ug, ui)?
and frames of type 2(3+™)(u;)!, where d € {0,1} and 1 < i < k, then
there exists a frame of type 2(3+%)y! where n = d+ny +n2 + --- +ng and
u=u;+uz+ -+ ug.

The following recursive construction for frames uses group divisible de-
signs. A group divisible design (or GDD), is a triple (X, G, A) which satis-
fies the following properties:

(1) G is a partition of X into subsets called groups,

(2) A is a set of subsets of X (called blocks) such that a group and a
block contain at most one common point,

(8) every pair of points from distinct groups occurs in a unique block.

Construction 2.4. (Weighting): [20] Suppose (X, G, A) is a GDD and
let w: X — Z* U {0} (we say that w is a weighting). Suppose there exists
a frame of type {w(z) : z € A} for every A € A. Then there exists a frame
of type {3__ccw(x) : G € G}.

Suppose F is a Room frame with hole set {S),S2,...,S,}, where S =
US;. A holey transversal (with respect to hole S;) is a set T of |S\S;| filled
cells in F such that every symbol of S\S; is contained in exactly two cells
of T. If the pairs in the cells of T are ordered so that every symbol of S\S;
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occurs once as a first co-ordinate and once as a second co-ordinate in a cell
of T. then T is said to be orderered. Note that any holey transversal T can
always be ordered since the union of all edges from the pairs in T forms
a disjoint union of cycles. If these cycles are arbitrarily oriented, then the
direction of each edge provides an ordering for the holey transversal.

If |S\S¢| is even and the cells of T' can be partitioned into two subsets T}
and T3 of |S\S;|/2 cells, so that every symbol of S\S; is contained in one
cell in each of T1 and T3, then T is said to be partitioned. A holey ordered
partitioned (holey ordered, resp.) transversal will be referred to as an HOP
transversal (HO transversal resp.). If S; = @, an HOP or HO transversal
will be called a COP or CO transversal, respectively, where “C” stands for
complete. :

We assume that the reader is familiar with Latin squares and their or-
thogonality, see [4]. A pair of mutually orthogonal Latin squares of order
n is denoted by MOLS(n). If an MOLS(n) has a sub-MOLS(k) missing,
then we call it an incomplete MOLS, denoted IMOLS(%; k). If an MOLS(n)
has two disjoint sub-MOLS missing, which are of orders k and ¢, then we
denote it by IMOLS(n; k, t).

Construction 2.5.: [23, Construction 3.6] Suppose there is a frame of
type t{t} having s disjoint HOP transversals with respect to the hole of
size ¢3. For 1 < i < g, let u; > 0 be an integer. Let m be a positive integer,
m # 2 or 6, and suppose there exist IMOLS(m + u;;%4,1), for 1 < i < s.
Then there is an I-frame of type (mty,t1)9(mtz +2u, t2)!, where u = Y u;.

There are direct and recursive constructions which provide the frames
required in Construction 2.5.

Lemma 2.6. Suppose G is a cyclic group of order g = 2°pq and H is a
subgroup of even order h = 2tq, where p and q are both odd. If there is a
2k-intransitive frame starter and an adder in G\ H, then there is a Room
frame of type h9/"(2k)! having ((g — h) — (p — 1)q — 4k)/2 disjoint HOP
transversals with respect to the size 2k hole.

Proof: Let G = {0,1,...,9—1}. The addition in G is taken module g. It is
clear that there are altogether pg odd order elements in G. If an odd order
element is in H, then it has the form i(g/h), where i € {0,1,...,h—1}, and
i(g/h) = 0 (mod 2°). This equation is equivalent to requiring that i = 0

(mod 2¢). So, there are altogether ¢ elements in H each having odd order
in G. Hence, we know that there are ((g9 — k) — pg + ¢) even order elements
in G\H. On the other hand, the differences £(p; — ¢;) and (p| — g¢})
in 2k-intransitive starter are all even order elements in G\H. Therefore,
there are ((g — k) — (p — 1)g — 4k) even order elements among differences
+(s; — ¢;). Each pair {s;,¢;} with even order differences can provide an
HOP transversal. The conclusion then follows. O
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In the next construction we shall use SOLSSOM and partitionable IMOLS.
A self-orthogonal Latin square is one that is orthogonal to its transpose. A
Latin square is called symmetric if it is equal to its transpose. A self-
orthogonal Latin square (SOLS) with a symmetric orthogonal mate (SOM)
of order m will be denoted by SOLSSOM(m). If the main diagonal of the
SOM is constant, then the SOM is termed unipotent.

