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ABSTRACT. A tournament design, TD(n, ¢), is a c-row array of
the ('2‘) pairs of elements from a n-set such that every element
appears at most once in each column and there are no empty
cells. An interval balanced tournament design, IBTD(n, ¢), sat-
isfies the added condition that the appearances of each element
are equitably distributed amongst the columns of the design.
We settle the existence question for all IBTD(n, ¢)s by show-
ing that they can be constructed for all admissible parameters
and discuss the application of IBTDs to scheduling round robin
tournaments fairly with respect to the amount of rest allocated
to each participant.

1 Introduction

A round robin tournament, RRT, consists of rounds of matches between a
set of teams on a collection of courts such that

o the rounds are played one at a time
e every pair of teams meets in exactly one match during the tournament

e each court is used in every round

Let V be a set of n elements, n > 2, and c¢ a positive integer. We define
a tournament design, TD(n,c), to be a c-row array of the (3) distinct
unordered pairs of elements from V such that every element of V' appears
at most once in each column. It should be noted that this definition of
a tournament design generalizes one that has previously appeared in the
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literature [11]. By letting the rows and columns correspond to the courts
and rounds respectively, a TD(n, c) provides a schedule for a RRT amongst
n teams on ¢ courts. A TD(9,2) is shown in Figure 1.

15948593419¢6349¢673
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4 8373417834 7873184

Figure 1. TD(9,2)

Let ¢t be the number of columns in a tournament design. Then the nec-
essary conditions for the existence of a TD(n, c) are

ot = ('2‘) | )

n

1ge< |3 @)

A proper edge k-coloring of a graph G is an assignment of k colors to the
edges of G so that no two adjacent edges receive the same color. The edge
chromatic indez of G, X', is defined to be the minimum number of colors
required to properly edge color G. A proper edge coloring is called balanced
if the number of edges of color class i differs from that in color class j by
at most 1 for any i and j. A TD(n, c) will thus be equivalent to a balanced
t-coloring of K. In their study of edge-colorings with each color class a
prescribed size, Folkman and Fulkerson proved the following result.

Theorem 1.1 (Folkman and Fulkerson [3]). Let G be a graph with
edge chromatic index x'. Then there exists a balanced k-coloring of G for
allk>x'.

An immediate consequence is an existence theorem for tournament de-
signs.
Theorem 1.2. The necessary conditions (1) and (2) are sufficient for the
existence of a TD(n,c).

When conducting a tournament it is natural to try to eliminate any
biases that may arise as a result of scheduling. Many different sources of
bias may be present in RRTs and much work has been done to provide
schedules which avoid these biases [4, 6, 7, 8, 10, 11]. In this paper we will
completely solve the problem of ensuring that the RRT schedule is fair with
respect to the rest intervals each team receives between matches.
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Suppose that during the course of the RRT, the amount of rest a team
receives between its matches can affect the outcome of the tournament. For
example, if team A plays all its matches in consecutive rounds while team
B receives a generous rest break between each of its matches, then the
tournament schedule may be biased towards team B. Similarly, too much
rest may be detrimental to a teams’ success. In this paper we will investigate
a class of TD that will provide us with a “rest-balanced” schedule for a RRT.
We will call these designs interval-balanced tournament designs, IBTD. In
the following sections we will lead up to a method of precisely quantifying
the notion of equitably balancing rest intervals and hence a definition for
IBTDs.

2 Orme Court

The previously studied statistical rating technique known as the method

- of paired comparisons is equivalent to scheduling RRTs with one available
court. In this scenario, the (3) pairs are presented one at a time to a judge

 who must choose between the members in each pair. Due to the sometime
subjective nature of the process, the order in which the pairs are presented
becomes a factor. The reasoning is that if z is chosen (rejected) at some
stage and then z appears again as a member of a subsequent pair there will
be a bias by the judge to choose (reject) = again.

