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ABSTRACT. A labeling of the graph G with n vertices assigns
integers {1,2,...,n} to the vertices of G. This further induces
a labeling on the edges as follows: if uv is an edge in G then the
label of uv is the difference between the labels of u and v. The
bandwidth of G is the minimum over all possible labellings of
maximum edge label. The NP-completeness of the bandwidth
problem compels the exploration of heuristic algorithms. The
Gibbs-Poole-Stockmeyer algorithm (GPS) is the best known
bandwidth reduction algorithm. We introduce a heuristic algo-
rithm that uses simulated annealing to approximate the band-
width of a graph. We compare labellings generated by our algo-
rithm to those obtained from GPS. Test graphs include: trees,
grids, windmills, caterpillars, and random graphs. For most
graphs, labellings produced by our algorithm have significantly
lower bandwidth than those obtained from GPS.

1 Introduction

A labelling f of a graph G with n vertices assigns the integers {1,2,...,n}
to the vertices of G.. This further induces a labelling on the edges as follows:
if uv € E(G) then the label of uv is |f(u) — f(v)|. The bandwidth of G is
the minimum over all possible labellings of the maximum edge label. The
problem “Does the graph G have bandwidth less than or equal to k?” is

*Research supported by the Natural Sciences and Engineering Research Council of
Canada.

JCMCC 18 (1995), pp. 97-108



NP-complete [9]. We investigate a heuristic algorithm which approximates
the bandwidth of a graph. The algorithm is based on the principle of
simulated annealing.

Simulated annealing is a means of finding good solutions to combinatorial
optimization problems [7]. The basic operation in this technique is a move.
A move is a transition from one solution in the solution space to another.
Each move affects the cost of the solution. Intuitively, one favours cost
decreasing moves, since a solution with minimum, or near-minimum, cost
is the objective. However, by allowing only such moves, it is likely that
the final solution is a local minimum, rather than the absolute minimum.
~ In order to escape from a local minimum, cost increasing moves must be
" made.

In simulated annealing, prospective moves are chosen at random. If a
move decreases the cost it is accepted. Otherwise, it is accepted with prob-
ability P(AE) = e 2E/T where T is the temperature and AE is the in-
crease in cost that would result from this prospective move. Initially T is
large, and virtually all moves are accepted. Gradually T is decreased, thus
decreasing acceptance of cost increasing moves. Eventually the system will
reach a state in which very few moves are accepted. In such a state, the sys-
tem is said to be frozen. The sequence of decreasing temperatures is called
the annealing schedule. The next temperature is obtained by T, = aT,,
where a is the cooling rate. Typical values for « are in the range from 0.75
to 0.95.

2 Background and Notation

Let G = (V, E) be a graph with |[V| —n. A labelling f of G is a one-to-
one mapping from the integers {1,2,...,7n} to the vertices of G. When
V ={1,2,...,n} a labelling of G is simply a permutation of the vertices.
A labelling (of the vertices) induces a labelling on the edges as follows:
if uv € E(G) then the label of wv is |f(u) — f(v)|. The bandwidth of a
labelling f of a graph G, written Bf(G), is the maximum edge label. The
bandwidth of a graph .G, written B(G), is the minimum of B;(G) over all
possible labellings f. That is, miny maxuvee |f(u) — f(v)|. A bandwidth
labelling is a labelling f such that B;(G) = B(G).

The bandwidth is known for several classes of graphs. The only connected
graphs with bandwidth 1 are the paths, B(P,;) = 1. The complete graph
has bandwidth one less than the number of vertices, B(K,) =n—1. For a
bipartite graph, B(Km») = [251] +n where m > n > 0.

Many lower bounds for the bandwidth have been determined, but few
upper bounds have been found. We present several bounds that will be
used in examples in later sections. For an extensive list of upper and lower
bounds, and a discussion of the following bounds, see [1]. Let G be a graph
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on n vertices, let A(G) be the maximum degree of G, let §(G) be the
minimum degree of G, and let d be the diameter of G.

