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ABSTRACT. A simple new proof of an existence condition for
periodic complementary binary sequences is given. In addition,
this result is extended to the general case, which is previously
unsolved.

Let a be a binary sequence of length (period) n with elements a(j) chosen
from {1, —1}. The periodic autocorrelation function @, (k) is defined by

n-1
baa(k) =D a(j)a(i +k) for k=0,1,2,...,n — La(n + j) := a(j)

j=0

The set of sequences {a;: 0 < i < ¢ — 1} each of length = is called a set
of periodic complementary sequences, denoted by PCSg(a;) or PCS if
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Because of important applications in communications, PCS have been ex-
tensively investigated. For general background, see [1] and [2]. A diagram
providing a general view of PCS up to length 50 and up to 12 sequences
was given by Bomer and Antweiler in [2]. Existence conditions for PCS
with ¢ = 2 and 3 were given by Arasu and Xiang in [1}.

In this note, a simple new proof of an existence condition which is given
by Arasu and Xiang in [1}, is given and this result is extended to the general
case, a result not previously known.

Suppose there is a PCSy(a;). Let A; denote the circulant matrix of order
n whose initial row consists of the elements of a;. Then the equation

q-1

S AAT =ngla
i=0
is precisely equivalent to
g-—1 .
- ng ifk=0
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n—1

Suppose r; = 35 o ai(4) (:=0,1,2;...,9— 1). By the circulant matrix
property we have

A;‘J = 1’,'.]
ATJl=rJ
where J is the matrix of order n with all elements +1. Thus, we immediately
et
g 1
(Z A,-A,.T) J = (nql,)J
=0 .
i.e.
q-1
Z (r?.]) = nqgJ.
i=0
This gives

q—1
(Z r?) J = (nq)J.

i=0
From the definition of J, we have
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i.e. ng is a sum of ¢ squares. We have the following result.
Theorem 1. If there is a PCSF(a;), then nq is & sum of q squares.

Corollary 1. If there is a PCS}(a;) where n is an odd integer, then nq is
a sum of ¢ nonzero integral squares.

Proof: By the definition of r;, vy is an odd integer when n is an odd
integer. O
As a by-product, we give the existence condition for a perfect binary array
by showing the relationship between PCS and perfect binary arrays.
[b(3,7)] is called a perfect binary array, where b(:,j) = +1 for i =
0,1,...,4-1,5=0,1,...,n -1, if

q—1n-1 ' .
) . . nqg ifl= o,k—_- 0
,3)b(E+1 k)=

Z;jgob(z IWE+L5+ k) {0 otherwise.

b(g +i,n +5) = b(3, 5)

For general information on perfect binary arrays, we refer to [3]. In [2],
perfect binary arrays have been used to construct PCS. It is easy to verify
that if b(z, 5) is a perfect binary array, then

{(b(3, 0),b(,1),...,bG,n = 1)[i=0,1,...,¢ ~ 1}
{b(O,j),b(l,j),...,b(q - l,J)lj =0,1,...,n— 1}

are two PCS. Thus, the dimensions of perfect binary array must satisfy the
existence conditions for PC'S. Therefore, we have the following corollary.

Corollary 2. If there is a perfect binary array [b(s, 7)], where b(3, j) = +1
fori=0,1,...,9-1,7=0,1,...,n—1, then nq is a sum of n squares and
nq is also a sum of q squares.

We will use Theorem 1 to give a simple new proof of the existence con-
ditions for PCS with ¢ = 2 and 3 given by Arasu and Xiang in [1].

Theorem 2 (see [1]). If there is a PCS}(a;), then n is a sum of 2 squares,
i.e. every prime divisor of n of the form 4t + 3(t > 0) appears with an even
exponent in the prime power decomposition of n.

Proof: If there is aPCS%(a;) where ¢ = 2, by Theorem 1, 2n is a sum of
2 squares. Thus, 2n =1 +r? orn = (m{ﬂ)z + (ﬂ'—}ﬂ-)2 Since 3 + r?
is even, 7o and r; are both even or both odd. Thus 4™ and 737 are
integers.

Theorem 3 (see [1]). There is no PCS}(a;) withn = 4*(8r+5), h > 0,
r2>0.
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Proof: It is well known that for any h > 0 and ¢ > 0, 4*(8t + 7) is not the
sum of three squares of integers. Thus if n = 4*(8r+-5), 3n = 4*(24r+15) =
4%(8(3r + 1) + 7) and 3n is not the sum of three squares. By Theorem 1,
there is no such PCS%(a;). a

According to Theorem 1, to determine whether a PCS} (for ¢ > 4)
exists or not, we shall need the following propositions. Propositions 1 to 3
all follow easily from the fact that if m =3 or 6 (mod 8) or m = 12 or 24

(mod 32) then m is the sum of three nonzero squares.

Proposition 1.

If m=4 (mod38)
or m=7 (mod8)
or m=3 (mod8) (m>11)

or m=2 (mod4) (m>6ms#14)
or m=1 (mod4) (m>9ms#17,29,41),

then m can be represented as a sum of 4 nonzero integral squares. If
m = 0 (mod 8), m can be so represented if and only if m/4 can be so
represented.

Proposition 2.

If m=2 (mod3) (m>2)
or m=1 (mod3) (m>10)
or m=0 (mod3) (m>18m#33),

then m can be represented as a sum of 5 nonzero integral squares, otherwise
not.

Proposition 3. Suppose k > 6.

If m=1 (mod3) (m>k-3)
or m=k—1 (mod3) (m>k+5)
or m=k+1 (mod3) (m>k+13),

then m can be represented as a sum of k nonzero integral squares, otherwise
not.

To determine whether a PCS7 exists, we check if ng can be represented
as a sum of L nonzero integral squares for L = ¢,q - 1,9 - 2,...,4,3,2.
If ng cannot be represented as a sum of L nonzero integral squares for
L=g,q—1,9-2,...,4,3,2, then there is no such PCS}(a;) by Theorem
1 and Propositions 1-3. If ng can be represented as a sum of m nonzero
integral squares for some integer m, then one could use computer to search
the existence of PCS7.
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Remarks

Although by the well-known Lagrange Theorem an integer m can be rep-
resented as a sum of four integral squares, m might not be representable
as a sum of k > 4 nonzero integral squares by Propositions 1-3. In partic-
. ular, when n is an odd integer and there is a PCS7(a;), then nq is a sum
of q nonzero integral squares, which is not a trivial generalization of the
Lagrange Theorem by adding zero squares.
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