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Abstract

Two algorithms to compute monotone stabbers for convex poly-
gons are presented. More precisely, given a set of m convex polygons
with n vertices in total we want to stab the polygons with an z-
monotone polygonal chain such that each polygon is entered at its
leftmost point and exited at its rightmost point. Since such a stab-
ber does not exist in general, we study two related problems. The
first problem requests a monotone stabber that stabs as many convex
polygons as possible. The second problem is to compute the minimal
number of z-monotone stabbers that are necessary to stab all given
convex polygons. We present optimal O(m log m -+ n) algorithms for
both problems.

KEYWORDS: Posets, Algorithms, Computational Geometry.

1 Introduction

Given a set of m objects, an object that intersects each of them is said to
be a stabber or a traversal of the set. There have been many variations of
the problem depending on the types of objects, as well as on the form of
the answer [5]. In particular, the problem of stabbing convex polygons by
monotone chains has important applications in robotics [1, 4]. Since a sin-
gle stabber may not exist, we may be required to find a stabber that stabs
the maximum number of objects or a minimum set of stabbers. Recently,
an algorithm that requires O(n2%) time for computing a minimum cardi-
nality set of disjoint z-axis monotone chains stabbing a set of m convex
polygons, with n vertices in total, has been developed [3]. An algorithmn
that requires O(n?logn) time for finding an z-axis monotone chain that
stabs the maximum number of convex polygons is given as well [3]. The
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monotone chains must be disjoint since they correspond to trajectories of
robotic agents [1].

We consider these two problems and provide optimal algorithms for their
solution. Section 2 provides the definitions required for further sections. In
Section 4 we present an algorithm that requires ©(n + mlogm) time and
linear space for finding a monotone chain that stabs a maximum number of
convex polygons from a given set. In Section 5 we provide an algorithm that
requires @(n+mlogm) time and linear space for finding 2 minimumstabber
set. Our approach is based on a reduction of the problem to the problem of
stabbing horizontal segments by z-axis monotone chains that is presented
in Section 3. The algorithms in [3] can be used to compute stabbing paths.
In Section 6 we also study the two variants of the problem for stabbing
paths and we provide O(n logm) time and linear space algorithms for both
of them. Again, this improves the previous bound by at least a linear factor.
Finally, in Section 7 we give some final remarks.

2 Definitions and a lower bound

Let ¢1,9s2, - .., ¢k be a set of points in the plane defining a polygonal path or
a chain. A chain is called monotone with respect to line [ if any line orthog-
onal to { intersects the chain in a connected set. A monotone chain with
respect to the z-axis is said to be z-azis monotlone or simply z-monotone.

Consider a two dimensional scene consisting of m disjoint convex poly-
gons Py, Ps, ..., Pp. Let n be the total number of edges in all polygons from
the scene, i.e., n is the size of the scene. A convex polygon P; is stabbed by
an z-monotone chain C, if C enters the polygon P; at the leftmost point
pr and departs from it at the rightmost point pr. We want to solve the
Stabber Cover Problem (SCP), that is, we want to compute a minimum
set of disjoint z-monotone chains that stab all polygons and such that no
polygon is stabbed by more than one chain. It is not always possible to
solve SCP with only one stabber; however, we are also interested in the
Mazimum Stabber Problem (MSP), that is, we want to find an z-monotone
chain that stabs a maximal number of polygons.

A simple reduction from sorting provides a lower bound of Q(mlogm)
for solving SCP or MSP. The transformation that requires linear time can
be described as follows. Let X = {1, 3,...,Zm) be an instance of sorting.
In linear time, we construct m small enough squares around the points
(zi,t), for ¢ = 1,...,m. Then, a solution to SCP will result in one z-
monotone chain such that, tracing the chain will require linear time and
will return the z; in sorted order. An adversary argument gives a lower
bound of Q(n), and combining these bounds we obtain a lower bound of
Q(n 4+ mlog m) operations.
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3 Stabbing horizontal segments

In this section we show that MSP and SCP for convex polygons have equiv-
alent respective problems for horizontal segments. A preliminary version of
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Figure 1: Computing the ranks of the line segments in S and the
horizontal line segments in A(S).

this paper describing the results of this and the following two sections was
presented at ICCI-95 [2].

The reduction we present proceeds in two steps. First we show that
the two stabber problems under consideration can be reduced to respective
problems on line segments. Then, we show that the problems under study
for a set of line segments are equivalent for a set of horizontal line segments.