Bound 1. For any graph G, n—1 > B(G) -

Bound 2. For any graph G, B(G) > [23}].

Bound 3. For any graph G, B(G) > [48].

Bound 4. For any graph G, B(G) 2 §(G).

One method of determining the bandwidth exactly is to find a labelling
whose bandwidth is equal to some lower bound. Another method of deter-
mining the bandwidth would be to enumerate all n! possible labellings. This
is only feasible for small values of n. Heuristic algorithms approximate the
bandwidth without examining all possible labellings. An algorithm which
reduces the bandwidth labeling of the graph is called a bandwidth reduction
algorithm. Bandwidth reduction algorithms are used in structural engineer-
ing, fluid dynamics, and network analysis [1].

Gibbs, Poole, and Stockmeyer [4] compared several bandwidth reduction
algorithms and concluded that GPS gave the best results. To understand
the GPS algorithm we have to introduce the following definition. A level
structure of a graph G, denoted by L(G), is a partition of V(G) into sets
Ly, Lo, ..., L, called levels that satisfy the following condition: vertices in
L, are either in one of L;_y, L; or Li+1. The width of a level structure is
the maximum number of vertices in a level. The GPS algorithm creates a
level structure and label the vertices level by level. It has three phases (for
a detailed description see [1]):

1) Finding a pseudo diameter. This step takes a few iterations. It will
attempt to find endpoints with low degree. Because of bound 4,
it makes sense to have a low degree vertex at the endpoint of the
diameter.

2) Minimizing the level width. It is not hard to see that it is advantageous
to have a level structure with low width.

3) Numbering the level structure. Each level is numbered according to a
set of rules. For example, vertices that are adjacent to a lower level
are numbered first.

Gowri Sankaran, Miller, and Opatrny [5] noted that the GPS algorithm
does not obtain good results when applied to trees. They describe a new
bandwidth reduction algorithm (LST) that recursively defines a level struc-
ture for trees. LST obtains level structures with smaller width. However,
a smaller width of the level structure does not necessarily imply a bet-
ter bandwidth labelling. Gowri Sankaran and Opatrny [6] presented two
bandwidth reduction algorithms that are not restricted to trees. These
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algorithms are improvements on the GPS algorithm. As far as we know,
these algorithms have not been implemented. It is therefore difficult to
assess the performance.

Lin [8] describes several labelling for special graphs: clique-chains, wind-
mills, caterpillars, two layer stars, and complete k-ary trees. We use some
of theses graphs to evaluate our algorithm.

3 A Heuristic Algorithm

Our heuristic algorithm will approximate the bandwidth of G by examining
randomly generated labellings of G, with no assumptions on the structure
of an optimal labelling. Interchanging a pair of distinct labels generates
a new labelling. We will call interchanging the pair of labels a move, the
pair of vertices whose labels are interchanged the swap points, and the
labels interchanged the moving labels. We will refer to the labellings before
and after the move as the old and new labellings when it is important to
distinguish between them, but will often refer to them simply as labellings.

Our heuristic algorithm begins by initializing the temperature, temp;
the maximum number of accepted moves at each temperature, max_moves;
the maximum number of moves to be attempted at each temperature,
max._attempted.moves; max_frozen is the number of consecutive iterations
allowed for which the number of accepted moves was less than max_moves;
the cooling rate, cool.rate. We will discuss our choices for these param-
eters in a later section. The algorithm proceeds by randomly generating
a move and then computing the change in the cost function for the new
labelling. If the cost decreases then the move is accepted. A move that
raises the cost is accepted with probability P(AE) = e~4E/T where AE
is the increase in cost that would result from this prospective move. The
simulated annealing bandwidth, sa_band, is the minimum bandwidth of the
labellings generated by the algorithm up to that point in time. Thus, if a
move creates a labelling with larger bandwidth sa band is unchanged. We
count the number of accepted moves and if this falls below a given threshold
we say the system is frozen. The pseudocode for the general algorithm is
given below.

