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ABSTRACT. We define two complete sets £ and £’ of pairwise
orthogonal 9 x 9 Latin squares to be equivalent if and only if
L' can be obtained from £ by some combination of (i) applying
a permutation @ to the rows of each of the 8 squares in £ (ii)
applying a permutation ¢ to the columns of each square from £
and (iii) permuting the symbols separately within each square
from L. We use known properties of the projective planes of
order 9 to show that, under this equivalence relation, there are
19 equivalence classes of complete sets. For each equivalence
class, we list the species and transformation sets of the 8 Latin
squares in a complete set. As this information alone is not suf-
ficient for determining the equivalence class of a given complete
set, we provide a convenient method for doing this.

1 Introduction

A Latin square of order n is an n x n array the entries of which comprise n
symbols (here taken to be 1,2,...,n), with each symbol occurring exactly
once in each row and exactly once in each column. Two Latin squares of
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order n are orthogonal to each other if the n® ordered pairs of corresponding
entries are all different. A complete set of pairwise orthogonal Latin squares
of order n consists of n — 1 Latin squares, each orthogonal to each of the
others. Such complete sets are known to exist for n equal to any prime
power (3, Section 5.2].

By merely relabeling the symbols in each square of any complete set of
pairwise orthogonal Latin squares, we can arrange that the entries in the
first row of each square are in ascending order. We therefore restrict our
attention to complete sets of pairwise orthogonal Latin squares with this
property. For brevity, we call them simply complete sets.

All complete sets of order n are obtainable from projective planes of
order n. For some values of n, of which 9 is the smallest, there is more than
one projective plane. Moreover, a single projective plane may give rise
to complete sets having different structures, as described below. Even for
n = 9, no systematic account of the available complete sets seems to have
been given. This paper fills the gap by collating and extending previous
work. It also provides a solution to Problem 8.2 in (3, p.490], which asks
for the number of non-equivalent complete sets of order 9.

Four projective planes of order 9 have been known for many years and
there are no others [9]. In the notation of Room and Kirkpatrick [14],
the four planes are the desarguesian plane ®, the translation plane £, the
dual QP of the translation plane and the Hughes plane ¥. To construct
a complete set from a given projective plane we must first choose one of
its lines, which we then call the line at infinity ¢.; when this line and the
points on it are deleted from the projective plane, the remaining lines and
points constitute an affine plane. Two non-isomorphic affine planes are
obtainable in this way from each of the planes Q, QP and ¥, but only one
from ®. There are thus 7 affine planes to be considered, but as we need to
refer to particular points on ., we use mostly the terminology of projective
planes.

The next step in constructing a complete set is to choose two points E
and A on £. We denote the other points on £ by Ex, 2 < k £ n and
reserve Eg and E; as alternative symbols for E and A respectively, as in
[11). The complete set will consist of Latin squares L, one corresponding
to each of the points Ej, 2 < k < n. We label arbitrarily the lines through
E and A, other than ¢, as e;, 1 <t <=, and aj, 1 < j < n, respectively.
We then set the (i, 7)th entry of Li equal to the integer m, 1 < m < n,
such that ej N any, lies on the line joining Ei to e; Naj. Thus the rows and
columns of the Latin squares correspond to the lines other than £, through
E and A respectively.

For the projective planes Q, QP and ¥, the outcome of the above con-
struction depends importantly not only on the choice of £, but also on the
choice of E and A. We distinguish between 5 outcomes for §2, another 5
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for QP and 8 for ¥. Together with the outcome for & we thus have a total
of 19 possibilities, which we present as 19 equivalence classes. As 19 is also
the number of ‘completed planes’ found by Hall, Swift and Killgrove [6] in
their search for further projective planes of order 9, we emphasise that the
completed planes do not correspond one-one with our equivalence classes
(see below).

2 Classification of the complete sets of order 9

We call two complete sets £ and £’ of order »n equivalent if and only if there
exist permutations ¢ and ¢ of the first » natural numbers such that the
following transformation converts £ into £’:

(T.0.¢) Permute the rows of every square so that row i becomes row 0,
1 € i € n. Permute the columns of every square so that column j
becomes column j¢, 1 < j < n. Then permute the symbols, in each
square separately, so that the new first rows are finally in natural
order.