First, we observe that it suffices to consider the set S of line segments
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that connect the left and right endpoints of the convex polygons. More
precisely, consider a scene of size n with m polygons P, ..., Py. In O(n)
time we can find the left-most vertex p;, = (xj,y;) and the right-most
vertex pj, = (z},v}) for each polygon P;, j = 1,...,m. Let s; be the
line segment that connects p;, to pj,. An z-monotone chain C' stabs a
maximum number of polygons if and only if C stabs a maximum number
of segments in S (where a segment pppg is stabbed by C' when it is part
of C). A set of disjoint monotone stabbers that traverses each P; from the
left-most to the right-most point stabs each line segment s; and vice versa.

We now reduce MSP and SCP for S to equivalent problems for hori-
zontal segments. We say line segment s € S is below a line segment s’ if
there is a vertical line {, that intersects both s and s’ and the intersection
point of /, and s is below the intersection point of I, and s’. The below
relation induces a partial order <peton On the line segments. The partial
order =<petow Of S can be easily computed by a vertical plane sweep that
needs O(mlogm) time and O(m) space {7, Remark 1, page 69)].

We extend the partial order <perow to a total order that is consistent
with <perow and compute (with topological sorting in O(m) time) the po-
sition of each segment s; in this total order, that is, we compute the rank
r; of each segment s; in this total order. For j = 1,...,m, we replace cach
line segment s; with an horizontal line segment h(s;) such that:

¢ The z-coordinate of the left-most vertex of s; is x;, and this is also
the z-coordinate of the left-most vertex of h(s;).

e The z-coordinate of the right-most vertex of s; is 27, and this is also
the z-coordinate of the right-most vertex of A(s;).

o For all vertical lines {,, s; intersects I, below s; if and only if £(s;)
intersects [, below A(s;s). This can be achieved by setting the y-
coordinate of h(s;) to r;.

For illustration refer to Figures 1 (a)-(c). We now establish the equivalence
of MSP and SCP for S and the transformed set h(S).

Lemma 3.1 For all 5i,5; € S, 8i Zpetow 5;j if and only if h(si) Zpetow

h(Sj).

Proof: If s; <setow Sj, since the y-coordinates of A(s;) and h(s;) are chosen
as the ranks of s; and s; and r; < r;, we have h(s;) is below h(s;). To
prove necessity, observe that, if A(s;) <peiow n(5j). then there is a vertical
line that intersects h(s;) and h(s;) but the intersection point with h(s;) is
below the intersection point eith A(s;). Since the y-coordinates of the h(s;)
is the rank r;, we have r; < rj. But then, s; <ieton ;- m]
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Figure 2: A set of z-monotone chains that covers a set S of line seg-
ments.

Lemma 3.2 There is a set Cy,...,Cy of disjoint z-monotone chains that
covers sy,...,Sm if and only if there is a set of disjoint x-monotone chains
Ci,...,C} that covers h(s1),...,h(sm). C1,...,C} can be chosen in such

a way that C; covers s; if and only if C} covers h(s;).

Proof: Let Cy,...,Ci be a set of disjoint z-monotone chains that covers
S1,...,8m; see Figure 2. It is easy to see that we can extend each of the

Figure 3: Extending each monotone chain to infinity.

chains C; to infinity in such a way that each chain remains 2-monotone and
none of the chains intersect each other; see Figure 3. If [, is a vertical line,
then I, intersects all the chains independently of its location and the order of
the occurrence of the intersection points induces a total order on the chains.
This order is the same for all vertical lines since the chains do not intersect
one another. We assume that the chains are numbered in order from top to
bottom. If a segment s; belongs to chains Cy, then s; is a maximal element
(there is no other segment above it). Since the rank r; of each horizontal
line segment h(s;) is consistent with the below relation and the z-interval
is the same as that of s;, h(s;) is also a maximal element of the poset
(R(S), Zbetow ). Hence, if Cy consists of the line segments s;,, .. -1 8i,, then
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we can choose C] to contain the horizontal line segments h(s;, ), ..., h(si,);
see Figure 4 (a) and (b).
Remove from S the line segments s;,,...,s;, stabbed by C; and re-
move from h(S) the horizontal line segments h(s;,), ..., h(s;,) stabbed by
1, then, by Lemma 3.1, we can recursively apply the construction to

Cs,...,Cr and S — {s;,,...,8i,} to establish a correspondence between
5 -+, CL and A(S) — {h(si,),..., h(s;,)}. D
h(S)
(2)
h(S) Ci
o g
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Figure 4: The set h(S) and the corresponding chains Cf,...,C{ for
h(S).

