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ABSTRACT. We provide two new upper bounds on the total
chromatic number of all hypergraphs and give two conjectures
related to both the total colouring conjecture for graphs and
the Erdds, Faber, Lovész conjecture.

1 Imntroduction

A hypergraph H is a pair (V(H), E(H)), where V(H) is a set of vertices
and E(H) is a family of non-empty subsets of V(H) called hyperedges or
just edges. H is non-trivial if E(H) (and thus V(H)) is non-empty. H
is linear if for all distinct E, E' € E(H), |[En E’'| < 1. Distinct vertices
v, v' € V(H) are adjacent if there is some hyperedge £ € E(H) with v,
v' € E. Distinct hyperedges E, E' € E(H) are adjacent if EN E’' # 0.
Vertex v € V(H) is incident with hyperedge E € E(H), and vice versa, if
veE.

The dual of H = ({v1,v2,...,9}, [E1, B2, ..., Ey]), H*, is the hyper-
graph whose vertices {e;,e2,...,em} correspond to the hyperedges of H,
and with hyperedges ’ '

V.-={e,~:v,-€EjinH} (i=l,2,...,n).

The rank of H, rank(H), is the maximum cardinality of a hyperedge in
E(H). A hyperedge of rank one is a loop. The degree of a vertex v € V(H),
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. degy(v), is the number of hyperedges containing ». The maximum degree
among vertices of H is denoted A(H). The 2-section of H, H,, is the simple
graph with vertex set V/(H) where distinct z,y € V(H) are adjacent in Hj if
and only if they are adjacent in H. The line graph of H, L(H), is the simple
graph with vertex set E(H) where distinct E, £’ € E(H) are adjacent in
L(H) if and only if E and E’ are adjacent in H. Note that L(H) = (H*)s.

A strong vertez colouring of H is a mapping C: V(H) — {1,2,...,ks}
such that every pair of adjacent vertices receives different colours. Note
that if C(z) = 4, we say that z receives colour i. For each i the set of
vertices coloured i is a strongly stable set. The smallest k, for which such a
colouring exists is the strong chromatic number x*(H). Note that a strong
vertex colouring of H defines a vertex colouring of H> and vice versa, hence
x°(H) = x(Hz2). A (hyper) edge colouring of H is a mapping C: E(H) —
{1,2,...,k.} such that every pair of adjacent hyperedges receives different
colours. For each i the set of edges coloured i form a matching. The smallest
k. for which such a colouring exists is the edge chromatic number x.(H). A
total colouring of H is a mapping C: (V(H)U E(H)) — {1,2,...,kr} such
that every pair of adjacent vertices, every pair of adjacent hyperedges and
every incident vertex and hyperedge receive different colours. The smallest
kr for which such a colouring exists is the total chromatic number xr(H).
Note that a total colouring of H defines a total colouring of H*, hence
xT(H) = xT(H*). This “self-duality” is one of the most useful properties
of total colourings of hypergraphs, which we will use repeatedly in this
paper.

The study of the total chromatic number for hypergraphs and in partic-
ular linear hypergraphs, is motivated in part by the total colouring con-
Jjecture, posed independently by Behzad (1] and Vizing [19], which we now
give. .

Total colouring Conjecture (Behzad, Vizing): Let G be a simple
graph. Then
A(G) +1 < xr(C) < AG) +2.

O

Evidence for this conjecture has been gathered in two ways, first by prov-
ing the conjecture true for a wide range of classes of graphs and secondly by
bounding the total chromatic number for all graphs. In [7], [16] results are
proven about total chromatic numbers of specific classes of hypergraphs.
In this paper we present two bounds on the total chromatic number of all
hypergraphs.

In the last section we propose two conjectures for total colouring of linear
hypergraphs which are related to the total colouring conjecture for graphs.
We show that both these conjectures are also related to the celebrated
conjecture of Erdds, Faber and Lovész.
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2 Two Bounds on xr

It is clear that
xT(H) < xe(H) + x°(H)

since we may “combine” a vertex and a hyperedge colouring to give a total
colouring. Several bounds on the total chromatic number for graphs have
been obtained by combining a vertex and an edge colouring in some non-
trivial way. See for example [10], [18]. We can obtain a non-trivial bound
on xr for all hypergraphs by fixing a strong vertex colouring and then
- applying edge colours in such a way that we reuse some vertex colours on
edges. First we need a technical lemma.

Lemma 1. Let H be a non-trivial hypergraph. Let r = rank(H). Then
' x'(H
xe(H) > X,
Proof:

X°(H) . A(Hz) +1

T

< (r—q)A(H)+l

< A(H)
< Xe(h)-
0
Theorem 1. Let H be a non-trivial hypergraph. Let r = rank(H). Then

xe(B) < xallf) + | )| 1.

Proof: Let x° = x*(H), xXe = Xe(H). Let x* = kr + 1 where 0 < I < 7.
Note that by lemma 1, x, > k. Partition V(H) into strongly stable sets
Vi, Va, ..., Vys. Partition E(H) into matchings My, My, ..., M, . We will
demonstrate a total colouring C: (V(H)UE(H)) — {1,2,..., xe+ =2+
1}. We consider two cases.

