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ABSTRACT. There has been a great deal of interest in relating
the rank of the adjacency matrix of a graph to other fundamen-
tal numbers associated with a graph. We present two results
which may be helpful in guiding further development in this
area. First, we give a linear time algorithm for finding the
rank of any tree which is twice its edge independence number.
Secondly, we give a formula for the rank of any grid graph con-
sisting of mn vertices arranged in a rectangular grid of m rows
and n columns on a planar, cylindrical, or toroidal surface.

Introduction

There has been a great deal of interest in relating the rank of the adja-
cency matrix of a graph, called the rank of the graph for short, to other
fundamental numbers associated with a graph. Ranks are easy to compute
compared to fundamental numbers whose computation are N P-complete
problems. Ranks of graphs also have direct application in electrical net-
works [9]. Cyriel van Nuffelen [12, 13] conjectured in 1976 that the chro-
matic number of a graph was bounded above by the rank of its adjacency
matrix. This conjecture was further supported by a computer program
called Graffiti [6], but N. Alon and P.D. Seymour gave a counter example
in 1989 [1). On the positive side, Cyriel van Nuffelen has shown that the
diameter of a graph is bounded above by its rank [14], and also the clique
number, radius, and domination number of a graph are bounded above by
its rank [15] while the independence number of a graph is bounded above by
the rank of the complement of the graph. More recently, S.T. Hedetniemi,
D.P. Jacobs, and R. Laskar [8] have shown that the upper open redundance
number of a graph is bounded above by its rank.

There seems to be a need for more examples and tools for further devel-
opment of this area. Mark Ellingham [5] has investigated graphs with no
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isolated vertices in which no two vertices have identical neighborhoods and
no vertex can be added without an increase in the rank of the resulting
graph. In this paper we give easy methods for determining the rank of two
large classes of graphs.

It is well known that a complete graph on n vertices has rank n, a graph
consisting of a single path on n vertices has rank = if is even and rank
n —1 if n is odd, and a complete bipartite graph has rank 2. Also, a graph
consisting of a single cycle on n vertices has rank = if 4 does not divide
n otherwise it has rank n — 2. To these we add results for the ranks of
trees and grid graphs. In section 2 we present an algorithm for associating
indices with the vertices of a tree from which its rank can be computed.
Such an algorithm seems to be necessary since the vertices of a tree (or the
lines of its adjacency matrix) can interact in different ways. This algorithm
may be considered as an extension of the algorithm given by Mitchell,
Hedetniemi, and Goodman [11] for finding a maximal matching in a tree.
A grid graph consists of mn vertices arranged in a rectangular pattern of
m rows and n columns with edges joining vertices which are horizontally
or vertically adjacent in this pattern. In section 3 we give a formula for the
rank of a grid graph where the pattern is imposed on a planar, cylindrical,
or toroidal surface. Such a formula is possible, in contrast to the result for
trees, because of the uniform nature of grid graphs.

Ranks of Trees

A set of edges is said to independent if no two edges in the set have a
vertex in common. The edge independence number of a graph G, denoted
by £1(G), is the size of the largest independent set of edges in G. If S
is an independent set of edges with |S| = B1(G), then S is called a §-
set or mazimum matching of G. |S| denotes the cardinality of a set S.
Furthermore, if all vertices of G are covered by edges of S, then S is called
a perfect matching of G.

Theorem 1. For any tree T, rank(T") = 26,(T).

Proof: Since A = adj(T) is symmetric, rank(T’) is the size of the largest
principal submatrix of A with a nonzero determinant. But principal sub-
matrices of A are adjacency matrices of subgraphs of T. Thus rank(T)
is the number of vertices in the largest subgraph of T with a nonsingular
adjacency matrix. Let H be a subgraph of T. According to [7, Theorem
3] the det(adj(H)) may be expanded as the sum of determinants of the
adjacency matrices of linear subgraphs of H where a linear subgraph is a
spanning subgraph whose components are edges or cycles. If H has no
such subgraph, det(ad(H)) = 0 is the empty sum. Since a subgraph of
T has no cycles, a linear subgraph of H is just a perfect matching of H.
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Furthermore, by [7] the determinant of the adjacency matrix of such a lin-
ear subgraph of H is (—1)° where e is the number of edges in the linear
subgraph. Now if H has rank(T') vertices and det(ad(H)) # 0, then all of
the rank(T)/2 edges in the perfect matching of H are independent in T'
so that rank(T") < 26,(T"). Conversely, if H is a subgraph of T' induced
by 81(T) independent edges, then H has exactly one linear subgraph and
the det(ad(H)) can be expanded as the sum of one nonzero term. Thus
det(H) # 0 and rank(T) > size of adj(H) = 2p,(T).