Suppose L; and Lg are IMOLS(m + u; u) on symbol set S and hole set
H = {H}. A holey row or column of L; or L; is one that meets the hole.
A holey row (or column), T is said to be partitionable if the superposition
of row (or column) T of L, and L2 can be partitioned into two subsets T
and T of m/2 cells, so that every symbol of S\ H is contained in one cell in
each of T} and T3. An IMOLS(m + u;u) is said to be partitionable if every
holey row and column is partitionable.

Construction 2.7: [23, Construction 3.4] Suppose there is a frame of
type t9 having s disjoint CO transversals. For 1 < ¢ < s let u; > 0 be
an integer, and let m be an even positive integer. Suppose there exists an
SOLSSOM(m) such that the SOM is unipotent. Suppose also that there
exist partitionable IMOLS(m +u;;1;), for 1 <i < 5. Let k = |{i : u; = 0}].
Then there is a frame of type (mt)?(2u)!, where u = Y u;, having k(m —1)
HOP transversals with respect to the size 2u hole

Remark 2.8: In Construction 2.7, the k(m — 1) HOP transversals come
from k CO transversals each providing m —1 of them. For certain ¢, u; # 0,
there is some possibility to get extra HOP transversals from the partition-
able IMOLS(m + u;;u;). m cells in an IMOLS(m + v;v) is called a holey
partitionable transversal with respect to the size v hole if (1) they occupy
different rows and different columns and contain different elements in each
square avoiding the size v hole, and (2) they can be divided into two parts
each containing m different elements from the two squares. For each i,
u; # 0, let the partitionable IMOLS(m + u;; u;) contain d; disjoint holey
partitionable transversals with respect to the size u; hole, where d; might
be zero. Let d = dy + d2 + -+ + ds—x. We observe that the resultant
RF((mt)?(2u)!) in Construction 2.7 contains d + k(m — 1) HOP transver-
sals with respect to the size 2u hole.

3. EvenueUfor20<u<34

A transversal design TD(k,n) is a GDD with kn points, k groups of size n,
and n? blocks of size k. It is well known that a TD(k,n) is equivalent to
k — 2 MOLS of order n. From [22] we have the following lemma.

Lemma 3.1. [1] [3] [22] A TD(6,n) exists for n > 5 and n ¢ {6, 10, 14,
18, 22, 34, 42}.

Lemma 3.2. Let v be an even integer, and suppose there exists a TD(6, t).
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Suppose there exist RF(2™,v!), where1 < i <5 and t < n; < 2t. Then
there exists an RF(2™u!), whereu iseven, 2¢+v < u < 4t+v,andn =Y n;.

Proof: Apply Construction 2.4 and give weight two or four to each point
of the given TD(6,t). We obtain a Room frame of type {2n;,2ny, ..., 2n¢},
where t < n; < 2 for 1 < i < 6. The required input designs RF(2245-¢)
for 0 < a < 6 all exist from [9]. Further apply Construction 2.3 to fill in the
first five holes with RF(2™v!) for 1 < i < 5. The conclusion then follows
by taking u = 2ng + v. O

Lemma 8.3. Suppose there is a frame of type t{t} having s disjoint HOP
transversals with respect to the size t2 hole. Suppose there exist frames of
type 201tutta)(,)! and 201+4)(4;)! for 1 < i < gand 0 < u < s. Then
there is an RF(2"v!) wherev=gt1 ++t2 andn=1+u+wv.