1. 1>0.
Let

Clw)=1 forveV; (i=12,...,x°)
CEY=x*+j—-k forEeM; (G=k+1,k+2,...,X)
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We will complete the colouring by colouring hyperedges in My, Ms, ...,
M, using colours 1,2,...,x°. If hyperedge E is in M; (1.< i < k)
then

X ifenV;#0foral je{(i —1)r+1,i-1)r+2,...,ir}
C(E)={j otherwise, for some je{(i —1)r+1,(i—1)r+2,...,ir},
with ENV; =0.
Thus we can see that none of these hyperedges contains a vertex of the
same colour as itself, and if two of these hyperedges intersect, they

have different colours. In particular, two hyperedges both having
colour x° cannot intersect. Thus we have a colouring of H using

r -

l -1
Xe+X* —k=xe+ x’+;£xe+lr7x’J+l

colours.

2.1=0.

The proof here is identical to case 1 except that we cannot keep
reusing colour x° to colour hyperedges in My, My, ..., M. We need
to introduce an entirely new colour for this purpose. Thus we need

-1
FX =R+l Xk T 1
. colours.

O
Using the self-dualit)} of total colourings we obtain immediately
Corollary 1. Let H be a non-trivial hypergraph. Let A = A(H). Then

xr(H) < (H) + [A - lxe(H)J +1.

O

Our second bound on the total cﬁromatic number of all hypergraphs is
obtained by using probabilistic techniques similar to those used in [14],[15].
We prove a result which is of particular interest for hypergraphs of large
rank.

Theorem 2. Let H be a hypergraph. Let A = A(H ) > 2, r =rank(H).
Let k be an integer, with
k!

(A-1*1(A+k-1)

> |{E € E(H): |E| 2 k}|.
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Then
xr(H) < max{x’(H), xe(H)} + (k —2)A + 1.

Proof: Let ¢ = max{x*(H),x.(H)}. We define a (possibly improper)
colouring C: (V(H)UE(H)) — {1,2,...,q}. First colour vertices properly
using colours {1,2,...,q}. Then colour hyperedges properly using the same
set of colours. Choose a random permutation 7 from the probability space
consisting of the ¢! permutations on g elements, where each permutation
occurs with probability ;‘;. Permute the hyperedge colour classes according
to w. We say that a vertex is “bad” if for some F € E(H) with v € E,
C(v) = n(C(E)). We show that with non-zero probability, each hyperedge
of H contains at most k — 1 bad vertices. Hence there exists some permu-
tation #* such that when we permute edge colour classes according to n™*,
each hyperedge contains at most k — 1 bad vertices. Now consider the sub-
graph G- of H; induced on these bad vertices. Then A(Gx+) < (k —2)A.
Hence we can recolour these vertices greedily using (k—2)A +1 new colours
to complete the proof.

Thus it remains only to show that each hyperedge of H contains at most
k—1 bad vertices with non-zero probability. If 7 < k then this is clearly true
with probability 1. So assume r > k and consider a hyperedge E € E(H)
with |E| > k. Let W = {(E1,v1), (E2,v2),...,(Ek,vk)} where the E;s are
distinct hyperedges which receive distinct colours under C, and the v;s are
distinct vertices in E such that v; € ENE; for i = 1,2,...,k. Note that
we may have E; = E for some i. Let Wg be the set of all such W. Let
A(W) be the event “for all (E;,v;) € W, n(C(E;)) = C(v:)”. So if A(W)
happens, then all of vy, vs,...,v; are badly coloured. Then for fixed W

11 1 (g - k)!

PAW) = =1 k1=

We also have
[WEe| < (Z)(A -1k 4+ (k i 1) (A — 1)1
< (,:) (A -1 (A+k-1).

Now if some k vertices from E are bad, then for some W € Wg, A(W)
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must occur. We have

P(k or more vertices of E are badly coloured)
< P(for some W, A(W) occurs)
< E(number of W for which A(W) occurs)

—k)!
= wpld= Rt . )

< (Z) (A= 1)1 A+ k- 1)(’":—!”!

_(A-DFNA+E-1)
= k!

So

P(for some hyperedge F' € E(H), F has k or more bad vertices)
< E(number of hyperedges with k or more bad vertices)
' A-1DFYA+k-1
< (B e B(H): |B| > kBB E 1

<1

O

Using self-duality of total colourings we obtain a corollary which is of
particular interest for hypergraphs of large maximum degree.

Corollary 2. Let H be a hypergraph. Let r = rank(H) > 2. Let k be an

integer, with ‘
Kl

(r=1k1(r+k-1)

> |{v e V(H): degy(v) 2 k}|.