This definition differs from the definition of equivalence given in [3, p.276]
and from the conflicting definition in [3, p.168].

The transformation T.6.¢ has the same effect as has successive applica-
tion of transformations T'1.0 and T2.¢ defined in [11]. Since T.0.¢ may be
interpreted geometrically as a mere renumbering of the lines through F and
A, complete sets obtained from the same plane and the same points F and
A are equivalent. Equivalence of complete sets is clearly an equivalence
relation.

We show below that the four projective planes of order 9 yield exactly
19 equivalence classes of complete sets. We denote the equivalence classes
by Ly, 1 < p <19, and any complete set in Ly, by £,. All the required
properties of the four planes are given in [14].

The desarguesian plane ® has the property:

(P1) & is transitive on proper quadrangles.

By P1, only one affine plane can be obtained from ®, to within isomorphism.
Moreover, all choices of E and A are equivalent, that is, yield equivalent
complete sets. Let L; denote the class of complete sets obtained from ®.

Every collineation of the translation plane Q preserves a special line,
called the translation line ¢, and preserves a special partitioning of the set
of points on ¢ into five pairs [14, Theorem 4.3.12 and p.129(2)]. Denote the
point paired with any point P on ¢ by P’. The plane Q is:

(P2a) transitive on pairs of points not on ¢,
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(P2b) (V,£)-transitive for all points V on ¢ and lines £’ through V".

For proofs, see [14, Theorems 4.2.4, 4.3.6]. By P2a, the plane  is transitive
on lines other than ¢ so it yields exactly two affine planes, one by taking
£ = t and the other by taking any other line as £x.

First, take oo = t. By P2a, the plane Q is transitive on points of £ so
all choices of E on £, are equivalent. Let Ly be the class of complete sets
which corresponds to the choice A = E’. By P2b, with V = E, all other
choices of A are equivalent; let Lg be the corresponding class of complete
sets.

Now take £, # t. By P2a, when E = £,Nt all choices of A are equivalent,
when A = €5, Nt all choices of E are equivalent and when neither E nor A
is on ¢ all choices of F and A are equivalent. Let the corresponding classes
of complete sets be Ly, Ls and Lg respectively.

Equivalence
class of Projective Line Choice Transformation

complete plane at of sets
sets infinity E and A
L, [ ] any any 8a
L, Q oo =1 A=F 8a
Lj A#E 8a
Ly o # ¢t EIt 8bp
Ly Alt 8b,
Ls E,Att a,bs,bc
L, Qb b IT E=T 8a
Ls A =T 8a
Lo E,A#+T 2a, 6d
Lo b T AT = (ETY 8bs
Ln AT # (ETY bg, bc, be
Ljo v real E, A real 2a, 6fs
Lhs E real, A complex 3fc,29r,3hr
Li4 E complex, A real 3fg,2gc,3hc
Lis E, A complex a,3d,4gs
Lls E, A complex 4d, 4hs
Ly complex E real 8ip
Lls A real 8ic
Lio E, A complex 5,67, k

Table 1
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Thus, Q yields 5 equivalence classes of complete sets; of these, 2 are
obtained from one affine plane and 3 from the other.

The first six rows of Table 1 summarize our results so far. In the table,
the relation of incidence between a point and a line is denoted by I and its
negation by L. The last column of Table 1 will be explained later.

Every collineation of Q2 preserves a special point, called the translation
point T, and preserves a special partitioning of the set of lines through T
into five pairs. Denote the line paired with any line £ through T by ¢'. The
plane QP is:

(P3a) transitive on pairs of lines not passing through T,
(P3b) (V’, ¢)-transitive for all lines £ through T and points V'’ on ¢'.

These are the properties dual to P2a and P2b. The plane QP yields two
affine planes and 5 equivalence classes of complete sets, Ly, 7 < p < 11.
The proofs are similar, but not exactly dual, to those for Q. The results
are in Table 1.