4 The stabber of most polygons

In this section we provide an algorithm that requires O(n + mlogm) time
and O(n) space for finding the z-monotone chain that stabs the maximum
number of polygons. During the first step of our algorithm we apply the
transformation of Section 3 and, in O(mlogm) time, we transform the
Maximum Stabber Problem (MSP) to the equivalent problem for horizontal
segments. By Lemma 3.2 we can easily see that, by finding a maximal -
monotone stabber for the horizontal line segments, we obtain a maximal
monotone stabber for the original polygons and vice versa.

In order to compute the maximal stabber for the horizontal line seg-
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Figure 5: A plane-sweep with a vertical line I, records the intersection
points with horizontal segments and the intervals in [, between inter-
secting horizontal segments. For an interval £, we register a z-monotone
chain that stabs the most horizontal segments and ends at ¢.

ments we perform a plane-sweep from left to right with a vertical line I,
where the event points are determined by the leftmost and rightmost vertex
of the horizontal segments. The line I, is subdivided into vertical segments
by the intersection points with the horizontal line segments. The dictionary
data structure representing l, stores two types of objects. The first type of
objects are vertical segments ¢ over I, defined by two consecutive horizontal
segments h(s;) and h(s;s) intersecting I,. The second type of objects are
the horizontal segments h(s;) intersecting l,. Objects in I, are ordered by
y-coordinate. For each object b in I, a pointer to the last horizontal seg-
ment h(s;) of the longest z-monotone chain C that can reach b is stored in
l,; see Figure 5. Also, for each object b, the length of the chain C is stored.
The pointers and the temporary lengths are updated as I, advances.

Each time [, meets a horizontal segment h(s;~) between segments h(s;)
and h(s;/), the segment ¢ between h(s;) and h(s;/) is divided into two new
segments:

o the segment t’ between h(s;) and h(sj~), and

o the segment t” between h(sj~) and h(s;j:); refer to Figure 6 (a).

The segments ¢’ and t” can be reached by an z-monotone chain of the
same length as the one for t. However, the segment h(s;j~) defines now a
z-monotone chain one element larger that the longest chain C that reached
t. The pointer of h(sj~) is set to the last segment of C, but the length
of the chain associated with the object h(s;~) is one more than the length
associated with ¢. The dictionary data structure is updated, object ¢ is
deleted and objects ¢/, ¢’ and h(s;j~) are inserted.

Each time I, leaves a horizontal segment h(s;~) between two horizontal
segments h(s;) and h(s;), the segments ¢’ and t” become a single segment ¢
determined by the intersection of I, with h(s;) and h(s;/); see Figures 6 (b).
In this case, the horizontal segment h(s;~) is deleted from I, as well as ¢’
and t”. The new segment ¢ is inserted in !,. The pointer at ¢ to the last
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Figure 6: A plane-sweep with a vertical line l,. In case (a) a new
horizontal segment is found. In case (b) a horizontal segments leaves.

segment of the longest z-monotone chain ending at ¢ is the pointer of the
longest of the chains that reach t', t and A(s;»). The length of the chain
ending at ¢ is the maximum of the lengths of the chains ending at ¢, t’ and
h(sj").

The line I, is implemented as a dictionary data structure that takes
O(logm) time for an update and stores the horizontal line segments that

intersect I, in the order of their y-coordinate. We obtained the following
result.

Theorem 4.1 MSP can be solved optimally in O(n 4+ mlogm) time by
reducing il to compuling a Mazimum Stabber for horizonlal segments.

5 The stabber cover problem

In this section we show that SCP is equivalent to the Minimal Slot Assign-
ment Problem [6]. The Minimal Slot-Assignment-Problem (MSAP) for a
set of horizontal line segments in the plane can be stated as follows:

Given a set of m non-overlapping horizontal line segments in
the plane find the smallest integer s which satisfies the condition
that the segments can be assigned slot numbers in the range
[1, 5] such that the total order of line segments at each vertical
sweep line position equals the total order given by their slot
number assignments.