Then
x7(H) < max{x’(H), xe(H)} + (k- 2)r + 1.
]

This tells us, for example, using the result of [5], that a cyclic Steiner
triple system on 501 vertices has total chromatic number at most 526.
Applying corollary 2 to the case of multigraphs, we obtain

Corollary 3. Let G be a multigraph, with more than one edge, which may
have loops. Let k be an integer, with

%1- > |{ve V(H): degy(v) > k}|.

Then
xT(H) < xe(H) + 2k - 3.
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This tells us, for example, that for multigraphs with less than 630 ver-
tices of degree more than 6, the total chromatic number is bounded by the
maximum degree plus 12.

3 The Total Colouring Conjecture for Hypergraphs

The study of the total chromatic number for graphs was motivated largely
by the total colouring conjecture posed independently by Behzad and Viz-
ing. It seems only natural that we should attempt to find a related con-
jecture for hypergraphs, at least for hypergraphs with the “graph like”
property of linearity, especially given the numerous conjectures which gen-
eralize Vizing’s theorem to linear hypergraphs (see [12]). We will first give
a conjecture which is substantially weaker than the total colouring conjec-
ture, but which is of independent interest since it is a corollary of the Erdds,
Faber, Lovdsz conjecture. First we need a proposition relating strong vertex
and total colouring numbers of linear hypergraphs.

Proposition 1. Let H be a linear hypergraph on n vertices with A(H) < -
n. Then there exists an (n + 1)-uniform linear hypergraph H' with (n+1)
hyperedges, such that xr(H) < x*(H’).

Proof: By adding loops to H if necessary, we may obtain an n-regular
linear hypergraph H, on n vertices. The dual H}, of H, is then an n-
uniform linear hypergraph on n hyperedges. Add n extra vertices of degree
1 to H}, one to each hyperedge. Thén add a hyperedge containing all
of the added vertices, plus one new vertex, to form H’. Then H’ is an
(n + 1)-uniform linear hypergraph on (n + 1) hyperedges. Given a strong
vertex colouring of H' we may obtain a total colouring of H,} and thus H.
Colour each vertex of H,. using the colour of the corresponding vertex of
H’. Colour each hyperedge of H;; using the colour of the vertex which was
added to that hyperedge in the construction of H’. a

Using proposition 1 and the Erdds, Faber, Lovész conjecture we obtain a
corresponding conjecture for total colouring of hypergraphs. First we give
the

Erdés, Faber, Lovasz conjecture: Let H be an n-uniform linear hyper-
graph on n hyperedges. Then x*(H) < n. O

This is a slight restatement of the original conjecture, which was given
for graphs. Erdés offers $500 for its resolution. We can now give a total
colouring conjecture for hypergraphs.

Conjecture 1: Let H be a linear hypergraph on n vertices, with A(H) <
n. Then
xr(H) <n+1
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Using Proposition 1 we can see that the Erdds, Faber, Lovész conjecture
implies this total colouring conjecture. The conjecture is true for hyper-
graphs with at most 10 vertices, by a result of Hindman (see [11]). Using
Proposition 1 and partial results on the Erdds, Faber, Lovész conjecture,
we can obtain additional partial results for Conjecture 1. Let H be a linear
hypergraph on n vertices, with A(H) < n.

Proposition 2.
xT(H) < n+o(n).

Proof: This uses the result of [13] that x.(H) < n + o(n). a

Proposition 3.

xr(H) < Bn-— %-‘ .

Proof: This uses the result of [3] that x.(H) < [3n - 2]. o

If rank(H) = 2, i.e. H is a multigraph, then Conjecture 1 is trivially
true. In this case Vizing’s theorem gives a much stronger result for the edge
chromatic number. This has prompted several authors, including Meyniel,
Berge [2] and Fiiredi [9] to conjecture the following strengthening of Vizing’s
theorem.

Hyperedge Colouring Conjecture Let H be a linear hypergraph with-
out loops, then
Xe(H) < A(Hp) +1.

O

We propose an analogous conjecture for total colouring of linear hyper-
graphs.
Conjecture 2: Let H be a linear hypergraph without loops or vertices of
degree one, then

xr(H) < min{A(Hz2), A(L(H))} + 2.

0

Computer search has shown that Conjecture 2 is true for all hypergraphs
on at most 8 hyperedges, or equivalently all hypergraphs on at most 8
vertices. This conjecture has the obvious advantage over Conjecture 1 that
it implies the total colour conjecture for graphs. However, evidence for the
Hyperedge Colouring Conjecture is scarce, and Conjecture 2 seems even
more difficult. For example, whereas the Hyperedge Colouring Conjecture
is known to be true for intersecting hypergraphs, the problem of deciding
whether Conjecture 2 is true in this case contains several difficult problems,
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most notably that of bounding the block-chromatic number of a Steiner 2-
design, since the hypergraph dual of a Steiner 2-design is an intersecting
linear hypergraph. The complexity of the problem of determining the block-
chromatic number of a Steiner 2-design is unknown, although it appears to
be difficult. No bounds which approach those which would be given by
conjectures 1 and 2 are known for general Steiner 2-designs. See [17] for
further discussion of block colourings.
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