Proof: Apply Construction 2.5 withm =3 and uj =0or1lfor1 <j<s.
The input designs we need are IMOLS(4; 1,1) and IMOLS(3;1), which are
easy to construct. We obtain an I-frame of type (3¢1,¢;)9(3t2 + 2u,t2)!,
where 0 < u < 5. Further applying Construction 2.3 (2) with frames of type
2(1+utta) (3531 and 201+4)(¢,)! for 1 < i < g, we get the desired frame. 0O

We are now in a position to prove the main results of this section.
Lemma 3.4. If u = 20, 22 or 24 then u € U.

Proof: Apply Lemma 3.2 with ¢ = 5 and v = 4, we get an RF(2"u!) for
25 <n <50 and 14 < u < 24. A TD(6,5) exists from Lemma 3.1 and all
the input designs exist from Theorem 1.1 (6). From Theorem 1.1 (7) we
need further discuss the existence of frames of type 220! for 21 <n < 24
and 2"22! for 23 < n < 4.

From Theorem 1.1 (1) we have an RF(16%). Filling in the first three holes
with RF(2%»') where v = 4 or 6, we obtain an RF(2%4u!) for u = 20 or 22.

Applying Lemma 3.3 with an RF(446!) and taking s = 0, we get an
RF(2222!). The starting RF(4*6!) comes from [20, Lemma 5.1] and the
input frames RF(254') and RF(276!) exist from Theorem 1.1 (6) and [21],
respectively.

‘We construct an RF(4%4!) by the following 4-intransitive starter and
adder:

G =2, H = {0,4,8,12}, 5 = {{2,7}, {5, 11}} U {15, 10,3, 1},
C = {{13,14}, {6,9}}, R = {{11,13}, {7, 14}}, 0, = 15,02 = 14,
A(15) = 11, A(10) = 5, A(3) = 2, A(1) = 1.
From Lemma 2.6 there are too disjoint HOP transversals in the RF(444!).
We then apply Lemma 3.3 with u = 0, 1 or 2 to get an RF(2"20!) for

n = 21, 22 or 23. The input frames come from Theorem 1.1 (6). This
completes the proof. a
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Lemma 3.5. An RF(2"u!) exists for even u, 26 < u < 34, and n > 35.

Proof: Apply Lemma 3.2 with (¢,v) = (8,4) or (7,6), we get an RF(2"u!)
for

40 < n <80 and 26 < u < 36,
35<n<40and 26 <u < 4.

A TD(6,t) exists from Lemma 3.1 and all the input designs exist from
Theorem 1.1 ( 6 ) and the existence of RF(276') and RF(286!), where the
former comes from [21] and the latter from [11, Example 2.3]. Then the
conclusion follows from Theorem 1.1 (7). o

Lemma 3.6. u € U for even u, 26 < u < 34.

Proof: By Lemma 3.5 we need further consider the cases 26 < u < 32 and
u+1<n < 34, Apply Lemma 3.3 with the following parameters:

u=26 RF(4°2') s =17 28<n< ¥,
u=26 RF(4%6') s =0 n=27,
u=28 RF(4°4!) s =5 29<n< 34,
u=230 RF(472) s =7 32<n< 3,
u=30 RF(4%6') s =0 n=31,
u=232 RF(474') s =5 3B<n< 3

The required input RF(2"4!) and RF(2"2!) are from Theorem 1.1 and
RF(276!) is known [21]. The starting frames RF(4°6') and RF(4°6') are
taken from [9]. The above values of s come from Lemma 2.6 by taking
2k-intransitive starter and adder as follows.

RF(4°2!) : G = Zn, H ={0,6,12,18}.
S = {{2,10}, {4,7},{11,13}, {8, 15}, {5, 14}, {9, 23}, {3, 16}, {19, 20} } U {21,1},
C = {17,22}, R ={15,19},

(a1,a3...,88) = (23,22,21,20,17,14,11,1), A(21) =19, A(1) =16.

RF(4%4!) : G = Zy,, H ={0,6,12,18}.
S = {{2,10}, {8,15}, {5, 14}, {9, 23}, {3, 16}, {19, 20},U{21,1,4,7},
C = {{17,22},{11,13}}, R={{15,19},{2,5}},
(a1,83,. ..,a8) = (23,20,17,14,11,1), A(21) = 19, A(1) = 16, A(4) =4,
A(T)=3. .