The points and lines of the Hughes plane ¥ may be classified as real or
complex in such a way that the real points and lines form a special subplane
of order 3 which is preserved under all collineations [14]. The collineation
group G(¥) is:

(P4a) transitive on each of the four types of flag (P, £), namely those with
each of P and ¢ either real or complex,

(P4b) transitive on real (ordered) quadrangles.

For proofs, see [14, Theorem 5.1.6]. By P4a and since £, can be either real
or complex, ¥ yields exactly two affine planes.

First, let £, be real. By P4b, all choices of real E and A are equivalent,
so there is just one corresponding class of complete sets, Lj2. By P4a, all
choices of real E are equivalent. Also, given the point E, all choices of a
complex A on £, are equivalent [14, Theorem 5.5.1]. Hence there is just
one class Lj3 corresponding to real £ and complex A and, similarly, just
one class L4 corresponding to real A and complex E. However, there are
two classes Ljs and Ljg corresponding to complex E and A (see below).

Now let £, be complex. Exactly one point of £, is real. If E is this
real point then, by P4a, all choices of A are equivalent, so there is just one
corresponding class L,,. Similarly, there is just one class L,g corresponding
to real A and complex E. Finally, by P4a, all choices of a complex E on
¢ are equivalent. Also (see below), given a complex E, all choices of a
second complex point A on £, are equivalent. Hence there is just one class
of complete sets, Ljg, corresponding to complex £, E and A.
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Thus, the plane ¥ has yielded 8 classes of complete sets, 5 from one of the
affine planes and 3 from the other. Our enumeration of equivalence classes
of complete sets is now complete and we have found 14545+ 8 =19 of
them.

8 Species and transformation sets of Latin squares

To describe the structure of a complete set and to distinguish between non-
equivalent complete sets we use some concepts due to Norton [10] (see also
[3])-

A Transformation of a Latin square consists of three permutations, in
general all different, applied to the row labels, column labels and symbols.
Two Latin squares are isotopic if one may be converted into the other by
a Transformation. Isotopy is an equivalence relation and the equivalence
classes are called transformation sets (or isotopy classes).

A Latin square has three constraints, namely rows, columns and symbols.
Two Latin squares are conjugate to one another (or parastrophic) if one
may be obtained from the other by a permutation of the three constraints.
A species (or main class) of Latin squares consists of all members of a
transformation set together with all their conjugates. A species comprises
1, 2, 3 or 6 transformation sets [3, Theorem 4.2.1].

An intercalate of a Latin square of order n is a Latin subsquare of order
two. Latin squares of the same species all have the same number of inter-
calates. Counting intercalates and noting the patterns of their occurrence
in Latin squares are useful techniques for distinguishing between species.
It may also be useful to consider Latin subsquares of higher order.

The 19 equivalence classes of complete sets of order 9 involve a total of
11 species of Latin squares, which we denote by the letters a to k inclusive.
Table 2 shows the numbers of transformation sets in these species and also
the numbers of intercalates and of Latin subsquares of order 3 in Latin
squares of these species. Species j was discussed by Parker and Killgrove
[13].

No species with 2 or 6 transformation sets are involved in complete sets
of order 9. Where a species has 3 transformation sets, two of the three
constraints are equivalent in the sense that their interchange does not cause
a change of transformation set. It is then convenient to distinguish the
three transformation sets by a subscript R, C or S (standing for rows,
columns or symbols) to indicate the constraint which is not equivalent to
either of the others. This notation is used in the final column of Table 1.
For example, the entry “2a,6fs” indicates that two of the Latin squares
in a complete set £;2 belong to species a and the other six belong to the
particular transformation set in species f which consists of Latin squares
isotopic to their transposes.
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No. of No. of No. of
Species Transformation intercalates latin subsquares

sets of order three
a 1 0 36
b 3 48 12
c 1 32 -0
d 1 72 0
e 1 24 4
f 3 36 18
g 3 0 9
h 3 0 12
i 3 24 6
J 1 24 3
k 1 0 18
Table 2

4 Transformations between complete sets

Several non-equivalent complete sets of order 9 are familiar from the litera-
ture. Those given in [1, 4,15], [5}, [12] and (2] belong to the classes L, Lo,
L;; and Ly, respectively. Seven complete sets, one corresponding to each
of the affine planes of order 9, are given by Kamber (8] and reproduced in
[7). These complete sets belong to Ly, Lz, Ls, Lz, Lio, L2 and Ls; not all
of them are distinct from those given in the other references cited above.