MSAP can be solved in optimal O(mlogm) and O(m) space [6]. An
intuitive description of the algorithm that solves MSAP is as follows. As-
sume snow is falling vertically down on the line segments from above. Some
line segments (for example, h(s;), h(ss) and h(s12) in Figure 1 (c) and Fig-
ure 4 (a)) are completely covered with snow, while the other segments are
either partially covered or completely clean (snow on horizontal segments
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does not slide horizontally). The completely covered segments are assigned
slot number 1 and are removed. The process is now repeated for slot num-
ber 2, and so on until all segments have been assigned slot numbers. The
algorithm consists of a bottom-to-top sweep of the horizontal line segments.
The horizontal sweep line stores the assigned slot numbers of the most re-
cent line segments it has met. The sweep line is assigned slot number 0
initially, and when a line segment is met, the slot number assigned to it is
one plus the maximum slot number of the line segment it covers. Again,
a dictionary data structure represents the horizontal seep line as it moves
up in the scene and the line segments are stored by the order of their z-
coordinate. An incoming line segment is treated as a range query with
deletion. The range query determines all line segments it covers completely
together with the, at most, two line segments it partially covers. All com-
pletely covered intervals are deleted, the maximum of their slot numbers
being noted. The, at most, two segments partially covered are shrunk, that
is either a left endpoint moves further right or a right endpoint further left.
The maximum of all effected line segments is known and this value plus
one is the slot number of the new line segment which is now inserted.
We reduce SCP for convex polygons to MSAP in two steps. First we use
the reduction in Section 3 to reduce SCP on convex polygons to SCP on a
“set of horizontal line segments. Note that, the bottom-to-top plane sweep
illustrates that two horizontal line segments can be connected by an z-
monotone chain if they are assigned the same slot number. Thus, assigning
a slot number to each of the horizontal line segments is equivalent to con-
necting them with monotone chains. Hence, the Minimal Slot-Assignment
Problem solves SCP and computing a stabbing cover by z-monotone chains
of a set of O(m) horizontal segments can be doné in O(mlogm) time and
linear space [6]. Therefore, we have obtained the following result.

Theorem 5.1 SCP can be solved optimally in ©(n + mlogm) time by
reducing it 1o the Minimal Slot-Assignment Problem.

6 Stabbing paths

The algorithms in the previous sections do not ensure that a z-monotone
chain C only intersects the polygons that it stabs. For example, in the scene
depicted in Figure 7, our algorithm for the maximum stabber computes
correctly and efficiently the sequence (Py, P;, P3, P,) as the sequence of
polygons stabbed by a maximum stabber. However, the line segment from
the rightmost point of P; to the leftmost point of P,y (for i = 1,2,3)
intersects Ps.

A preliminary version of this paper describing the results of previous
sections was presented at ICCI-95 [2]. These results provide enough un-
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Figure 7: A scene with 5 polygons where z-monotone stabbers may not
be paths.

derstanding to obtain algorithms to compute stabbing paths in the original
scene. In this section we modify the algorithms previously given to com-
pute paths that a mobile robot can follow. Paths are z-monotone chains
that do not collide with other polygons in the scene. We think of the con-
vex polygons as rooms with doors at their leftmost and rightmost vertices.
The polygons constitute obstacles for the paths at other points that are not
the doors. Figure 7 also shows that the output of stabbing paths has size
Q(m + n).

6.1 The stabbing monotone path of most polygons

We first present an algorithm for the MSP problem where the polygonal
chain must only intersect polygons that it actually stabs. The algorithm
performs a plane-sweep from left to right in the original scene, and the event
points are all the n points in the scene. As before, the vertical sweep line
l, stores two kinds of objects (see Figure 8). The first type of objects are
the vertical segments exterior to all polygons. The second type of objects
are the interior vertical line segments that constitute the intersection of I,
and one convex polygon in the scene.

An object b in {, has associated with it the number of polygons stabbed
by the maximum z-monotone chain that ends at b and does not intersect
other polygons. The objects also store an associated pointer to the previous
Jjoint point of the chain. Those segments in {, that are in the interior of
a polygon (for example, segments P/ and P; in Figure 8) are treated in a
similar way as horizontal line segments where treated in Section 4. That is,
the length of a chain that reaches them is one element larger after departing
them. For the type of objects that are the intersection of a polygon P; and
l,, the pointer associated with them is just the leftmost point of the polygon
P; (since all P; are convex).

However, for an object s that is a segment in [, corresponding to an
interval between polygons, the pointer associated with s points to the head
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Figure 8: The intersection of a vertical line I, and the scene results in two
types of objects: line segments that are intervals of [, inside a polygon,
and line segments that are intervals of [, exterior to all polygons.

of a linked list that defines the z-monotone path passing through the cor-
ridors defined by the exterior of the polygons. For example, in Figure 8,
object t; has a pointer to point ¢;, that is the head of the list ¢;, ¢2 and ¢3
- that defines a z-monotone polygonal path in the corridor between P; and

Pj.

As the line !, advances we have the following cases for an event.

1.— The line /, arrives at an event point that is not a leftmost or right-
most point of a polygon; see Figure 9 (a).