RF(472') : G = Zs, H = {0,7,14,21}.
S = {{2,10}, {4, 8}, {11,13}, {9,15}, {17, 27}, {5, 24}, {1, 12}, {3, 16}, {6,18},
{19,22} U {26,23},
C = {20,25}, R = (17,18},
(61,83, ..,a10) = (27,26,25,24,23,20,19, 16,9,4), A(26) = 15, A(23) =1.
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RF(474)) : G = Zzs, H = {0,7,14,21}.
S = {{2,10}, {4, 8}, {11,13}, {17,27}, {5, 24}, {1, 12}, {6, 18}, {19, 22}
u{15,26,9,23},
C = {{20,25},{3,16}}, R={{17,18},{11,5}},
(a1,a3,...,as) = (27,26,25,23,20,19,9,4), A(15) = 17, A(26) = 15, A(9) = 10,
A(23) =1.

(]
Combining Lemmas 3.4 and 3.6 we get the main result of this section.
Theorem 8.7. u € U for even u, 20 < u < 3.

4, ue U for even u > 428
We need the following known constructions, see Lemmas 4.1-4.3 in [23].

Lemma 4.1. Suppose there exist a starter and adder in Zy. Then there
exists a frame of type 19 having (g — 1)/2 disjoint CO transversals.

Lemma 4.2. Suppose there exist a starter and adder in Z,. Suppose
0 < u < 3(g — 1)/2. Then there exists a frame of type 89(2u)' having
7((g — 1)/2 — [u/3)]) disjoint HOP transversals with respect to the hole of
size 2u.

Lemma 4.3. Suppose there exist a starter and adder in Z,. Suppose
0<u<3(g—1)/2and0 < k < 7((g—1)/2 - [u/3]). Then there exists an
I-frame of type (24, 8)9(6u + 2k, 2u)!.

Lemma 4.4. Suppose there exist a starter and adder in Z,. Suppose
0<u<3(g—1)/2and0 < k < 7((9g—1)/2—[u/3]). Further, suppose there
isan RF(2(2u+k+1)(24)!), Then there exists an RF(2(89+2u+k+1)(8g.42u)1).

Proof: Filling in the resultant I-frame in Lemma 4.3 with the given
RF(2(2s+k+1)(2y)1) and RF(2°8!) [21] gives the desired frame. (m]

Lemma 4.5. Suppose 2u € U. If g > (28[u/3] + 2u + 101)/6 and there
exists a starter and adder in Z,, then 8g+2u € U.

Proof: Since 2u € U, we may apply Lemma 4.4 to get an RF(2"(8g+2u)!)
for 8g+2u+1<n<85+2u+1+7((g—1)/2 - [u/3]). The inequality
g > (28[u/2] +2u+101)/6 implies that 8g+2u+1+7((g—1)/2—[u/3]) >
5[(8g + 2u)/4] + 19, then the conclusion follows from Theorem 1.1 (7). O

Lemma 4.8. u € U for even u, 428 < u < 8026.

Proof: For any even u, 428 < u < 8026. we may write u = 8g + 2v where
10 < v < 17 and 51 < g < 999 such that g is odd and g > (28[v/3] +
2v 4 101)/6. From [6] there is a starter and adder in Z,. By Theorem 3.7,
9v € U for 10 < v < 17. The conclusion then follows from Lemma 4.5. O
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We can now prove the main result of this section.
Theorem 4.7. u € U for even u > 428,

Proof: The proof is by induction on 4. To start the induction it is sufficient
to observe that u € U if u is even and 428 < u < 4178 (Lemma 4.6). Hence,
assume u > 4180. We can write u = 8g + 2v, where 428 < 2v < 474, and
g=1 (mod 6), g > 469. Then there is a starter and adder in Z, (14], and
g > (28[v/3] +2v+101)/6 since (28[237/3] +474+101)/6 = 464.5. Apply
Lemma 4.5. o

5. Even u € U for 36 <u <426

Lemma 5.1. There exists an RF(2"16}) for n > 17 and n # 19, 21, 22,
23.