Fechner introduced the method of paired comparisons in 1860 and in 1871
suggested that the pairs be selected randomly to avoid the above problem
[1, 2]. A better way to eliminate this bias, as shown by Kowalewski in
1904, is to maximize the minimum number of pairs occurring between any
two appearances of each element [5]. By counting the number of elements
separating two appearances of a given element this maximized minimum
can be seen to be at most |252|. When this maximum is achieved for
a paired comparison amongst n elements, the design is said to be a pair
design, PD(n). A PD(5) is shown in Figure 2, where the pairs are displayed

" in a space-saving vertical notation. Kowalewski constructed, by trial and
error, pair designs for n = 5, 7, 15. In 1934, Ross gave a heuristic for
constructing pair designs that works for general n [9], yet a proof of this
fact was not provided until 1975, when Simmons and Davis settled the
existence question for pair designs.

3 5 2 4
4 13 1

1 415 3 2
2 53 2 5 4

Figure 2. PD(5)

Theorem 2.1 (Simmons and Davis [12]). For all positive integers
n > 2 there exists a PD(n).
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Simmons and Davis provide a constructive proof. We give here their
construction as we will need to refer to it in section 3. For n odd, the first
n pairs are defined to be the sequence:

e R R e )

The pair design is then given by

Qny PQn, P2Qu, ... PLQn (3)

where P is the permutation (1) (357 ---n—4n—-2nn—-1n-3 ---642)
and L = 252, The case of n even is similar with

TR

L=n-2and P=(1) (357 ---n-3n—-1nn-2n-4---642).

3 Multiple Courts

In this section the notion of balancing intervals will be extended to multi-
ple courts. We will approach the problem from two separate directions. In
section 3.1 we will generalize the ideas of section 2 and maximize the mini-
mum number of columns between any two consecutive appearances of each
element. Then in section 3.2 we will look at the complimentary problem of
minimizing the maximum number of columns between any two consecutive
appearances of each element.

3.1 Lower Interval Balance

Let T be a TD(n, c) and let v be one of the n elements. Define Rr(v) to be
the minimum number of columns separating any two consecutive appear-
ances of v in T'. Define the lower separation of T to be L = min, Rr(v).
Finally, define the function L.(n) = maxr Ly. Our goal, will be to find
TD(n, c)s which maximize L¢(n). If we consider the application to schedul-
ing RRTs then this class of tournament designs will correspond to a bal-
ancing of the rest intervals by requiring that no team rests less than Lc(n)
rounds between any two of its matches and furthermore that this bound is
maximized so that as much rest as possible is allocated to all teams. The
next lemma gives an upper bound on the maximum lower separation of a
TD(n, ¢).

Lemma 3.1.

max(0, 3 —2) ifn=0 mod 2¢
2] -1 otherwise

Le (n) < {
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Proof: Let T be a TD(n,c) with underlying set V' and ¢ columns. We
know from (2) that n > 2¢. Furthermore, we may assume that n > 4c since
otherwise the maximum lower separation is 0. Let w € V and suppose
that L achieves its minimum at w, so that L+ = Rr(w). Then Lr is

given by the number of columns separating some two appearances of w.
" Suppose that these two appearances are in cell (c;, s) with element z and
cell (cz,s + Lt + 1) with element y respectively. T is shown in Figure 3,
where d = L.

d

P

1

B

fe &

Figure 3. Two appearances of the element w in a TD(n, c)

Let E={vecells (i,j): 1 <i < ¢,8<j< s+ Lr}. By the definition
of Ly, E contains no repeated elements. Counting elements in E we have

2¢(Lr+1)<n
n
<|=|-=
Ir< |.2cJ 1 )
Let n =0 mod 2c and suppose that equality holds in (4). Note that this is

equivalent to [E| =n. For 1 < j <tlet E; = {v € cells (3,5): 1 <i < ¢}
Consider an arbitrary column s. Using the definition of Lz, we have the

following three identities
s+Lr
E, n U E;|=0

j=s+1
s+ Lt
U Ej|=2¢Lr=n-2c
j=8+1
s+Lt
Ea+L'r+l ﬂ U Ej =0
j=6+1
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Since s was arbitrary, it follows that
E;j = EjyLr+1 for1<j<t-(Lr+1)

and E;[Ey =@ when j' #j +i(Lr+1), i€Z

Thus any element in column j will never be paired with an element outside
E; and T is not a TD(n, c). Therefore whenn =0 mod 2c¢ equality cannot
hold in (4). Since this argument has been concerned with an arbitrary
TD(n,c), (4) holds when Ly is replaced with Le(n). D

Define a lower interval-balanced tournament design, LIBTD(n,c), to be
a TD(n,c) that achieves the maximum lower separation given by equality
in Lemma 3.1. Note that a PD(n) is equivalent to a LIBTD(n, 1).