anneal (G,best_map)
temp = 1.0
cool_rate = 0.95
map = random mapping
best_map = map
sa_band = Bandwidth(G,best_map)
max _moves = 4*|E|
max.attempted_moves = 80*max_moves
max_frozen = 50
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frozen = 0
while(frozen < max_frozen)
moves = attempted.moves = 0
while((moves < max.moves) and
(attempted moves < max.attempted moves))
increment attempted. moves
pick a random move map_ran
if the move is accepted
map = map._ran
increment moves
if (sa_band < Bandwith(G,map))
best.map = map
sa_band = Bandwith(G,map)
end if
end if
end while
temp = temp * cool.rate
if (attempted moves > max_attempted.moves)
increment frozen
else
frozen = 0
end if
end while
end anneal

The choice of parameters is determined by using some of the guidelines
given in [7], our past experience with simulated annealing [3], and empirical
tuning with a large set of graphs. The maximum number of moves should
be related to the number of possible moves [7]. The number of possible
moves is directly related to |V|. There are n(n — 1) possible moves, where
|V| = n. However, we obtained better results by correlating the maximum
number of moves to the number of edges, i.e. more moves are required for
denser graphs. A relatively large number of moves have to be attempted
(4 x 80|E]|), since few moves will result in lower bandwidths. Only after
50 unsuccessful iterations will the algorithm stop (max_frozen = 50). By
modifying these parameters one can obtain results more quickly, but they
may not be as close to B(G). We found that the above value for the
parameters give good balance between the quality of the results and the
invested effort.
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4 The Cost of a Move

Although the bandwidth of the graph labelling is the parameter we wish
to minimize, it is not a good choice for the cost function. There are at
most n — 1 possible values for the bandwidth, but there are n! possible
labellings. Thus few moves will result in a new labelling with a different
bandwidth from the old labelling. We need a cost function that will measure
improvements in the new labelling, even though the bandwidth remains the
same.

Clearly, a move that increases/decreases the bandwidth should increase/
decrease the cost. A move that does not decrease the bandwidth may still
create a labelling which is closer to the optimum, for example, the number
of edges with the highest label decreases. Thus, the cost function should
consider the distribution of the edge labels. Ideally, a move that lowers the
label of an edge that was already below the bandwidth should not change
the cost. Of course, we do not know the bandwidth, so we cannot tell
when such a move has occurred. Instead, we count only the edges with
high labels, B¢(G), Bf(G) -1, Bs(G) —2,... By(G)—r, and multiply them
by weights C}, Cs,...,C, respectively, where C;_; > C; fori=1,2,...r.
Since we want the magnitude of the cost to be largest when the bandwidth
changes, we multiple the change in bandwidth by Co. Using Co = |E|**,
C; = |E|Br(C)=i+1 ensures that labellings with different distributions of
edge labels have different costs. However, for ease of computation we do not
insist that different distributions of edge labels have different costs. Finally,
we normalize the cost by dividing by Cp so that the weights Cy, C},...C,
can be changed without affecting the cooling rate. Thus, the cost of a move
that changes the bandwidth by i is 1, and the cost of a move that does not
change the bandwidth is less than 1. In practice we use » = 3, and we set
Co = 125, Cy = 25, C3 = 5, C3 = 1. Furthermore, we neglect the smaller
terms when the bandwidth changes. The algorithm computes the change
in cost as follows:

function cost.diff(11, 12) .
(*+ 11 and 12 are labellings of a graph *)
(» FACTOR = {125, 25, 5, 1} *)
if (bandwidth(11) # bandwidth(12)) then
cost := bandwidth(11) - bandwidth(12)
else
i := bandwidth(i1)
j =2
cost := 0
while(i > 0 and j <=4)
cost := cost+(11.weight[i]l-12.weight[i])*FACTOR[j]
i:=1i+1
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ji=j+1

end while
cost := cost/FACTOR[1]
end if
return(cost)

end function

5 Some Characteristics of Graph Labellings

In this section we describe some effects that a move has on a graph labelling.
Given a graph G and labelling f of G it may be necessary to make a move
which does not decrease the maximum edge label before an optimal labelling
can be found. We call such labellings plateaus. In other cases the bandwidth
must increase before it can decrease. Such labellings are termed hills. We
can construct graphs and labellings with arbitrarily high hills. Finally, we
show that when we are climbing a hill there is no guarantee that it will be
done quickly.
Plateaus