Hall, Swift and Killgrove [6] examined complete sets each of which in-
cludes at least one Latin square of species a. However, 10 of our 19 equiv-
alence classes L; do not involve species a (see Table 1, last column), so the
19 ‘completed planes’ of [6] correspond to just 9 of the equivalence classes.

This section shows how every complete set of order 9 may be derived,
by means of certain transformations defined in [11], from as few as three
given complete sets. These three must include complete sets corresponding
to &, Q (or 2P) and ¥ so, for instance, those given in [4], [5] and [2] would
be suitable. Our definition of equivalence indicates how to convert a given
complete set into any equivalent complete set, so our task is to show how
to obtain one complete set in each class L,. To make the present paper
self-contained we repeat the definitions of the required transformations T3,
T4.r and T5. Proofs are in [11].

Let £ = {Li: 2 < k < n} be a complete set of order n. The transforma-
tion T3 is as follows:

(T83) For 2 < k < n, replace Ly, by its transpose (in the matrix sense) and
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then permute the symbols in each square so that the new first rows
are finally in natural order.

Geometrically, T3 corresponds to interchanging the points E and A.

For the other two transformations we need further notation. Let L,
denote the row-Latin, but non column-Latin, square [3, p.104] whose rows
are all in natural order and which is related to the point E;(= A) exactly
as Ly is related to Ei, 2 < k < n. Let R = (pix) be the n x n array whose
(i, k)th entry p;x is the permutation that converts the first row of Ly into
the ith row. We call R the representational arrayof £. In a representational
array, every entry in the first row and in the column that represents the
row-Latin square (in R, the first column) is €, the identity permutation.
Now we can define T4.r:

(T4.r) Choose r, 2 < r < n. Replace R by S = (o), where a4 = ;! ik
for all (i, k).

Geometrically, T4.r corresponds to moving A from E, to E, with no change
in € or E. In S it is the rth column whose entries are € and the other
n — 1 columns that specify the new complete set. The first column of S
specifies a Latin square whose row-permutations are merely the inverses of
those of L,. This square is of the same species as L, but with two of the
constraints, columns and symbols, interchanged.

The transformation T5 is as follows:

(T5) Replace R by RP = (pR), where p2 = p;!. In other words, trans-
pose R and then replace every entry by the inverse permutation.

Geometrically, T5 corresponds to replacing the plane II, which is repre-
sented by R, by the dual plane II?. The points and lines E, A(= E}), e
and e; of I correspond to the lines and points €2, e;, EP and AP of 1P,
respectively. Which complete set is obtained by the use of T5 depends on
the numbering of the Latin squares in £. A change of numbering results in
a different, but equivalent, complete set.

By using the geometrical interpretations of these transformations and the
information from Table 1 concerning the choice of ¢.,, E and A, it can be
seen that representative complete sets £, in the classes L, corresponding to
the projective planes £ and 2 may be derived from one another as shown
in Figure 1. Because T3 and T5 coincide with their inverses, no arrows are
placed on the corresponding lines of the diagram. The abbreviation of T4.r
to T4 indicates that, when the transformation acts in the sense indicated
by the arrows, the value of r is arbitrary. The inverse transformations are
also of type T4.r, but now the choice of r is important. For instance, if
L4, is taken to be the complete set due to Paige and Wexler [12] then, to
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obtain a complete set in Lo, the integer r must be the number given to
the unique Latin square in £,; that is in the transformation set bc. This
is the square denoted by L, in [12]. Any other choice of r leads merely to
another complete set in Ly;.