Proof: From the proof of Lemma 3.4 there is an RF(2"16!) for 25 < n <
50. An RF(22416') comes from an RF(16%) by filling in the first three holes
with an RF(28). An RF(2%°16!) is known [11, Appendix|. By Theorem 1.1
(7) we need discuss the existence of RF(2!716!) and RF(2!216!). The fist
comes from Lemma 3.3 with s = 0 and a starting frame of type 4%. Finally,
take an RF(12%) (Theorem 1.1 (1)) and fill in holes with RF(254!), we get
the required RF(2!816!). (]

Lemma 5.2. Suppose for odd g there exist a starter and adder in Z,. If
u =mg+v, m € {4,8}, v € {2,4}, then there exists an RF(2"u!) for
u+2-—|v/4] <n<u+l1+(m-1)(g-1)/2 - [v/(m - 2)]).

Proof: Apply Construction 2.7 with a starting frame RF(19) having (g —
1)/2 disjoint CO transversals. This frame comes from Lemma 4.1. From
[25] we have an SOLSSOM(m) such that the SOM is unipotent. The
existence of partitionable designs IMOLS(5,1) and IMOLS(8 + i,1) for
1 < n < 3 are from [2] and [23]. We then get an RF(m9v') having (m —
1)((g—1)/2—[v/(m—2)]) disjoint HOP transversals with respect to the size
v hole. Further, apply Lemma 3.3. We need input designs RF(2(1+™)m1)
and RF(2(1tv+&)yl) for 0 < k < (m = 1)((g — 1)/2 = [v/(m — 2)]), which
all exist from Theorem 1.1 and [21] except for k = 0 and v = 2 ( an RF(2%)
does not exist). This completes the proof. a

Lemma 5.3. Suppose for odd g there exist a starter and adder in Z,. If
u = 16g + v, v € {2,4}, then there exists an. RF(2"u!) foru+2 — |v/4] <
n <u+1415((g —1)/2 - [v/6]).

Proof: The proof is similar to that of Lemma 5.2. Here, we use partition-
able IMOLS(16 + 4,$) for 1 < i < 3. These IMOLS can be constructed by
using a generalized product construction for MOLS, see [26] for example.
We start with an MOLS(4) having three disjoint symmetric transversals
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avoiding the main diagonal. Using a partitionable IMOLS(5,1) as input
designs gives the desired partitionable IMOLS(16 + 4,4) for 1 < i < 3.
We also need input designs RF(2!1716!) and RF(2(1tv+8)y!) for 0 < k <
15((g — 1)/2 — [v/6]), which all exist from Lemma 5.1 and Theorem 1.1.
This completes the proof. ]

In the following lemma the number g is not necessarily odd.

Lemma 5.4. Suppose there exist a starter and adder in Z\{0,g}. If
u = 8g 4 v, v € {2,4}, then there exists an RF(2"u) for u + 2 — |v/4] <
n<u+14+3(g-1-v/2).

Proof: Apply Lemma 2.1 with the given starter and adder, we get an
RF(29), which contains g — 1 disjoint CO transversals since each of the
g — 1 pairs in the starter gives rise to a CO transversal. We then apply
Construction 2.7 with the RF(29) as starting frame. If we take m = 4, the
remaining part of the proof is similar to that of Lemma 5.2. This completes
the proof. a

To deal with the cases RF(2(1+%)y!) missing in Lemmas 5.2, 5.3 and 5.4,
we have the following two lemmas.

Lemma 5.5. If there exist an RF(m®v*) form € {4,8} andv € {6,8.10,12},
then there exists an RF(2(1+%)4!) for u = ms + vt.

Proof: Apply Lemma 3.3 with s = 0. We need input designs RF(2(1+%)y!)
for u = 4, 6, 8, 10, 12, which are from Theorem 1.1 or [21]. Then, we obtain
the desired frame. a

Lemma 5.8. Suppose for odd g there exist a starter and adder in Z,. If
u=mg+v, m€ {4,8,16}, v € {6,8,10,12} and g > 2[v/(m —2)] +1 (for
m = 4,8) or g > 2[v/6]+1 (for m = 16), then there exists an RF(2(1*)y?),

Proof: First, apply Construction 2.7 as in Lemma 5.2 or 5.3, we get an
RF(m9v'). Then, the conclusion follows from Lemma 5.5. (]

We are now ready to prove the main result of this section.
Lemma 5.7. 36 € U.

