Six MOLS of Order 76
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ABSTRACT. A PBD construction for six MOLS of order 76 is
given.

1 The Construction

See [1] for definitions and relevant background material.

Let D = {0,1,3,9,27,81,61,49,56,77}. Then {D+1i:0 <17 < 90} is
a projective plane of order 9 (a (91,10,1)-design) (V,B), where D + i is
obtained by adding i to each entry of D, and reducing modulo 91.

Let A = {2,4,5,12,24}. Delete the points of DU A from V, and shorten
the blocks in B accordingly (also removing the empty block), to obtain a
PBD (V \ (DU A),B’). Now deleting the elements of D has the effect
of removing all points from the block D + 0, and removing exactly one
point from each other block. It is easy to check that A is a 5-arc in the
resulting affine plane (every line meets at most two points of A), so that
(V\ (DU A),B’) is a (76, {7,8,9})-PBD. What is of importance to us is
the structure of the blocks of size 7; naturally, there must be ten of them,
and we list them explicitly below, having deleted the points of DU A.
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D+1 10 28 82 62 (50| 57 78
D+2 11 29 83 63|51 58 79
D+3 6 30 84 [ 6452 59 80

D+4 7 13[31] 85 65 53 60

D+12 15 21 39 73 68 89
D+15 16 18 42 76 64 71
D+34 34 35 37 438390 20
D+47  47485074|37(17 33
D454 54 55[57]63 44 19 40
D+66 6667 69 75 36 31 [52]

It is easy to check that every element occurs 0, 1 or 2 times in these blocks
of size 7; and that every element appearing twice has been underlined once,
and boxed once, in the table.

The existence of this structure on the blocks of size 7 permits us to prove
the following:

Theorem 1.1 There are sit MOLS of order 76. In fact, a TD(8,76) —
16 TD(8,1) ezists.

Proof: We use a simple variant of the standard PBD construction for
MOLS. TD(8,8) — 8T D(8,1) and TD(8,9) — 9T'D(8,1) both exist, so it
suffices to treat the blocks of size 7. A TD(8,7) exists, and this is equiv-
alent to a TD(8,7) — TD(8,1) by deleting an arbitrary block. Place the
TD(8,7) — TD(8,1) so that the hole of size one, for each block of size 7
‘in the PBD, coincides with the 8 copies of the “boxed” element in the list
above. It is then easy to verify that the result is a T'D(8,76) — 16T D(8, 1);
filling the 16 holes of order 1 yields a T'D(8, 76), which is equivalent to six
MOLS of order 76. O

This construction can be stated more generally; see, for example, [2].

The order 76 has held a special place for 6 MOLS for sixteen years;
indeed, 76 was the largest order for which 6 MOLS were unknown until
this time [1].
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