Mitchell, Hedetniemi, and Goodman [11] give a linear time algorithm for
. finding the edge independence number of a tree, and thus by Theorem 1

their algorithm can also be used to find the rank of the tree. Bevis and
Hall [2] give a linear time algorithm for finding a specialized depth-first-
search ordering of the vertices of a tree such that its adjacency matrix has
a factorization in integer matrices. A modification of the initial step of this
algorithm, presented here as Algorithm 1, will also produce the rank of a
tree. Algorithm 1 is also linear since it can be implemented with one pass
of a depth first search of the tree. The basic idea of this algorithm is to
find the number s of vertices in a tree T' which must be eliminated before
the resulting subgraph will have a perfect matching.

Algorithm 1: Given a tree T with n vertices, choose a vertex ¢ to be called
the root:

1. Set s = 0, and label all leaves u # ¢ of the tree as "odd”. If n = 1,
then label t as "odd”.

2. Repeat the following until all vertices are labeled. When all children
of u have been labeled and u has k odd children

(2.1)  if k=0, then label u as "odd”, else
(2.2)  if k> 0, then label u as "even” and set s = s+ (k —1).

3. If the root ¢ is labeled odd, then set s = s+ 1. Set rank(T") =n —s.

In (2.1) the odd label indicates that we do not wish to match » with any
of its children and will hopefully match it with its parent. In (2.2) u has
k odd children which wish to be matched with u. However, in the spirit of
Caro and Schoenheim [3], who show that a tree has a perfect matching if
and only if at each vertex there is exactly one branch with an odd number
of vertices, we can only match » with one of them. This leaves k—1 vertices
which will not be included in the matching.

It is not possible to find the rank of a tree from only knowledge about the
number of odd branches at each vertex. For example, in Figure 1 we show
two trees with the same numbers of odd branches at their vertices, namely
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(A) (B)

Figure 1

1,1,1,1,1,1,3,3 but these trees have different ranks. At each vertex the
number of branches with an odd number of vertices is shown as a label at
the left of the vertex. The edges marked with double lines give a maximal
set of disjoint edges and thus determine the ranks of the trees. The tree
in Figure 1(A) has rank 6 while the tree in Figure 1(B) has rank 4. The
label in the center of each vertex gives the odd "0d” or even "ev” labeling
resulting from Algorithm 1. The number of odd children is shown at the
right of each vertex (except for leaves which have no children). From the
result of Caro and Schoenheim, a vertex with more than one odd branch
could cause the rank of a tree to be decreased. A tree must have even rank,
so the decrease would be two. In the tree of Figure 1(A) there are two
vertices which cause a decrease in rank, but these vertices interact to cause
a total decrease of two. In the tree of Figure 1(B) the two vertices with
more than one odd branch act independently, each causing a decrease of
two, resulting in a total decrease of four. Roughly speaking, the recursive
nature of the labeling process of Algorithm 1 keeps track of the relevant
interaction, and thus allows a computation of the rank of a tree.
Algorithm 1 may be considered as an extension of the MHG-algorithm
of Mitchell, Hedetniemi, and Goodman [11] which uses a similar labeling
process. Consider the graph of Figure 2 where for the moment the region
indicated by S is empty. That is we have leaves or endvertices u;, ua, ... ux
incident with the vertex v. The MHG-algorithm would label u,ug, ... ux
as independent vertices and label v as a dependent vertex. One of the edges,
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(v)

say (u1,v), would be selected for a B;-set of the tree. The MHG-algorithm
would then select the remaining edges for the B8;-set from the tree with
vertices v, u;,us,...,ux removed so that uy,...,u; are k — 1 vertices not
incident with edges of the B;-set, and as in the proof of Theorem 1, do not
contribute to the rank of the tree. Similarly, Algorithm 1 establishes v as
an even vertex with k odd children, and in step 2.2 recognizes that k — 1
of these odd children can not contribute to the rank of the tree. Thus in
step 2 of Algorithm 1 we can define indices which are associated with the
labeling and give the number of children of even vertices which can not
contribute to the rank. That is, for each even vertex u we define the index
ky to be one less than the number of odd children of u, and for each odd
vertex u define k, = 0 with the specification that if the root ¢ is labeled
odd then k, = 1. With this notation the last part of step 3 of Algorithm 1
can then be stated as ”Set rank(T") = n — Z,evk,” where V is the vertex
set of T. The observation that the MHG-algorithm and Algorithm 1 give
the same treatment to the vertices v, u1, up, ..., ux of Figure 2 provides the
inductive step in an argument establishing Theorem 2.