2.~ We arrive at an event point that is a rightmost point of a polygon;
see Figure 9 (b)

3.— We arrive at an event point that is a leftmost pomt of a polygon in
the scene; see Figure 9 (c).
In Case 1, we simply compute a new point ¢{ halfway between the two poly-
gons and on l,. The point ¢} is inserted at the head of the list previously
headed by ¢; and the new object in [, has ¢} as the new associated point.

Case 2 is similar to the case of Figure 6 (b); three objects are removed
from /, and a new object t is inserted to replace them. The maximum
number of stabbed objects is determined by choosing the largest among
the values from the chain through g¢., the chain through ¢4 or the diagonal
of the polygon between its leftmost and rightmost points. If the stabber
chain of most polygons reaching the new position of [, is obtained through
the polygon, the rightmost point pr is the point associated with the new
segment in !,. The point pg is inserted, as the new head, in the list with
head pr.

If the stabber chain of most polygons is obtained through g, a point
q,, with same z-coordinate as pr but slightly larger y-coordinate and such
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Figure 9: The three cases that occur during the line sweep algorithm
for computing stabbing paths.

that the line segment q,g!, does not intersect any polygon is added as the
point associated with the new object . The point ¢/, is inserted, as the
head, of the list with head ¢,. The situation is symmetric if the maximum
stabber chain is obtained trough ¢4, but the new point is just below pg.

Case 3 is similar to the case of Figure 6 (a). Three new objects replace a
previous object ¢. The middle object is a polygonal object with associated
point, the event point pr. The other two objects have associated points
halfway between the edges of the corridors of the polygons. All points
become heads of lists pointing to the point ¢; associated with the old object
t; however, the maximum number of stabbed polygons is one more for the
middle object, while for the other two objects, it remains the same.

It is not hard now to see that the vertical line [, preserves the invariant
that, for each object & in {,, we can retrieve the z-monotone chain that
stabs the maximum number of polygons without invading other polygons
and ending at b.

This provides correctness for the algorithm. Since the scene consists of
m polygons, at most O(m) objects are ever stored in l,, and since there
are n event points the algorithm requires O(nlogm) time. Since there are
at most three elements in the linked lists representing monotone chains for
each event point, the algorithm requires O(n) space. We have proved the
following result.

Theorem 6.1 A Mazimum Stabbing Path that does not collide with other
polygons can be computed in O(nlogm) time and O(n) space.
6.2 The minimum stabbing cover with paths

A minimum stabbing cover by z-monotone chains as computed is Section 5
results in disjoint chains among each other, but each chain may intersect
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other polygons in the scene besides the ones it stabs. Again, Figure 7
illustrates that two z-monotone chains cover the 5 polygons. The top-most
chain covers Py, Py, P3 and P; while the second one covers Ps. A straight
line from the rightmost point p;, of P; to the leftmost point pz, of P,
intersects P5. Fortunately, the transformation from a set of stabbing chains
to a set of stabbing paths can be easily obtained by a plane-sweep from left
to right that makes sure each chain avoids the polygons it does not stab.
The details of this transformation are similar to the previous subsection,
and are omitted. By Theorem 5.1, the SCP solution can be obtained in
O(n + mlogm) time but the transformation takes O(nlogm) time. Thus
we have the following result.

Theorem 6.2 A Minimum Set of x-monotone Stabbing Paths of a scene
with m conver polygons defined by n points can be computed in O(nlogm)
time and O(n) space.

7 Final remarks

We have presented optimal algorithms for computing a stabbing cover by
z-monotone chains of convex polygons and for computing the z-monotone
chain that stabs the most polygons. Our results improve, by at least a
linear factor, previously known results.

A monotone chain C with respect to a line { has the property that lines
orthogonal to ! intersect C in a connected set. We say that a a chain C
is zy-monotone if any line parallel to the z-axis or the y-axis intersects C
in a connected set. It is not hard to see that our algorithms for stabbing
horizontal segments extend to computing covers of zy-monotone chains
that intersect all segments horizontally. Natural open question regarding
stabbing covers that we leave for further research are:

1. Can SCP or MSP be solved efficiently for convex polygons using zy
monotone chains?

2. Given a set of orientations w can minimum stabbing covers of w-
monotone chains be efficiently found for convex polygons?

3. If we use our algorithm, first in the z-direction, and afterwards in the
y-direction for computing two covers by zy-monotone chains of the
same set of polygons, and take the smallest, how far is this from the
optimum?

Similar open question for maximum covering stabbers are also left for fur-
ther research. ’
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