Theorem 3.1. For all positive integers n and c satisfying the necessary
conditions (1) and (2) there exists a LIBTD(n, c).

Proof: We know from the results on one court that for all positive inte-
gers n, :

Ly(n) = ["—;—3J 5)

given that we use the sequence of pairs given in (3).

Construct T, a TD(n, c), using an LIBTD(n, 1) as follows. Place the pairs
of (3), in order, in the cells of a ¢ x ﬂ%—:ﬁ array. Starting with cell (1,1),
fill the first column, then starting with cell (1,2), fill the second column,
etc. Let Figure 3 be the newly constructed TD(n, c) with two consecutive
appearances of the element w in cells (c;, ) and (cz, s+d+ 1) respectively.

Define C to be the set of cells which originally separated these two ap-
pearances of w in the LIBTD(n, 1), that is, the set of cells in the d columns
together with the ¢ — c; cells following the cell containing [¥] in column s
and the cz — 1 cells preceding the cell containing [}] in columns s +d +1.
Then |C| = (c—¢c;)+dc+(c—1) and from (5), we have |C| > | 252]. Since
1 < ¢, ca < ¢, we get a bound for d, and thus a lower bound for Lc(n)
since we have considered an arbitrary pair of consecutive appearances of an
arbitrary element.

Lo(n) 2d > [ [25) = e l)] (6)

c

Considering the two cases n =0 mod 2c and n # 0 mod 2c separately
we will show that the upper bound and lower bound for L.(n), given by
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Lemma 3.1 and (6) respectively, coincide. Let n =0 mod 2c, say n = 2fc.

Then )
[[Z%J —2(c—1)] n
Le(n) > | - =ﬂ—2=2—c—2

c

" Now let n 0 mod 2c, say n = 2fc+ € with 0 < £ < 2c. If £ is even, say
2m, we have

m n-1
> —_ —_— ] =-1=|— -
Lc(n)_[ﬂ 2+ c] g-1 l 5 j 1 )
If £ is odd, say 2m — 1, we again have (7) since m = &1 < c+ 3. m]

Figure 1 demonstrates the construction of Theorem 3.1 for (n,c) = (9, 2).
The separation is 1.

3.2 Upper Interval Balance

Let T be a TD(n,c) and let v be one of the n elements. Take Rr(v) as
before. Define the upper separation of T to be Ur = max, Rr(v). Fi-
nally, define the function U,(n) = miny Ur. This time we want be to
find TD(n, ¢)s which minimize U,(n). Again considering the application to
scheduling RRTs, this class of tournament designs will correspond to a bal-
ancing of the rest intervals by requiring that no team rests more than Uc(n)
rounds between any two of its matches and furthermore that this bound is
minimized so that as little rest as possible is allocated to all teams.

Before we determine a lower bound for the minimum upper separation
of a tournament design, we will need the following lemma. We will call
a column deficient in an element if that element does not appear in the
column.

Lemma 38.2. If U(n) < || then every sequence of || consecutive
columns will be deficient in some element. Furthermore, the deficient ele-
ment cannot appear in columns residing on both sides of this sequence.

Proof: Let n # 0 mod 2c and let A be a sequence of || consecutive
columns in some TD. Clearly, some element, say v, does not appear in A.
Suppose v appears in columns both to the left and right of A. Then the
number of columns separating these two appearances of v is at least [—2’%]
and this contradicts the bound on Uc(n).