Theorem 2. Algorithm 1 gives the rank of a tree, that is for a tree T =
(V, E) and indices k,, for u € V, defined as above, rank(T) = |V|—-oucvky.

Algorithm 1 and the MHG-algorithm may differ in the order in which they
consider vertices. While the MHG-algorithm always works from endvertices
inward, Algorithm 1 allows the specification of a root vertex and works
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from descendants towards the root. These differences can be significant.
Consider the graph of Figure 2 with ¢ chosen as the root. Then Algorithm
1 considers the vertices of S, which are all descendants of v, before v is
considered while the MHG-algorithm considers v before w is treated. In
fact the edge (v,w) could belong to a §;-set of the tree, but would never
be considered so by the MHG-algorithm. Also if the root ¢ has degree 1,
then the MHG-algorithm considers it in the first round, while it would be
the last vertex considered by Algorithm 1. These differences allow us to
establish additional results such as those given in Corollary 1.

Corollary 1. Suppose that the odd/even labeling of Algorithm 1 has been
applied to a tree T = (V, E) with the vertex t as the chosen root, and that
a new tree T" is formed by adding a new edge from a vertexc € V, to a
new vertex w. If c is labeled even then rank(T’) = rank(T'), and if c=t is
labeled odd then rank(T’) = rank(T) + 2.

Proof: Apply Algorithm 1 to T' with ¢ chosen as the root of 77. Let
k. and k] denoted the indices obtained in T and 7" respectively. Now
ki, = 0 since w is labeled odd and is not the root of T". If c is labeled
even then the labeling of common vertices of T and T” is the same so
that k, = k. + 1, and k, = ky for all u # cin V. Hence, when c is
even, rank(T") = |V| + 1 — Zyevikl, = |V| — Zuevku = rank(T"). Now
if ¢ = t is labeled odd in T, then k& = 1, but ¢{ has one odd child w
in T”, so that ¢ is labeled even in T’ and ki = 0. The labeling on all
other vertices is unchanged so that k, = k, for all u # ¢t in V. Thus
rank(T’) = |V'| — Euevrkl, = |V| + 2 — Tuevky = 2 + rankT.

If the new edge of Corollary 1 is added at an odd vertex c # t, then
the rank may or may not increase by two. For example consider the cases
where T is a path of length two or three from ¢ to ¢. Corollary 2 now
follows by induction on the number of vertices with Corollary 1 supplying
the inductive step. Finally Corollary 3 may be interpreted as saying that
Algorithm 1 can be used to check the criteria given by Caro and Schonheim
(3]

Corollary 2. For any positive even integer r and any integer n withr <n,
there is a tree of rank r with n vertices.

Corollary 3. Suppose that the n vertices of a tree T have been labeled
odd or even by Algorithm 1. Then T has rank n, or equivalently, T has a
perfect matching, if and only if the chosen root is labeled even and each
even vertex has exactly one odd child.

Ranks of Grid Graphs

The Cartesian product G @ H of graphs G and H, has vertex set V(G &
H) = V(G) x V(H) consisting of ordered pairs of vertices of G and H,
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and the edge set E(G @ H) = {{(a,b),(c,)} : {a,c} € E(G),be V(H)}U
{{(a,}), (a,d)} : a € V(G),{b,d} € E(H)}. In this section we obtain the
ranks of graphs which are Cartesian products of paths and cycles. We refer
to these as grid graphs since the Cartesian product of two paths gives a
rectangular grid on a planar surface, while a product of a path with a cycle
or of two cycles gives rectangular grids on a cylindrical and torodial surface,
respectively.