Proof: In the proof of Lemma 3.5 it is shown that an RF(2"36) exists for
40 < n < 80. By Theorem 1.1 ( 7 ) we need deal with the cases n = 37, 38
and 39. We apply Lemma 3 3 with a starting frame RF(484') constructed
from a 4-intransitive starter and adder as follows:

RF(4%4') : G = Za,, H ={0,8,16,24}.
S = {{2,15}, {4,19}, {6, 18}, {10,17}, {1,12}, {3,29}, {5, 28}, {13, 27}, {20, 30},
{21,26}} U {25,11, 14,31},
C={{7,9},{22,23}}, R={{5,9},{19,22}},
(a1,83,...,a10) = (31,30, 29, 28,27, 26, 25, 23, 22, 5), A(25) =19, A(11) = 14,
A(14) =13, A(31) = 12.
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By Lemma 2.6 we know that the frame has 10 disjoint HOP transversals
with respect to the size four hole. The conclusion then follows. 0

Lemma 5.8. 38,40 U.

Proof: Apply Lemma 3.2 with (¢,v) = (9,4), we get an RF(2"u!) for
45 < n < 90 and u = 38, 40. A TD(6,9) exists from Lemma 3.1. All
input frames are from Theorem 1.1 (6). By Theorem 1.1 (7) we need deal
with the cases u+1 < n < 44. Apply Lemma 5.2 with (m, g,v) = (4,9, 2)
or (4,9,4), we need only deal with the existence of RF(23938!). From [9)
there exists an RF(426%), from which we apply Lemma 5.5 to get the desired
RF(2%38!). 0

Lemma 5.9. u € U for even u, 42 < u < 48.

Proof: Apply Lemma 3.2 with (¢,v) = (11,4), we get an RF(2"u!) for
556 < n <110 and 42 < u < 48. A TD(6,11) exists from Lemma 3.1. All
input frames are from Theorem 1.1 (6). By Theorem 1.1 (7) we need deal
with the cases u+1 < n < 54.

For u = 42,44, we apply Lemma 3.3 with a starting frame RF(4%»!) for
v = 2,4, constructed from a v-intransitive starter and adder as follows:

RF(4'°2!) : G = Zyo, H = {0,10, 20, 30}.

S = {{2,15}, {4,19}, {22, 36}, {1, 12}, {17, 35}, {23, 31}, {18, 37}, {16,32},
{6,9}, {29, 38}, {33, 39}, {25, 21}, {14, 26}, {7, 24}, {27, 34}, {3, 5}}
uU{28,11},

C = {8,13}, R = {26,27},

(a1,a3,...,a16) = (39, 38,37, 35,34, 33, 31, 29, 28, 24, 19, 18,9, 8,4, 3),
A(28) = 16, A(11) = 14.

RF(4!%4') : G = Zyo, H = {0, 10, 20, 30}.
S = {{2,15}, {4,19}, {22, 36}, {1, 12}, {17, 35}, {23, 31}, {18, 37}, {16, 32},
{29, 38}, {33, 39}, {25, 21}, {14, 26}, {27,34}, {3,5}} U {9, 28,6,11},
C = {{8,13},{7,24}}, R = {{26,27},{34,37}},
(a1,82,...,814) = (39, 38,37, 35,34, 33, 31,24, 19, 18,9, 8,4, 3), A(9) = 6,
A(28) = 16, A(6) = 26, A(11) = 14.

This leaves the existence of an RF(24342!), which can be done by Lemma 5.6
with (m, 9,v) = (4,9, 6).