T4 T3 T4
—_—>
Q: h L, Ly Ls ’L6
TS5 TS5 TS5
) T3 T4 T4
fol28 3 . > i >
7 8 9 10 L1
" Figure 1

Table 3 gives an example of a complete set in Ls. If this complete set is
taken as Ls and the transformations T3 and then T5 are applied, the re-
sulting complete set £, coincides with that of Fisher and Yates [5] although
the squares will be differently numbered. .

Ly Ly L4 Ls

123456789 123456789 123456789 123456789
231564897 312645978 765189432 946817325
312645978 231564897 498732156 587293641
456789123 789123456 231975648 875341962
564897231 978312645 657248913 231689574
645978312 897231564 984613275 469725138
789123456 456789123 312867594 694538217
897231564 645978312 576394821 758162493
978312645 564897231 849521367 312974856

Ls L Ls Ly

123456789 123456789 123456789 123456789
854971263 498732156 679328514 587293641
679328514 765189432 854971263 946817325
548692371 312867594 967214835 694538217
796135428 849521367 485763192 312974856
231847956 576394821 312589647 758162493
967214835 231975648 548692371 875341962
312589647 984613275 231847956 469725138
485763192 657248913 796135428 231689574

Table 3 A complete set Lg.
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T3 TS T3
13 14 17 18

T4s T4t T4u T4

12 15 16 19
Figure 2

Figure 2 shows how representatives of the eight classes of complete sets
corresponding to the Hughes plane ¥ may be derived from one another.
Table 4 gives an example of a complete set £y4 in Lys. In this complete
set, Ly and L3 belong to the transformation set g, while Ly, Ls and Lg
belong to k¢ and Ly, Lg and Lg belong to fr. Geometrically, three of the
real points on € correspond to L7, Lg and Lg and the other real point is
A. If T3 is applied to L4, followed by T4.s with s = 7, 8 or 9, the resulting
complete set £y is the same as that of Bose and Nair [2], except that our
notation is slightly different and the squares will be differently numbered.

L L3 L, Ls
123456789 123456789 123456789 123456789
312564897 231645978 756189423 964817235
231645978 312564897 489723156 578392641
546978213 879213645 231597864 785124396
654789132 798321564 567834291 231968457
465897321 987132456 894261537 649573812
987321564 654897321 312678945 496285173
798213645 546789132 675942318 857631924
879132456 465978213 948315672 312749568

Ls L, Lg Ly

123456789 123456789 123456789 123456789
845971362 498732156 679328514 587293641
697238514 765189432 854971263 946817325
458369127 312645978 967832451 694781532
976512843 849273615 485197326 312645978
231784695 576918243 312645978 758329164
769143258 231564897 548719632 875932416
312895476 984327561 231564897 469178253
584627931 657891324 796283145 231564897

Table 4 A complete set L£;4
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Now take L4, as given in Table 4, and apply two particular cases of
the transformation T.0.¢ defined earlier. First, take 8 = (23)(56)(89)
and ¢ = (47)(58)(69). This leads to a complete set composed of the
same eight squares as Ljg but reordered according to the permutation
(L2L3)(LsLe)(LgLg). Since the permutation just interchanges Lo and Ls,
they are in the same transformation set (as stated above) and also the trans-
formations T4.2 and T4.3 convert £,4 into equivalent complete sets. Thus,
in Figure 2, t = 2 or 3. Secondly, take 6 = ¢ = (456)(798). Again, the
transformation leads to the same set of eight squares in a different order,
given here by the permutation (L4LsL¢)(L7LgLg). Hence the transforma-
tions T4.u with u = 4, 5 or 6 convert L4 into equivalent sets. Thus we
obtain only two non-equivalent complete sets from £i4 by moving A to a
complex point; these are members of L5 and L.

Let £;5 be the complete set obtained from the set £,4 in Table 4 as in-
dicated in Figure 2. If T.0.¢, with 8 = (24983756) and ¢ = (1798)(23)(46),
is applied to £;g the new complete set consists of the same eight squares
reordered by the cyclic permutation (LgL4LgsLgLsL7LgLg). This shows
that all eight squares are in the same transformation set and also that the
eight complete sets obtained by applying T4.r, 2 < r < 9, to L5 are all
equivalent; they belong to L;g. The abbreviated notation T4 can thus be
used for the transformation from £;g to £y9 in Figure 2.