The adjacency matrices of Cartesian products of graphs may be expressed
in terms of tensor or Kronecker products of matrices. The tensor product of
an m-by-n matrix A = [a;;] with a p-by-q matrix B, is a mp-by-ng matrix
. denoted by A ® B which may be partitioned as

anB ... aixB
A®B=1] ... ... .
amlB aee a'nnB

If G and H are graphs with m and n vertices respectively, it is not difficult
to see that adj(G ® H) = (adj(G) ® I,) + (Im ® adj(H)) where I, denotes
the n-by-n identity matrix. The tensor product of matrices satisfies several
elementary properties which may be found in [10]. We summarize these as

Lemma 1. The tensor product is associative, distributes over matrix
addition, and for conformal matrices satisfies the following relationships
with ordinary matrix multiplication (P ® Q)(S® T) = (PS) ® (QT) and
(PRQ) =P leQ™L

For a graph G, let n(G) denote the multiplicity of 0 as an eigenvalue
of adj(G). Since adjacency matrices are symmetric, they are similar to
a diagonal matrix, and since similarity transformations preserve rank, the
rank of a graph G with n vertices can be obtained from rank(G) = n—5(G).
From this equality we obtain the following lemma where |S| denotes the
cardinality of a set S. It is also clear from this lemma that rank(G® H) =
rank(H @ G) for any two graphs G and H.

Lemma 2. Let G and H be graphs with m and n vertices respectively. If
their eigenvalues are A;, i =1,2,...,m and pj, j = 1,2,...,n respectively,
then the eigenvalues of adj(G & H) are A\i +pj, 1 <i<m,1 <j < n
Furthermore, rank(G® H) = mn — |{(3,7) : i+ p; =0. 1 £ i< m,
1<j <n}l.

Proof: Let Dg = diag(\y,...,Am) and Dy = diag(u., ..., 4n) denote di-
agonal matrices with the specified diagonal entries. Now there are nonsingu-
lar matrices P and Q such that Padj(G)P! = Dg and Qadj(H)Q! = Dy.
Hence (P ® Q)[adj(G® H)(P® Q)™ = (PR Qadj(G) @ In + In ®
adj(H))(P~' ® Q') = (Dg ® I.) + (Im ® Dy). The result now follows
since this is a diagonal matrix with diagonal blocks Al + Dy, 1 < ¢ < m.
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Let P, and C,, denote a path and cycle respectively with n vertices. The
eigenvalues of adj(P,) are 2cos (“ +1)' i=1,2,...,n, and the eigenvalues
of adj(Cn) are 2cos (22%), i = 1,2,...,n [4, pp. 53 and 73]. Since the
cosine function is monotone on the interval (0, 7), the eigenvalues of a path
P, are distinct. However, a cycle C,, has repeated eigenvalues. Thus it is
more convenient to list the eigenvalues of C, as: 2, -2 if n is even, and
each of the values 2cos (22¢) with multiplicity 2 for i =1,2,..., |(n—1)/2]
where |z] denotes the largest integer not greater than z. We may now use
Lemma 2 to obtain the ranks of some grid graphs.

Theorem 8. Let P, denote a path with n vertices and let C,, denote a
cycle with n vertices where a cycle is assumed to have at least three vertices.
Then

rank(Pp ® P,) =mn+1—~gcd(m +1,n+1).

If g = gcd(m + 1,n), then
mn+1—g whenn isodd

rank(P, ®Cp) ={ mn+2—g when g is even but n/g is odd
mn+2—2g whenn/g is even.

If g = ged(m,n) then

mn when m and n are both odd
rank(C,, ® C,,) = { mn+1—2g when m and n have opposite parity
mn+2—2g whenm and n are both even

Proof: Let X = 2cos (27) and uj = 2¢0s (), i=1,2,...,m, j =
1,2,...,n denote the eigenvalues of P, and P, respectively. Now A\; +

pi=0& oos(m+1) = cos “(",;’fl—’) & ;= 22 since the cosine

is monotone on (0,w). Let g = ged(m + 1,n+1), p = (m + 1)/g, and
g=(n+1)/g. Thus s+ p; =0& i =p(rn+1-3)/q. Now p and ¢
are relatively prime, q divides n + 1, and 7 must be an integer so j must
be a multiple of g. The only possible values for j satisfying 1 < j < n
are then j = lq,2q,...,(g — 1)g. For such values g < j < (g — I)q implies
Bln+l-(9-U)g) <i=2[n+1-j]<Bln+l-q]sothat 1<p="2n+l-
(n+ )+q]<i< TIT("'"'I) Bg= m+1 —p < m. We have estabhshed
that there are exactly g — 1 pa.irs (3,7) withl1 <t <m,1<j<n and
Xi + pj = 0. Hence by Lemma 2, rank(Pp, @ P,) = mn — (g —1).