For u = 46, 48, we apply Lemma 5.2 with (m, g, v) = (4,11, 2) or (4, 11, 4).
This leaves the existence of an RF(2¢746!). Apply Lemma 5.5 with an
RF(4!96!) which can be constructed by a 6-intransitive starter and adder
as follows:

RF(41°6') : G = Zo, H = {0,10, 20, 30}.
S = {{4,19}, {22, 36}, {1,12}, {17, 35}, {23, 31}, {16, 32}, {29, 38}, {33, 39},
{25,21}, {14, 26}, {27, 34}, {3,5}} U {9, 18,37,28,6,11},
C = {{2,15},{8,13},{7,24}}. R= {{9,28},{26,27},{34,37}},
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(a1,a3,...,a12) = (38,37,35,34,33,29,24,19,18,9, 4, 3), A(9) =6,
A(18) = 23, A(37) = 17, A(28) =16, A(6) = 26, A(11) = 14.

Then, we get the desired RF(2%746!) and the proof is complete. (m]
Lemma 5.10. u € U for even u, 50 < u < 56.

Proof: Apply Lemma 3.2 with (¢,v) = (13,4), we get an RF(2"u!) for
65 < n <130 and 50 < u < 56. A TD(6,13) exists from Lemma 3.1. All
input frames are from Theorem 1.1 (6). By Theorem 1.1 (7) we need deal
with the cases u+1 <n < 64.

For u = 50, 52, we apply Lemma 3.3 with a starting frame RF(4'2v!) for
v = 2,4, constructed from a v-intransitive starter and adder as follows:

RF(422!) : G = Zys, H = {0,12,24, 36},

S = {{2,15}, {4,19}, {23,43}, {44, 3}, {21, 39}, {18, 37}, {26, 42}, {28, 38}, {9, 11},
{20,41}, {25,47}, {22,45}, {8, 14}, {35, 46}, {7, 16}, {30, 31}, {5, 10},
{13,27},{17,34}, {32,40}} U {1, 6}

C = {29, 33}, R ={3,6}

(a1,a3,...,a20) = (47,46,45, 41,40, 39, 38, 35, 34, 33, 31, 30, 27, 23, 22, 16, 13,

6,5,2), A(1) = 10, A(6) = 1.

RF(4'%4}) : G = Zgs, H = {0,12,24, 36},

S = {{2,15}, {4,19}, {23, 43}, {44, 3}, {21, 39}, {18, 37}, {26, 42}, .{28, 38},
{25,47}, {22,45}, {8, 14}, {35,46}, {7,16}, {30, 31}, {5, 10}, {13,27},
{17,34}, {32,40}} U {11,9,1,6}

C = {{29,33},{20,41}}, R = {{3,6},{45,43}}

(a1,a3,...,a18) = (47,46,45, 41,40, 39, 38, 35, 31, 30, 27, 23, 22, 16, 13, 6, 5, 2),

A(11) = 42, A(9) = 17, A(1) = 10, A(6) = 1.

This leaves the existence of an RF(25150!), which can be done by Lemma
5.6 with (m, g,v) = (4,11, 6).

For u = 54, 56, we apply Lemma 5.2 with (m, g, v) = (4,13,2) or (4, 13,4).
This leaves the existence of an RF(23%54!). Applying Lemma 5.6 with
(m,g,v) = (4,11,10). we get the desired RF(25%54!) and the proof is com-
plete. a

Lemma 5.11. u € U for even u, 58 <u < 138.

Proof: Apply Lemma 3.2 with appropriate parameters ¢ and v, we get
RF(2"u!) for some values u and n, listed below. We also list the input
frames (type and authority). All TD(6,t) exist from Lemma 3.1. By Theo-
rem 1.1 (7) we then know that there is a bound b(u) for 58 < » < 138 such
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u m g v Lemma starter-adder n

18 4 29 2 5.2 1% [19) 120<n <124
120 4 29 4 5.2 1% [19] 122<n<124
122 8 15 2 5.2 118 [19] 124<ng124
126 4 31 2 5.2 13 [19] 128 < n < 129
130 8 16 2 5.4 1'6 [7] 132<n <134
132 8 16 4 5.4 1'9 [7] 134<n<134
136 4 33 4 5.2 13 [19] 138<n< 144
138 8 17 2 5.2 1Y [19] 140 < n < 144