Now supposen =0 mod 2c and A consists of columns i through i+3-—1.
If every element appears exactly once in A then the upper bound on U,(n)
would force column j+k(4%) to contain exactly the same set of elements as
column j, where i < j <  — 1 and k is chosen such that 1 <jxk(3) <
ﬂ%. But then we do not have a TD since not all the required pairs
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appear. So A is deficient in some element. Further if the deficient element
appears in columns to the left and right of A then the bound on U,(n) is
again contradicted. [m]

Lemma 3.3. U.(n) > 2]

Proof: Let T be a TD(n, c) with underlying set V' and let w € V. Suppose
to the contrary that Ug(n) < | 2]

For 1 < i < n, let A; represent the set of consecutive columns given by
column (i —1) | & +1 through column i | |. Consider An_;. By Lemma
3.2 some element is deficient in A,_;. Wlog let this element be 1. Again
by Lemma 3.2, element 1 can appear in T only in columns to one side of
An—1. The way we have partitioned the column set of T' guarantees that
at least half of the total columns lie to the left of A,—1. So we may assume
wlog that 1 appears only to the left of A,_1. Thus the first 1, as seen from
the right, appears in some Aj, 1 < j < n —2, and 1 does not appear in
A; for i > j. Since 1 appears in Aj;, by the lemma we have some other
element, say 2, missing from A;j. By the lemma, element 2 must appear
to one side of A; and the left side is forced if the pair (1,2) is to appear
in T. Thus element 2, as seen from the right, first appears in some Ay,
1 <k <n-—3, and 2 does not appear in A; for i > k. Now the pair (1,2)
must appear somewhere to the left of Agy;. In particular, then by the
lemma we must have a 1 in Ax. So some element other than 1 and 2 will
not appear in A, say 3. By the lemma, element 3 must appear to one side
of Ay and the left side is forced if the pair (2,3) is to appear in T'. Suppose
element 3 first appears in Ay, 1 < € < n—4 and 3 does not appear in A;
for i > €. Now both pairs (1,3) and (2,3) must appear somewhere to the
left of Agy. Thus, by Lemma 3.2 we must have the elements 1 and 2 in
Aq¢. So some other element, say 4, is missing from A,. Continuing to apply
this argument, in turn, to each element of T' we get that the nth element
will not appear in any A;. a

Define an upper interval-balanced tournament design, UIBTD(n, c), to be
a TD(n, c) that achieves the minimum upper separation given by equality
in Lemma 3.3. Note that a TD(n,1) given by (3) has minimum upper
separation | 3| and therefore is a UIBTD(n, 1).

Theorem 3.2. For all positive integers n and c satisfying the necessary
conditions (1) and (2) there exists a UIBTD(n,c).

Proof: The construction of the desired UIBTD(n, c) is identical to Theo-
rem 3.1. Let w, C, and d be defined as in Theorem 3.1. It can be verified
thatd < | 2] O

It is interesting that the same construction leads to examples of both
LIBTDs and UIBTDs. This motivates the following definition. Define an
IBTD(n, c) to be a TD(n,c) that is simultaneously a LIBTD(n,c) and a
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UIBTD(n,c). Defining IBTDs in this way guarantees an equitable dis-
tribution of the elements throughout the columns. In the application to
scheduling RRTs, the number of rounds any team will rest between two
consecutive matches will be restricted to either [i’lc_l or I_%J —1, or in the
case of n = 0 mod 2¢, possibly max(0, 3+ — 2). Using the construction of
Theorem 3.1 and putting all our results together we have

Theorem 3.3. For all n and c satisfying the necessary conditions (1) and
(2) there exists a IBTD(n,c).

Figure 1 is an example of a IBTD(9, 2).

4 Concluding Remarks

We have shown that interval-balanced tournament designs exist for all ad-
missible parameters. We will conclude by demonstrating that the construc-
tion of Theorem 3.1 can be used to provide an alternate proof of Theorem
1.2. ‘

Proof of Theorem 1.2: In the proof of Theorem 3.1 a TD(n,c) was
constructed using a IBTD(n,1). Since the only requirement is that the
number of pairs in a column not exceed the separation by more than 1,
it is only necessary for ¢ < [25!| to make use of that construction. The
remaining case to be handled separately is when n = 2c and this is the
one-factorization of Ko,. (m|

Finally, we observe that although all the examples of LIBTDs we have
presented are also UIBTDs and vice versa, this is not always the case.
Figure 4 provides an example of a UIBTD(5, 1) that is not a LIBTD(5, 1).
On the other hand, it can be shown that if T is a LIBTD(n, 1) then T must
also be a UIBTD(n, 1).

1123125454
23454313275

Figure 4. UIBTD(5,1)
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