Next let A = 2cos (%7 ) for i =1,2,...,m and t; = 2cos (%52) for j =
1,2,...,|(n—1)/2] denote distinct eigenvalues of Py, and C, respectively.
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Since A; # +2, there is no need to consider the (possible) eigenvalues 42

of Cy. Now X; + pj =0@cos(-,;.%) =cos(1(“,+2ﬁ) &= n-3j
since the cosine is monotone on the interval (0, 7). Let g = ged(m + 1,n),
p=(m+1)/g, and ¢ = n/g. Thus Xy + p; = 0 & i = p(n — 25)/q. As
before, this equation has integer solutions only when q divides 2j. When ¢
is odd j is a multiple of ¢, and when ¢ is even j is a multiple of ¢/2. The
appropriate values of j in these two cases are j = 1¢,2q,...,|(g — 1)/2]q
and j = 1(g/2),2(q/2),...,(g — 1)(q/2) respectively. As above the reader
can verify that these are exactly the values of j for which 1 < i < m and
1 < j < n. Now each of the u;’s has multiplicity two as an eigenvalue of
Ch, and according to Lemma 2, the rank of P, ® Cy is mn —2[(g —1)/2]
or mn — 2(g — 1) depending on whether ¢ = n/g is odd or even.

We now consider C,, ® C,,. List the distinct eigenvalues of C,, and
C,, respectively as A_; = —2 if m is even, Ao = 2, A; = 2cos (%£) for
i=1,2,...,|(m-1)/2] and p_, = —2if nis even, o = 2, p; = 2 cos (2£1)
forj=1,2,...,|(n-1)/2]. Now -2 < X, 15 < 2 for 1,5 > 1 so we only
need to consider the possible relations A_; + uo = 0, Ag + p—-; = 0, and
Xi+pj=0forij>1 Whenij>1 A\+pj =0 ¢ cos(2) =
cos 1'-("%21)- & -,2,'.— = % Let g = gcd(m,n), p = m/g, and q = n/g.
Thus for i,5 > 1, A; + pj = 0 & i = p(n — 25)/(2g). When m and n are
both odd, neither p nor n — 2; is divisible by two and there is no solution.
Hence rank(Cy, ® C,) = mn when m and n are both odd. Now suppose
that at least one of m and n is even. As before ¢ must divide 25. If n is odd
(so that m and p are both even) then ¢ is odd, and 5 must be a multiple of
g. The case with m odd and n even is symmetric to this one and is omitted.
If m and n are both even and q is odd then j is a multiple of q as before. If
m, n and q are all even, then p is odd so that (n —25)/q = g — 2(j/q) must
be even. Now g is even in this last case so j must still be a multiple of q.
When m is even the appropriate values of j are j = 1q,2g, ..., [(9—1)/2]q
regardless of whether n is odd or even. As above the reader can verify that
these are exactly the values of j for which 1 < i <mand1 < j < n.
Since the multiplicities of A; and p;, 1,7 > 1, as eigenvalues of Cy,, and C,,,
are both two, we obtain four pairs of eigenvalues that sum to zero for each
i, J pair such that i = p(n — 27)/(29). We also have one of the relations
Ao+ p—1 =0o0r A_; + o = 0 when m and n have opposite parity. Thus,
in this case, rank(Cp, ® Cn) = mn — [4|(g — 1)/2] + 1]. Finally in the case
where m and n are both even we have both relations A\g + z—1 = 0 and
A1+ po =0, and in this case rank(Cm @ Cy) = mn — [4|(g — 1)/2] +2].

Corollary 4. Grid graphs have full rank, that is their rank is the same as
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the number of vertices, in the following cases.

Rank(P,, ® P,) =mn, ifand only if m +1 and n+1 are relatively
prime.
Rank(P,, ® C,) = mn, if and only if m + 1 and n are relatively prime,
or gcd(m + 1,n) = 2 and n/2 is odd.
Rank(C,, ® C,) = mn, if and only if m and n are both odd.
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