5 Identification of the class of a complete set

We now describe a “Do It Yourself” method for identifying the particular
class Ly to which a given complete set £ of order 9 belongs. Of course,
many alternative procedures could be devised.

Let £ = {Lx: 2 < k < 9}. Count the numbers of intercalates in all the
Latin squares Lx. Knowledge of these numbers is sufficient to fix p if it is 6,
9, 11, 12, 15, 16 or 19. Otherwise, decide which of the following four cases
applies and use the corresponding method.

Case 1. Every square L has 0 intercalates.

Here, p =1, 2, 3, 7 or 8 (and the squares Ly are all of species a). If the
squares do not all have the same set of nine rows then, by [11, Theorem)],
the corresponding projective plane is not (E, £, )-transitive and it follows
that p = 8. The complete set given in Table 3 is of this type. If the squares
all have the same set of rows, apply the transformation T3 to £ and denote
the new complete set by £’. If the squares in £’ do not all have the same
set of rows, then £’ € Lg and hence p = 7 (see Figure 1).

Now suppose that, in both £ and £’, all eight Latin squares have the
same set of nine rows. Take the representational array R of £ and delete
all entries equal to ¢, the identity permutation, leaving a Latin square
of order 8. Permute rows 2 to 8 of this Latin square to obtain a Latin
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square R* whose first column is in the same order as its first row. If R*
is symmetric in the matrix sense, then p = 1 (and R*, bordered with the
elements of its first row and column, is the multiplication table of the cyclic
group Cg). If R* is not symmetric but still, suitably bordered, forms the
multiplication table of a group, then p = 2 (and the group is the quaternion
group). Finally, if R* fails to satisfy the quadrangle criterion [3, Theorem
1.2.1], then p = 3.

Case 2. Every square L has 48 intercalates.

Here, p = 4, 5 or 10. If the squares Lx do not all have the same set of
nine rows, then p = 4 (and pairs of the squares have the same set of rows).
Otherwise, apply T3 to £ and denote the new complete set by £'. If the
squares in £’ do not all have the same set of nine rows, then £’ € L4 and
hence p = 5 (see Figure 1). Otherwise, p = 10.

Case 3. Three of the squares Lx have 36 intercalates and the rest have
none.

Here, p = 13 or 14. Let £’ denote the complete set obtained from £
by the transformation T5. If every square in £’ has 24 intercalates, then
L' € Ly7 and hence p = 14 (see Figure 2). If no square in £’ has 24
intercalates then £’ € L;3 or L;s and hence p = 13. To apply this test,
only one square in £’ need be obtained.

Case 4. Every square L, has 24 intercalates.

Here, p = 17 or 18. If pairs of the squares L, have the same set of nine
rows, then p = 18. Otherwise, p = 17.

Finally, eight of the eleven species of Latin squares that occur in complete
sets of order 9 are represented in Tables 3 and 4 or in the references cited

earlier. Table 5 gives sample Latin squares of the other three species c, d
and k.

c d  k

123456789 123456789 123456789
987234561 576918243 231645897
546918372 984327561 312564978
678321945 648231975 456789132
351789624 391765824 564897321
792645138 752849136 645978213
864597213 867594312 798123456
435162897 439182657 879231564
219873456 215673498 987312645

Table 5. Sample latin squares of species c, d and k.



6 Concluding remarks

The main results of this paper are in Tables 1 and 2. With their help we
have shown how to identify the equivalence class of a given complete set of
order 9. There are various questions about complete sets of order 9 whose
answers can be read off at once from Tables 1 and 2. For instance:

(1) How many non-equivalent complete sets have at least one member
from species a? (Answer: 9.)

(2) How many non-equivalent complete sets have all 8 members from
species a? (Answer: 5.) '

(3) Given a Latin square from a species with 6 different transformation
sets, can it be a member of a complete set? (Answer: No.)

(4) In a complete set of order 9, what is the greatest number of Latin
squares with no Latin subsquares of order 37 (Answer: 6.)
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