Consider K, — e, where e is the edge uv and n > 3. Any labelling where
u is labelled 1 and v is labelled n (or vice versa) is an optimal labelling. A
labelling where u and v are not labelled 1 and n respectively will require two
interchanges to become optimal, and after the first of these interchanges
has occurred the vertices with labels 1 and n are still adjacent. In this
example at least two interchanges are needed to decrease the bandwidth by
1, that is, more than B;(G) — B(G) interchanges are required to reach an
optimal labelling.

K,—e

Figure 1. Non-increasing move required to reach optimal labelling
Hills

There exist graphs G and labellings f of G such that f is not an optimal
labelling and any move on f increases the bandwidth. Consider Ps, the
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path on 6 vertices, with the labelling shown in Figure 2. This labelling has
bandwidth 2, but the bandwidth of a path is 1. Interchanging any pair
of labels raises the bandwidth by at least 1. We will show later that for
any labelling there is a pair of vertices such that interchanging their labels
increases the bandwidth by at most 1.

Fs

1 3 5 6 4 2
® ® *——@ ® ®

Figure 2. Any move will increase the bandwidth

A non-trivial example is given below. The labelling of the graph G in
Figure 3 has bandwidth 4 and any move raises the bandwidth. Furthermore,
B(G) = [23!] = [28~!]. The labelling in Figure 4 demonstrates that
B(G)=2.

10

Figure 3. Any move will increase the bandwidth

8
Figure 4. Bandwidth labeling
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High Hills
We can construct graphs and labellings such that a hill of size A > 0 must

be climbed before an optimal labelling is reached. Figure 1 is an example
of this for h=0. ‘

Theorem. For any integer h > 1 there exists a graph G and a labelling
f of G such that Bs(G) = B(G) + h, and every sequence of moves that
reaches a bandwidth labelling must go through some intermediate labelling
€ where By(G) = By(G) + h = B(G) + 2h.

Proof: Let G = Kap 4p, for h > 2. Then B(G) = |452| +2h =4h—1and
the optimal labelling labels the upper 2k vertices consecutively from 2h+1
to 4h+1. Let f be the labelling shown in Figure 5; note By(G) = 5h—1. In
the optimal labelling, labels 1 and 6k are both in the lower set of vertices.
Let £ be the first modified labelling such that labels 1 and 6k are not both in
the upper set of vertices. Then the vertices with these labels are adjacent,
and so By(G) = 6h — 1. Thus B¢(G) = Bs(G) + h = B(G) + 2h. The
graphs and labellings in Figures 2 and 3 satisfy the theorem for h = 1.

1 .. h Sh+l .. 6h

h+1 h+2 5h-1 5h
Figure 5. A labelling for Kon 4n

This theorem shows that arbitrarily high hills may be encountered. The
rate at which a hill is climbed depends on the labels to be interchanged.
Steepness

When we are climbing a hill we cannot guarantee that it will be done
quickly.

Lemma. Given a graph G and labelling f of G, and a pair of vertices u

and v of G, create a labelling [ by interchanging the labels of u and v.
Then B(G) < By(G) + |f(v) — f()|-

Proof: Without loss of generality assume that j_'gu) < f(v) and let k =
f(v) — f(u). Then f(u) = f(v) = f(u) + k and f(v) = f(u) = f(v) — k.
The labels of the edges not adjacent to u or v are not affected by the
interchange. If z is adjacent to u then [f(u) - f(@)| = |(f(u) + k) —
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f(@)| < |f(w) = f(z)| + k < By(G) + k. Similarly, if y is adjacent to v then
[7@) = F(@)l = /() = (f(v) = k)| < |f () = f()| + k < By(C) + k.