Notice that the above list does not provide an RF(2758!), which can
be done by applying Construction2.7 with ¢ =1, g = 7 and m = 8. By
Lemma 4.1 we have three CO transversals in RF(17). Taking u = 1 gives
an RF(872!). Here, an IMOLS(9;1) is used. Observe that the cells (2, 3),
3,4), (6,7), (7,8), (1,2), (4,5), (5,6) and (8,1) in [23, Fig. 1] forms a
hole partitionable transversal which can be divided into two parts, the
first four cells and the last four cells, each containing elements 1,2,...,8.
From Remark 2.8 we know that the RF(872!) contains at least 15 HOP
transversals with respect to the size two hole. Applying Lemma 3.3 gives
an RF(27458!) as desired.

The above list does not provide an RF(28482!) either. Applying Con-
struction 2.7 with ¢ = 1, g = 19, m = 4 and u = 3, we obtain an RF(4196?)
having at least one HOP transversal with respect to the size six hole. Fur-
ther, apply Lemma 3.3 with RF(2°4') and RF(2%6!) ([11]) as input designs,
we get the desired RF(28482!).

Finally, we deal with the case n = u + 1. For any even u, 58 < u < 138,
we may write u = 4g + v, where g is 0odd, 13 < g < 33, v = 6, 8, 10, 12.
From [19] there exist a starter and adder in Z,. Then, apply Lemma 5.6.0

Lemma 5.12. For even u, 140 < u < 426, there exists an RF(2™u!), where
u+1<n<u+8

Proof: For any even u, 140 < u < 426, we may write u = 8¢ + 2v,
where 10 < v < 17 and g is odd, 15 < g < 49. From [19] there exist a
starter and adder in Z,. Apply Construction 2.7 with t = 1, m = 8, we
get an RF(89(2v)!) having at least 7 HOP transversals with respect to the
size 2v hole. Further, apply Lemma 3.3 with input frames RF(2°8!) and
RF(2%(2v)!) for 10 < v <17 and 2v+1 < n < 2v + 8, which all exist from
[21] and Theorem 3.7. The proof is complete. (]

Lemma 5.13. For even u, 140 < u < 426, there exists an RF(2"u!), where
n>2u+9.

426, we may write u = 10t + s,
t € 42. By Lemma 3.1 there is a

Proof: For any even u, 140 < u

<
where s = 6, 8, 10, 12, 14 and 13 <
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TD(6,2t + 3). Apply Lemma 3.2 with v = 2t + 2. From Theorem 3.7
and Thereoms 5.7-5.11 we have the required input frames RF(2"v!) for
v+1 < n < 2v+2. Thus, we obtain an RF(2"u!) for 10¢+15 < n < 20t+30.
Since u + 9 > 10t 4 15 and 5[u/4] + 20 < 20t + 30, the conclusion follows

from Theorem 1.1 (7). 0
Lemma 5.14. u € U for even u, 140 < u < 426.
Proof: Combine Lemmas 5.12-5.13. O

Combining Lemmas 5.7-5.11 and Lemma 5.14, we have the main result
of this section.

Theorem 5.15. u € U for even u, 36 < u < 426.

8. Concluding remarks

Combining the results in Sections 3, 4 and 5, we know that u € U for
any even u > 20 (Theorem 1.3). For even u < 20, an RF(2"u!) exists if
n > 5[u/4] + 20 (Theorem 1.1 (7)). So, there are now finite pairs (n,u) for
which the existence is undecided. We believe that these pairs will eventually
disappear, that is, we conjecture that for any even u > 4 there exists an
RF(2"u!) if and only if n > u+1. The results on the existence of RF(1"u?)
and RF(2"u!) will serve as a starting point in solving the existence of Room
frames of arbitrary hole sizes.

Note added in proof (June 14, 1994) Recent work shows that for any
even u > 4 there exists an RF(2"u!) if and only if n > u+1 except possibly
when n = 19 and u = 18. [D.R. Stinson, L. Zhu and J.H. Dinitz, On the
spectra of certain classes of Room frames, preprint.]
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