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ABSTRACT. We deal with a family of undirected Cayley graphs
Xn which are unions of disjoint Hamilton cycles, and some of
their properties, where n runs over the positive integers. It is
proved that X, is a bipartite graph when n is even. If n is an
odd number, we count the number of different colored triangles
in Xp.

1. Introduction

The graphs considered in this paper are undirected, simple and without
loops. Given a graph X,,, we denote its vertex set and edge set by V(X)
and E(X), respectively. Given a positive integer n» and an element z of the
additive cyclic group Z,, of integer residue classes mod n, there is only one
integer representative y of z such that 0 < y < n; we use the same symbol
z to denote y and define |z| =z if z < n/2 and |z] = n —z if z > n/2.

The group Z, possesses the subset U, = U(Z,) of units modulo =,
constituted by those z in Z,, with integer representatives relatively prime
to n. It is known that U, is a multiplicative group. Let W,, = U,,/Z, be
given by the classes {z, —z}, where z varies in U,,. Notice that W,, inherites
a group structure from U,,. We represent each {z, -z} € W, again by =z,
where 0 < z < [n/2], unless confusion arises.

We deal with a class {X,,} of undirected Cayley graphs X, that we call
“Unitary Cayley graphs”, defined as follows: V(X,) = Z, and any two
vertices v; and v are adjacent if and only if |vy — va| € U,,. Each edge
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of X, is attributed a color from the set {1,2,...,k}, where k = [n/2],
according to the following rule: If e is an edge with endvertices v; and v,
and if v; —vp = +i (mod n), ¢ € {1,2,..., k}, then we color the edge e with
1. According to the definition of Xy, we have that i € U,. Therefore, X,
is the undirected Cayley graph of Z,, with generator set W,,. Written Cay
[Zn, W3], hence, we may say that X, has an edge coloring with one half of
the unit element of Z,,. For intance, if n» = 9 then U,, = {1, 2,4,5,7,8} and
W, = {1,2,4}. Thus, Xg = Cay [Zy, Wy] is represented in the Figure 1.1.

In [1] Dejter dealt with Cayley graphs of the form Cay [Z,, I,], where
I, is the generator set {1,2,...,k}, n is odd and k = (n - 1)/2, ie,
the complete graphs K,, edge-colored in a symmetric fashion, and studied
some induced subgraphs K, of these Cayley graphs that were called totally
multicolored (TMC) subgraphs, motivated by a question of Erdés, Pyber
and Tuza [2].

Figure 1.1

In the present paper, we deal with some properties of the X,,. In partic-
ular, besides proving that if n is even, then X, is bipartite we count the
number of different colored triangles of X,,, when = is odd.

2. Basic Properties of Unitary Cayley Graphs

We now state some properties of the Unitary Cayley graphs. The proofs
are easy and left to the reader.

Proposition 2.1. X,, is a regular graph of degree ¢(n), where ¢(n) is the
Euler ¢-function, and is a union of ¢(n) Hamilton cycles of length n, for
any positive integer n.

Proposition 2.2. X,, is isomorphic to a complete graph with n ver-

tices, if n is a prime number and isomorphic to a complete bipartite graph
K271, 20 ifn =28
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The graphs X,, for n = 2¢ are interesting from the chromatic point of
view. They are regular of degree one half of the number of vertices and the
number of edges turns out to be the square of the degree of the graph. These
graphs are a special type studied in [3]; they are chromatically unique.

Unitary Cayley graphs have different properties according to the parity
of n, as will be seen in the next proposition.

Proposition 2.3. X,, is a bipartite graph if n is an even number.

Proof: Since n is even, units of Z, must be odd. Thus, no two even labeled
vertices are adjacent. This implies that the even labeled vertices and the
odd labeled vertices form a bipartition of the vertex set. a

Corollary 2.3.1. If n is even, then X, has no odd length cycles. In
particular, X,, is triangle-free.

3. Number of Triangles in X,,

Since X, is triangle-free for n even, we will consider n to be an odd number
in this section. Let us denote by {a, b, c} a triangle in X,, with vertices a,
b and c; therefore +(b — a), +(c—b), £(a — c) are elements in U,,. Without
loss of generality we may assume that our triangles have vertices {0, 1, u},
u € Uy,. If we denote by Tp; the set of all the triangles having the common
vertices 0 and 1 i.e.,, Toy = {{0,1,u} | v € U,}, then the cardinality
|To1] = {u € Un | (v — 1) € U,}. Using elementary counting procedures it

can be proved that
|T01| = nH (1 - -—)

p/n

To count the number of triangles in X, let us consider the action of
the group G = U, x Z, on the set of triangles of X, i.e., if (v,z) € G,
then (v,z){0,1,u} = {vz,v(1 + z),v(u + z)}. Each orbit of the triangles
corresponding to the pair (v,z) may have at most six different elements
(0,1,u), (0,271,1), (1 —w)~1,0,1), (1, (u - 1)u"1,0), (u(z—1)"1,1,0) in
To1. It can happen that some orbits have exactly 3, 2 or even 1 elements.
We have |Tp1| = 3,/ dha, where hq is the number of orbits with exactly
d elements in Tp;. The orbits with d different elements have a number of

né(n dgn!_ﬁn!

triangles given by |Ohg| = —‘f}‘;) = & . Thus, if T stands for the
number of triangles of X,,, then

T = 3 halOul = hang(n) + hs™ 5 4 p, 280, 200),
d/6
T = ng(n) (hs+'; +Q+"‘) S T
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where ¢2(n) =nY_,,, (1 2) by its resemblance to the Euler ¢-function.
Note that ¢2(n) is the number of consecutive units modulo n.

Finally, if we denote by IT the number of triangles in X, that have two
sides painted with equal colors, let us call these “isosceles-color-triangles”
and denote by ET the corresponding number of triangles with their three
sides painted in different colors, called totally multicolored triangles. With
obvious meaning of “scalene-color-triangles” we obtain the following result.

Proposition 3.1. If X,, is a Unitary Cayley graph with n an odd number
then

IT=mand

— n¢(n)

(¢2(n) - 3).

Proof: Since nisodd {0,1, —1} is a isosceles color triangle; its orbit under
the group action gives all the others. It can easily be verified that d = 3.
Thus the formula for IT follows.

For the scalene-color-triangles let us observe that there is no “equilateral-

color-triangles”, i.e. triangles with its three sides painted with the same
color. Therefore, ET =T — IT. m|

Remark: Xg has 27 triangles and all of them are isosceles-color-triangles.
The first graph having scalene-color-triangles for n different from a prime
number is X5;. It has 126 isosceles-color-triangles, 84 scalene-color-triangles
and a total of 210 triangles.

The authors are grateful for the suggestions of the referee which shortened
and improved the paper and for the help given by Professor P. Berrizbeitia
and the corrections of English given by our colleague Professor T. Berry
Thanks to all of them.
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