Thus any labelling has n — 1 pairs of vertices such that interchanging
the labels of these vertices increases the bandwidth by no more than 1.
These are the pairs of vertices with consecutive labels s and i + 1 for i =
,2,...,n—-1.

Figure 6. A graph (st21) for which GPS does not find the bandwidth

6 Results

We have implemented the simulated annealing algorithm in the C program-
ming language. We ran our algorithm on structured graphs, as well as on
random graphs. The simulated annealing algorithm (SA) showed its real
strength with the random graphs. The results of our algorithm are summa-
rized in Table 1. A description of the graphs follows: gridn is an n x n grid;
(in the subsequent graphs, n denotes the number of nodes) pathn is a path;
circlen is a circle; windn is a windmill [8]; st21 is the graph depicted in Fig-
ure 6; ttreen is a complete ternary tree; btreer is a complete binary tree;
randn is a random graph. The column labeled original shows the bandwidth
of the original labelling (used as input to the program). If the bandwidth
of the graph is known, then it is listed in the column B(G). In order to
evaluate the SA algorithm we implemented the GPS algorithm according
to the description given in [1}. The GPS algorithm outperformed the SA
algorithm for girds, paths, and circles. However, the GPS algorithm does
not give good results for all structured graphs. The SA algorithm found
the bandwidth of the graph st21 (see Figure 6), whereas the GPS was off
by 2. GowriSankaran et al. [5] pointed out that the GPS algorithm does °
not give good results for trees. We obtained very good results for binary
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and ternary trees. We have tested our algorithm on hundreds of randomly
generated graphs with different densities. A small representative number of
those have been included in Table 1. In general we found that our algorithm
performed significantly better on random graphs than the GPS algorithm.

Graph | n JIE(G)|]A@G) | d | Original | B(G) | GPS | SA |
grid5 25 40 4 8 18 5 5 5
grid7 49 84 4 12 47 7 7 7
gridls | 225 | 420 4 28 217 15 15 | 18
path20 | 20 19 2 20 19 1 1 2
path50 | 50 49 2 50 49 1 1 3
circle50 | 50 50 2 25 49 2 2 3
wind20 | 20 39 19 2 19 10 10 | 10
st21 21 32 4 6 13 4 6 4
ttreeld | 13 12 4 4 9 3 4 3
ttreel21 | 121 120 4 8 81 16 28 | 16
btree3l | 31 30 3 8 16 4 6 4
btreel27 | 127 | 126 3 12 64 11 18 | 12
btree225 | 255 | 254 3 14 128 19 34 | 22
rand20 | 20 38 7 4 16 7 6
rand50 | 50 110 9 6 40 19 | 13
rand100 | 100 | 468 16 4 94 67 | 45
rand150 | 150 | 567 15 5 147 81 | 59
rand200 | 200 | 597 11 6 191 105 | 66

Table 1.
A comparison of labelling produce by the GPS and our algorithm

The results produced by the SA algorithm depend on the pseudo random
numbers generated as well as on the initial labelling. It is therefore possible
to use the labelling from the output of the program as input for a new run.
This may lead to labellings that are successively closer to the bandwidth
of the graph. For example, when we iterated the program on gridl5 a
labelling with bandwidth 17 was found on the 4th iteration.

One drawback of the SA algorithm is its running time (see Table 2). It
takes up to 2000 times longer to find the bandwidth of a graph using SA
than GPS. This clearly will limit the use of the SA algorithm. However,
it is a very good tool to evaluate other heuristic algorithms. Such a tool
is invaluable when other bandwidth reduction algorithms are not able to
find the bandwidth and it is not possible find the bandwidth by theoretical
analysis. We see this as the major benefit of the proposed algorithm. An
area of further research is to investigate whether moves can be taken in a
deterministic fashion, rather than at random.
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[ graph | GPS | SA ]
rand100 | 0.031 | 63.361
rand150 | 0.058 | 102.877 |
rand200 | 0.085 | 136.466

Table 2. Execution time in seconds on a DEC Station 3100
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